rustc_infer/infer/relate/generalize.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
use std::mem;
use rustc_data_structures::sso::SsoHashMap;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir::def_id::DefId;
use rustc_middle::bug;
use rustc_middle::infer::unify_key::ConstVariableValue;
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::visit::MaxUniverse;
use rustc_middle::ty::{
self, AliasRelationDirection, InferConst, Term, Ty, TyCtxt, TypeVisitable, TypeVisitableExt,
};
use rustc_span::Span;
use tracing::{debug, instrument, warn};
use super::{
PredicateEmittingRelation, Relate, RelateResult, StructurallyRelateAliases, TypeRelation,
};
use crate::infer::type_variable::TypeVariableValue;
use crate::infer::{InferCtxt, RegionVariableOrigin, relate};
impl<'tcx> InferCtxt<'tcx> {
/// The idea is that we should ensure that the type variable `target_vid`
/// is equal to, a subtype of, or a supertype of `source_ty`.
///
/// For this, we will instantiate `target_vid` with a *generalized* version
/// of `source_ty`. Generalization introduces other inference variables wherever
/// subtyping could occur. This also does the occurs checks, detecting whether
/// instantiating `target_vid` would result in a cyclic type. We eagerly error
/// in this case.
///
/// This is *not* expected to be used anywhere except for an implementation of
/// `TypeRelation`. Do not use this, and instead please use `At::eq`, for all
/// other usecases (i.e. setting the value of a type var).
#[instrument(level = "debug", skip(self, relation))]
pub fn instantiate_ty_var<R: PredicateEmittingRelation<InferCtxt<'tcx>>>(
&self,
relation: &mut R,
target_is_expected: bool,
target_vid: ty::TyVid,
instantiation_variance: ty::Variance,
source_ty: Ty<'tcx>,
) -> RelateResult<'tcx, ()> {
debug_assert!(self.inner.borrow_mut().type_variables().probe(target_vid).is_unknown());
// Generalize `source_ty` depending on the current variance. As an example, assume
// `?target <: &'x ?1`, where `'x` is some free region and `?1` is an inference
// variable.
//
// Then the `generalized_ty` would be `&'?2 ?3`, where `'?2` and `?3` are fresh
// region/type inference variables.
//
// We then relate `generalized_ty <: source_ty`, adding constraints like `'x: '?2` and
// `?1 <: ?3`.
let Generalization { value_may_be_infer: generalized_ty, has_unconstrained_ty_var } = self
.generalize(
relation.span(),
relation.structurally_relate_aliases(),
target_vid,
instantiation_variance,
source_ty,
)?;
// Constrain `b_vid` to the generalized type `generalized_ty`.
if let &ty::Infer(ty::TyVar(generalized_vid)) = generalized_ty.kind() {
self.inner.borrow_mut().type_variables().equate(target_vid, generalized_vid);
} else {
self.inner.borrow_mut().type_variables().instantiate(target_vid, generalized_ty);
}
// See the comment on `Generalization::has_unconstrained_ty_var`.
if has_unconstrained_ty_var {
relation.register_predicates([ty::ClauseKind::WellFormed(generalized_ty.into())]);
}
// Finally, relate `generalized_ty` to `source_ty`, as described in previous comment.
//
// FIXME(#16847): This code is non-ideal because all these subtype
// relations wind up attributed to the same spans. We need
// to associate causes/spans with each of the relations in
// the stack to get this right.
if generalized_ty.is_ty_var() {
// This happens for cases like `<?0 as Trait>::Assoc == ?0`.
// We can't instantiate `?0` here as that would result in a
// cyclic type. We instead delay the unification in case
// the alias can be normalized to something which does not
// mention `?0`.
if self.next_trait_solver() {
let (lhs, rhs, direction) = match instantiation_variance {
ty::Invariant => {
(generalized_ty.into(), source_ty.into(), AliasRelationDirection::Equate)
}
ty::Covariant => {
(generalized_ty.into(), source_ty.into(), AliasRelationDirection::Subtype)
}
ty::Contravariant => {
(source_ty.into(), generalized_ty.into(), AliasRelationDirection::Subtype)
}
ty::Bivariant => unreachable!("bivariant generalization"),
};
relation.register_predicates([ty::PredicateKind::AliasRelate(lhs, rhs, direction)]);
} else {
match source_ty.kind() {
&ty::Alias(ty::Projection, data) => {
// FIXME: This does not handle subtyping correctly, we could
// instead create a new inference variable `?normalized_source`, emitting
// `Projection(normalized_source, ?ty_normalized)` and
// `?normalized_source <: generalized_ty`.
