rustc_builtin_macros/deriving/
clone.rs

1use rustc_ast::{self as ast, Generics, ItemKind, MetaItem, VariantData};
2use rustc_data_structures::fx::FxHashSet;
3use rustc_expand::base::{Annotatable, ExtCtxt};
4use rustc_span::{Ident, Span, kw, sym};
5use thin_vec::{ThinVec, thin_vec};
6
7use crate::deriving::generic::ty::*;
8use crate::deriving::generic::*;
9use crate::deriving::path_std;
10
11pub(crate) fn expand_deriving_clone(
12    cx: &ExtCtxt<'_>,
13    span: Span,
14    mitem: &MetaItem,
15    item: &Annotatable,
16    push: &mut dyn FnMut(Annotatable),
17    is_const: bool,
18) {
19    // The simple form is `fn clone(&self) -> Self { *self }`, possibly with
20    // some additional `AssertParamIsClone` assertions.
21    //
22    // We can use the simple form if either of the following are true.
23    // - The type derives Copy and there are no generic parameters. (If we
24    //   used the simple form with generics, we'd have to bound the generics
25    //   with Clone + Copy, and then there'd be no Clone impl at all if the
26    //   user fills in something that is Clone but not Copy. After
27    //   specialization we can remove this no-generics limitation.)
28    // - The item is a union. (Unions with generic parameters still can derive
29    //   Clone because they require Copy for deriving, Clone alone is not
30    //   enough. Whether Clone is implemented for fields is irrelevant so we
31    //   don't assert it.)
32    let bounds;
33    let substructure;
34    let is_simple;
35    match item {
36        Annotatable::Item(annitem) => match &annitem.kind {
37            ItemKind::Struct(_, Generics { params, .. })
38            | ItemKind::Enum(_, Generics { params, .. }) => {
39                let container_id = cx.current_expansion.id.expn_data().parent.expect_local();
40                let has_derive_copy = cx.resolver.has_derive_copy(container_id);
41                if has_derive_copy
42                    && !params
43                        .iter()
44                        .any(|param| matches!(param.kind, ast::GenericParamKind::Type { .. }))
45                {
46                    bounds = vec![];
47                    is_simple = true;
48                    substructure = combine_substructure(Box::new(|c, s, sub| {
49                        cs_clone_simple("Clone", c, s, sub, false)
50                    }));
51                } else {
52                    bounds = vec![];
53                    is_simple = false;
54                    substructure =
55                        combine_substructure(Box::new(|c, s, sub| cs_clone("Clone", c, s, sub)));
56                }
57            }
58            ItemKind::Union(..) => {
59                bounds = vec![Path(path_std!(marker::Copy))];
60                is_simple = true;
61                substructure = combine_substructure(Box::new(|c, s, sub| {
62                    cs_clone_simple("Clone", c, s, sub, true)
63                }));
64            }
65            _ => cx.dcx().span_bug(span, "`#[derive(Clone)]` on wrong item kind"),
66        },
67
68        _ => cx.dcx().span_bug(span, "`#[derive(Clone)]` on trait item or impl item"),
69    }
70
71    let trait_def = TraitDef {
72        span,
73        path: path_std!(clone::Clone),
74        skip_path_as_bound: false,
75        needs_copy_as_bound_if_packed: true,
76        additional_bounds: bounds,
77        supports_unions: true,
78        methods: vec![MethodDef {
79            name: sym::clone,
80            generics: Bounds::empty(),
81            explicit_self: true,
82            nonself_args: Vec::new(),
83            ret_ty: Self_,
84            attributes: thin_vec![cx.attr_word(sym::inline, span)],
85            fieldless_variants_strategy: FieldlessVariantsStrategy::Default,
86            combine_substructure: substructure,
87        }],
88        associated_types: Vec::new(),
89        is_const,
90    };
91
92    trait_def.expand_ext(cx, mitem, item, push, is_simple)
93}
94
95fn cs_clone_simple(
96    name: &str,
97    cx: &ExtCtxt<'_>,
98    trait_span: Span,
99    substr: &Substructure<'_>,
100    is_union: bool,
101) -> BlockOrExpr {
102    let mut stmts = ThinVec::new();
103    let mut seen_type_names = FxHashSet::default();
104    let mut process_variant = |variant: &VariantData| {
105        for field in variant.fields() {
106            // This basic redundancy checking only prevents duplication of
107            // assertions like `AssertParamIsClone<Foo>` where the type is a
108            // simple name. That's enough to get a lot of cases, though.