relation.register_predicates([ty::ProjectionPredicate {
projection_term: data.into(),
term: generalized_ty.into(),
}]);
}
// The old solver only accepts projection predicates for associated types.
ty::Alias(ty::Inherent | ty::Weak | ty::Opaque, _) => {
return Err(TypeError::CyclicTy(source_ty));
}
_ => bug!("generalized `{source_ty:?} to infer, not an alias"),
}
}
} else {
// NOTE: The `instantiation_variance` is not the same variance as
// used by the relation. When instantiating `b`, `target_is_expected`
// is flipped and the `instantiation_variance` is also flipped. To
// constrain the `generalized_ty` while using the original relation,
// we therefore only have to flip the arguments.
//
// ```ignore (not code)
// ?a rel B
// instantiate_ty_var(?a, B) # expected and variance not flipped
// B' rel B
// ```
// or
// ```ignore (not code)
// A rel ?b
// instantiate_ty_var(?b, A) # expected and variance flipped
// A rel A'
// ```
if target_is_expected {
relation.relate(generalized_ty, source_ty)?;
} else {
debug!("flip relation");
relation.relate(source_ty, generalized_ty)?;
}
}
Ok(())
}
/// Instantiates the const variable `target_vid` with the given constant.
///
/// This also tests if the given const `ct` contains an inference variable which was previously
/// unioned with `target_vid`. If this is the case, inferring `target_vid` to `ct`
/// would result in an infinite type as we continuously replace an inference variable
/// in `ct` with `ct` itself.
///
/// This is especially important as unevaluated consts use their parents generics.
/// They therefore often contain unused args, making these errors far more likely.
///
/// A good example of this is the following:
///
/// ```compile_fail,E0308
/// #![feature(generic_const_exprs)]
///
/// fn bind<const N: usize>(value: [u8; N]) -> [u8; 3 + 4] {
/// todo!()
/// }
///
/// fn main() {
/// let mut arr = Default::default();
/// arr = bind(arr);
/// }
/// ```
///
/// Here `3 + 4` ends up as `ConstKind::Unevaluated` which uses the generics
/// of `fn bind` (meaning that its args contain `N`).
///
/// `bind(arr)` now infers that the type of `arr` must be `[u8; N]`.
/// The assignment `arr = bind(arr)` now tries to equate `N` with `3 + 4`.
///
/// As `3 + 4` contains `N` in its args, this must not succeed.
///
/// See `tests/ui/const-generics/occurs-check/` for more examples where this is relevant.
#[instrument(level = "debug", skip(self, relation))]
pub(crate) fn instantiate_const_var<R: PredicateEmittingRelation<InferCtxt<'tcx>>>(
&self,
relation: &mut R,
target_is_expected: bool,
target_vid: ty::ConstVid,
source_ct: ty::Const<'tcx>,
) -> RelateResult<'tcx, ()> {
// FIXME(generic_const_exprs): Occurs check failures for unevaluated
// constants and generic expressions are not yet handled correctly.
let Generalization { value_may_be_infer: generalized_ct, has_unconstrained_ty_var } = self
.generalize(
relation.span(),
relation.structurally_relate_aliases(),
target_vid,
ty::Invariant,
source_ct,
)?;
debug_assert!(!generalized_ct.is_ct_infer());
if has_unconstrained_ty_var {
bug!("unconstrained ty var when generalizing `{source_ct:?}`");
}
self.inner
.borrow_mut()
.const_unification_table()
.union_value(target_vid, ConstVariableValue::Known { value: generalized_ct });
// Make sure that the order is correct when relating the
// generalized const and the source.
if target_is_expected {
relation.relate_with_variance(
ty::Invariant,
ty::VarianceDiagInfo::default(),
generalized_ct,
source_ct,
)?;
} else {
relation.relate_with_variance(
ty::Invariant,
ty::VarianceDiagInfo::default(),
source_ct,
generalized_ct,
)?;
}
Ok(())
}
/// Attempts to generalize `source_term` for the type variable `target_vid`.
/// This checks for cycles -- that is, whether `source_term` references `target_vid`.
fn generalize<T: Into<Term<'tcx>> + Relate<TyCtxt<'tcx>>>(
&self,
span: Span,
structurally_relate_aliases: StructurallyRelateAliases,
target_vid: impl Into<ty::TermVid>,
ambient_variance: ty::Variance,
source_term: T,
) -> RelateResult<'tcx, Generalization<T>> {
assert!(!source_term.has_escaping_bound_vars());
let (for_universe, root_vid) = match target_vid.into() {
ty::TermVid::Ty(ty_vid) => {
(self.probe_ty_var(ty_vid).unwrap_err(), ty::TermVid::Ty(self.root_var(ty_vid)))
}
ty::TermVid::Const(ct_vid) => (
self.probe_const_var(ct_vid).unwrap_err(),
ty::TermVid::Const(
self.inner.borrow_mut().const_unification_table().find(ct_vid).vid,
),
),
};
let mut generalizer = Generalizer {
infcx: self,
span,
structurally_relate_aliases,
root_vid,
for_universe,
root_term: source_term.into(),
ambient_variance,
in_alias: false,
cache: Default::default(),
has_unconstrained_ty_var: false,
};
let value_may_be_infer = generalizer.relate(source_term, source_term)?;
let has_unconstrained_ty_var = generalizer.has_unconstrained_ty_var;
Ok(Generalization { value_may_be_infer, has_unconstrained_ty_var })
}
}
/// The "generalizer" is used when handling inference variables.
///
/// The basic strategy for handling a constraint like `?A <: B` is to
/// apply a "generalization strategy" to the term `B` -- this replaces
/// all the lifetimes in the term `B` with fresh inference variables.
/// (You can read more about the strategy in this [blog post].)
///
/// As an example, if we had `?A <: &'x u32`, we would generalize `&'x
/// u32` to `&'0 u32` where `'0` is a fresh variable. This becomes the
/// value of `A`. Finally, we relate `&'0 u32 <: &'x u32`, which
/// establishes `'0: 'x` as a constraint.
///
/// [blog post]: https://is.gd/0hKvIr
struct Generalizer<'me, 'tcx> {
infcx: &'me InferCtxt<'tcx>,
span: Span,
/// Whether aliases should be related structurally. If not, we have to
/// be careful when generalizing aliases.
structurally_relate_aliases: StructurallyRelateAliases,
/// The vid of the type variable that is in the process of being
/// instantiated. If we find this within the value we are folding,
/// that means we would have created a cyclic value.
root_vid: ty::TermVid,
/// The universe of the type variable that is in the process of being
/// instantiated. If we find anything that this universe cannot name,
/// we reject the relation.
for_universe: ty::UniverseIndex,
/// The root term (const or type) we're generalizing. Used for cycle errors.
root_term: Term<'tcx>,
/// After we generalize this type, we are going to relate it to
/// some other type. What will be the variance at this point?
ambient_variance: ty::Variance,
/// This is set once we're generalizing the arguments of an alias.
///
/// This is necessary to correctly handle
/// `<T as Bar<<?0 as Foo>::Assoc>::Assoc == ?0`. This equality can
/// hold by either normalizing the outer or the inner associated type.
in_alias: bool,
cache: SsoHashMap<(Ty<'tcx>, ty::Variance, bool), Ty<'tcx>>,
/// See the field `has_unconstrained_ty_var` in `Generalization`.
has_unconstrained_ty_var: bool,
}
impl<'tcx> Generalizer<'_, 'tcx> {
/// Create an error that corresponds to the term kind in `root_term`
fn cyclic_term_error(&self) -> TypeError<'tcx> {
match self.root_term.unpack() {
ty::TermKind::Ty(ty) => TypeError::CyclicTy(ty),
ty::TermKind::Const(ct) => TypeError::CyclicConst(ct),
}
}
/// Create a new type variable in the universe of the target when
/// generalizing an alias. This has to set `has_unconstrained_ty_var`
/// if we're currently in a bivariant context.
fn next_ty_var_for_alias(&mut self) -> Ty<'tcx> {
self.has_unconstrained_ty_var |= self.ambient_variance == ty::Bivariant;
self.infcx.next_ty_var_in_universe(self.span, self.for_universe)
}
/// An occurs check failure inside of an alias does not mean
/// that the types definitely don't unify. We may be able
/// to normalize the alias after all.