109            if let Some(name) = field.ty.kind.is_simple_path()
110                && !seen_type_names.insert(name)
111            {
112                // Already produced an assertion for this type.
113                // Anonymous structs or unions must be eliminated as they cannot be
114                // type parameters.
115            } else {
116                // let _: AssertParamIsClone<FieldTy>;
117                super::assert_ty_bounds(
118                    cx,
119                    &mut stmts,
120                    field.ty.clone(),
121                    field.span,
122                    &[sym::clone, sym::AssertParamIsClone],
123                );
124            }
125        }
126    };
127
128    if is_union {
129        // Just a single assertion for unions, that the union impls `Copy`.
130        // let _: AssertParamIsCopy<Self>;
131        let self_ty = cx.ty_path(cx.path_ident(trait_span, Ident::with_dummy_span(kw::SelfUpper)));
132        super::assert_ty_bounds(
133            cx,
134            &mut stmts,
135            self_ty,
136            trait_span,
137            &[sym::clone, sym::AssertParamIsCopy],
138        );
139    } else {
140        match *substr.fields {
141            StaticStruct(vdata, ..) => {
142                process_variant(vdata);
143            }
144            StaticEnum(enum_def, ..) => {
145                for variant in &enum_def.variants {
146                    process_variant(&variant.data);
147                }
148            }
149            _ => cx.dcx().span_bug(
150                trait_span,
151                format!("unexpected substructure in simple `derive({name})`"),
152            ),
153        }
154    }
155    BlockOrExpr::new_mixed(stmts, Some(cx.expr_deref(trait_span, cx.expr_self(trait_span))))
156}
157
158fn cs_clone(
159    name: &str,
160    cx: &ExtCtxt<'_>,
161    trait_span: Span,
162    substr: &Substructure<'_>,
163) -> BlockOrExpr {
164    let ctor_path;
165    let all_fields;
166    let fn_path = cx.std_path(&[sym::clone, sym::Clone, sym::clone]);
167    let subcall = |cx: &ExtCtxt<'_>, field: &FieldInfo| {
168        let args = thin_vec![field.self_expr.clone()];
169        cx.expr_call_global(field.span, fn_path.clone(), args)
170    };
171
172    let vdata;
173    match substr.fields {
174        Struct(vdata_, af) => {
175            ctor_path = cx.path(trait_span, vec![substr.type_ident]);
176            all_fields = af;
177            vdata = *vdata_;
178        }
179        EnumMatching(.., variant, af) => {
180            ctor_path = cx.path(trait_span, vec![substr.type_ident, variant.ident]);
181            all_fields = af;
182            vdata = &variant.data;
183        }
184        EnumDiscr(..) | AllFieldlessEnum(..) => {
185            cx.dcx().span_bug(trait_span, format!("enum discriminants in `derive({name})`",))
186        }
187        StaticEnum(..) | StaticStruct(..) => {
188            cx.dcx().span_bug(trait_span, format!("associated function in `derive({name})`"))
189        }
190    }
191
192    let expr = match *vdata {
193        VariantData::Struct { .. } => {
194            let fields = all_fields
195                .iter()
196                .map(|field| {
197                    let Some(ident) = field.name else {
198                        cx.dcx().span_bug(
199                            trait_span,
200                            format!("unnamed field in normal struct in `derive({name})`",),
201                        );
202                    };
203                    let call = subcall(cx, field);
204                    cx.field_imm(field.span, ident, call)
205                })
206                .collect::<ThinVec<_>>();
207
208            cx.expr_struct(trait_span, ctor_path, fields)
209        }
210        VariantData::Tuple(..) => {
211            let subcalls = all_fields.iter().map(|f| subcall(cx, f)).collect();
212            let path = cx.expr_path(ctor_path);
213            cx.expr_call(trait_span, path, subcalls)
214        }
215        VariantData::Unit(..) => cx.expr_path(ctor_path),
216    };
217    BlockOrExpr::new_expr(expr)
218}