///
/// We handle this by lazily equating the alias and generalizing
/// it to an inference variable. In the new solver, we always
/// generalize to an infer var unless the alias contains escaping
/// bound variables.
///
/// Correctly handling aliases with escaping bound variables is
/// difficult and currently incomplete in two opposite ways:
/// - if we get an occurs check failure in the alias, replace it with a new infer var.
/// This causes us to later emit an alias-relate goal and is incomplete in case the
/// alias normalizes to type containing one of the bound variables.
/// - if the alias contains an inference variable not nameable by `for_universe`, we
/// continue generalizing the alias. This ends up pulling down the universe of the
/// inference variable and is incomplete in case the alias would normalize to a type
/// which does not mention that inference variable.
fn generalize_alias_ty(
&mut self,
alias: ty::AliasTy<'tcx>,
) -> Result<Ty<'tcx>, TypeError<'tcx>> {
// We do not eagerly replace aliases with inference variables if they have
// escaping bound vars, see the method comment for details. However, when we
// are inside of an alias with escaping bound vars replacing nested aliases
// with inference variables can cause incorrect ambiguity.
//
// cc trait-system-refactor-initiative#110
if self.infcx.next_trait_solver() && !alias.has_escaping_bound_vars() && !self.in_alias {
return Ok(self.next_ty_var_for_alias());
}
let is_nested_alias = mem::replace(&mut self.in_alias, true);
let result = match self.relate(alias, alias) {
Ok(alias) => Ok(alias.to_ty(self.cx())),
Err(e) => {
if is_nested_alias {
return Err(e);
} else {
let mut visitor = MaxUniverse::new();
alias.visit_with(&mut visitor);
let infer_replacement_is_complete =
self.for_universe.can_name(visitor.max_universe())
&& !alias.has_escaping_bound_vars();
if !infer_replacement_is_complete {
warn!("may incompletely handle alias type: {alias:?}");
}
debug!("generalization failure in alias");
Ok(self.next_ty_var_for_alias())
}
}
};
self.in_alias = is_nested_alias;
result
}
}
impl<'tcx> TypeRelation<TyCtxt<'tcx>> for Generalizer<'_, 'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn relate_item_args(
&mut self,
item_def_id: DefId,
a_arg: ty::GenericArgsRef<'tcx>,
b_arg: ty::GenericArgsRef<'tcx>,
) -> RelateResult<'tcx, ty::GenericArgsRef<'tcx>> {
if self.ambient_variance == ty::Invariant {
// Avoid fetching the variance if we are in an invariant
// context; no need, and it can induce dependency cycles
// (e.g., #41849).
relate::relate_args_invariantly(self, a_arg, b_arg)
} else {
let tcx = self.cx();
let opt_variances = tcx.variances_of(item_def_id);
relate::relate_args_with_variances(
self,
item_def_id,
opt_variances,
a_arg,
b_arg,
false,
)
}
}
#[instrument(level = "debug", skip(self, variance, b), ret)]
fn relate_with_variance<T: Relate<TyCtxt<'tcx>>>(
&mut self,
variance: ty::Variance,
_info: ty::VarianceDiagInfo<TyCtxt<'tcx>>,
a: T,
b: T,
) -> RelateResult<'tcx, T> {
let old_ambient_variance = self.ambient_variance;
self.ambient_variance = self.ambient_variance.xform(variance);
debug!(?self.ambient_variance, "new ambient variance");
// Recursive calls to `relate` can overflow the stack. For example a deeper version of
// `ui/associated-consts/issue-93775.rs`.
let r = ensure_sufficient_stack(|| self.relate(a, b));
self.ambient_variance = old_ambient_variance;
r
}
#[instrument(level = "debug", skip(self, t2), ret)]
fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
assert_eq!(t, t2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==
if let Some(&result) = self.cache.get(&(t, self.ambient_variance, self.in_alias)) {
return Ok(result);
}
// Check to see whether the type we are generalizing references
// any other type variable related to `vid` via
// subtyping. This is basically our "occurs check", preventing
// us from creating infinitely sized types.
let g = match *t.kind() {
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("unexpected infer type: {t}")
}
ty::Infer(ty::TyVar(vid)) => {
let mut inner = self.infcx.inner.borrow_mut();
let vid = inner.type_variables().root_var(vid);
if ty::TermVid::Ty(vid) == self.root_vid {
// If sub-roots are equal, then `root_vid` and
// `vid` are related via subtyping.
Err(self.cyclic_term_error())
} else {
let probe = inner.type_variables().probe(vid);
match probe {
TypeVariableValue::Known { value: u } => {
drop(inner);
self.relate(u, u)
}
TypeVariableValue::Unknown { universe } => {
match self.ambient_variance {
// Invariant: no need to make a fresh type variable
// if we can name the universe.
ty::Invariant => {
if self.for_universe.can_name(universe) {
return Ok(t);
}
}
// Bivariant: make a fresh var, but remember that
// it is unconstrained. See the comment in
// `Generalization`.
ty::Bivariant => self.has_unconstrained_ty_var = true,
// Co/contravariant: this will be
// sufficiently constrained later on.
ty::Covariant | ty::Contravariant => (),
}
let origin = inner.type_variables().var_origin(vid);
let new_var_id =
inner.type_variables().new_var(self.for_universe, origin);
// If we're in the new solver and create a new inference
// variable inside of an alias we eagerly constrain that
// inference variable to prevent unexpected ambiguity errors.
//
// This is incomplete as it pulls down the universe of the
// original inference variable, even though the alias could
// normalize to a type which does not refer to that type at
// all. I don't expect this to cause unexpected errors in
// practice.
//
// We only need to do so for type and const variables, as
// region variables do not impact normalization, and will get
// correctly constrained by `AliasRelate` later on.
//
// cc trait-system-refactor-initiative#108
if self.infcx.next_trait_solver()
&& !self.infcx.intercrate
&& self.in_alias
{
inner.type_variables().equate(vid, new_var_id);
}
debug!("replacing original vid={:?} with new={:?}", vid, new_var_id);
Ok(Ty::new_var(self.cx(), new_var_id))
}
}
}
}
ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
// No matter what mode we are in,
// integer/floating-point types must be equal to be
// relatable.
Ok(t)
}
ty::Placeholder(placeholder) => {
if self.for_universe.can_name(placeholder.universe) {
Ok(t)
} else {
debug!(
"root universe {:?} cannot name placeholder in universe {:?}",
self.for_universe, placeholder.universe
);
Err(TypeError::Mismatch)
}
}
ty::Alias(_, data) => match self.structurally_relate_aliases {
StructurallyRelateAliases::No => self.generalize_alias_ty(data),
StructurallyRelateAliases::Yes => relate::structurally_relate_tys(self, t, t),
},
_ => relate::structurally_relate_tys(self, t, t),
}?;
self.cache.insert((t, self.ambient_variance, self.in_alias), g);
Ok(g)
}
#[instrument(level = "debug", skip(self, r2), ret)]
fn regions(
&mut self,
r: ty::Region<'tcx>,
r2: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
assert_eq!(r, r2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==
match *r {
// Never make variables for regions bound within the type itself,
// nor for erased regions.
ty::ReBound(..) | ty::ReErased => {
return Ok(r);
}
// It doesn't really matter for correctness if we generalize ReError,
// since we're already on a doomed compilation path.
ty::ReError(_) => {
return Ok(r);
}
ty::RePlaceholder(..)
| ty::ReVar(..)
| ty::ReStatic
| ty::ReEarlyParam(..)
| ty::ReLateParam(..) => {
// see common code below
}
}
// If we are in an invariant context, we can re-use the region
// as is, unless it happens to be in some universe that we
// can't name.
if let ty::Invariant = self.ambient_variance {
let r_universe = self.infcx.universe_of_region(r);
if self.for_universe.can_name(r_universe) {
return Ok(r);
}
}
Ok(self.infcx.next_region_var_in_universe(
RegionVariableOrigin::MiscVariable(self.span),
self.for_universe,
))
}
#[instrument(level = "debug", skip(self, c2), ret)]
fn consts(
&mut self,
c: ty::Const<'tcx>,
c2: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
assert_eq!(c, c2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==
match c.kind() {
ty::ConstKind::Infer(InferConst::Var(vid)) => {
// If root const vids are equal, then `root_vid` and
// `vid` are related and we'd be inferring an infinitely
// deep const.
if ty::TermVid::Const(
self.infcx.inner.borrow_mut().const_unification_table().find(vid).vid,
) == self.root_vid
{
return Err(self.cyclic_term_error());
}
let mut inner = self.infcx.inner.borrow_mut();
let variable_table = &mut inner.const_unification_table();
match variable_table.probe_value(vid) {
ConstVariableValue::Known { value: u } => {
drop(inner);
self.relate(u, u)
}
ConstVariableValue::Unknown { origin, universe } => {
if self.for_universe.can_name(universe) {
Ok(c)
} else {
let new_var_id = variable_table
.new_key(ConstVariableValue::Unknown {
origin,
universe: self.for_universe,
})
.vid;
// See the comment for type inference variables
// for more details.
if self.infcx.next_trait_solver()
&& !self.infcx.intercrate
&& self.in_alias
{
variable_table.union(vid, new_var_id);
}
Ok(ty::Const::new_var(self.cx(), new_var_id))
}
}
}
}
ty::ConstKind::Infer(InferConst::EffectVar(_)) => Ok(c),
// FIXME: Unevaluated constants are also not rigid, so the current
// approach of always relating them structurally is incomplete.
//
// FIXME: remove this branch once `structurally_relate_consts` is fully
// structural.
ty::ConstKind::Unevaluated(ty::UnevaluatedConst { def, args }) => {
let args = self.relate_with_variance(
ty::Invariant,
ty::VarianceDiagInfo::default(),
args,
args,
)?;
Ok(ty::Const::new_unevaluated(self.cx(), ty::UnevaluatedConst { def, args }))
}
ty::ConstKind::Placeholder(placeholder) => {
if self.for_universe.can_name(placeholder.universe) {
Ok(c)
} else {
debug!(
"root universe {:?} cannot name placeholder in universe {:?}",
self.for_universe, placeholder.universe
);
Err(TypeError::Mismatch)
}
}
_ => relate::structurally_relate_consts(self, c, c),
}
}
#[instrument(level = "debug", skip(self), ret)]
fn binders<T>(
&mut self,
a: ty::Binder<'tcx, T>,
_: ty::Binder<'tcx, T>,
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
where
T: Relate<TyCtxt<'tcx>>,
{
let result = self.relate(a.skip_binder(), a.skip_binder())?;
Ok(a.rebind(result))
}
}
/// Result from a generalization operation. This includes
/// not only the generalized type, but also a bool flag
/// indicating whether further WF checks are needed.
#[derive(Debug)]
struct Generalization<T> {
/// When generalizing `<?0 as Trait>::Assoc` or
/// `<T as Bar<<?0 as Foo>::Assoc>>::Assoc`
/// for `?0` generalization returns an inference
/// variable.
///
/// This has to be handled wotj care as it can
/// otherwise very easily result in infinite
/// recursion.
pub value_may_be_infer: T,
/// In general, we do not check whether all types which occur during
/// type checking are well-formed. We only check wf of user-provided types
/// and when actually using a type, e.g. for method calls.
///
/// This means that when subtyping, we may end up with unconstrained
/// inference variables if a generalized type has bivariant parameters.
/// A parameter may only be bivariant if it is constrained by a projection
/// bound in a where-clause. As an example, imagine a type:
///
/// struct Foo<A, B> where A: Iterator<Item = B> {
/// data: A
/// }
///
/// here, `A` will be covariant, but `B` is unconstrained.
///
/// However, whatever it is, for `Foo` to be WF, it must be equal to `A::Item`.
/// If we have an input `Foo<?A, ?B>`, then after generalization we will wind
/// up with a type like `Foo<?C, ?D>`. When we enforce `Foo<?A, ?B> <: Foo<?C, ?D>`,
/// we will wind up with the requirement that `?A <: ?C`, but no particular
/// relationship between `?B` and `?D` (after all, these types may be completely
/// different). If we do nothing else, this may mean that `?D` goes unconstrained
/// (as in #41677). To avoid this we emit a `WellFormed` obligation in these cases.
pub has_unconstrained_ty_var: bool,
}