rustc_infer/infer/
at.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//! A nice interface for working with the infcx. The basic idea is to
//! do `infcx.at(cause, param_env)`, which sets the "cause" of the
//! operation as well as the surrounding parameter environment. Then
//! you can do something like `.sub(a, b)` or `.eq(a, b)` to create a
//! subtype or equality relationship respectively. The first argument
//! is always the "expected" output from the POV of diagnostics.
//!
//! Examples:
//! ```ignore (fragment)
//!     infcx.at(cause, param_env).sub(a, b)
//!     // requires that `a <: b`, with `a` considered the "expected" type
//!
//!     infcx.at(cause, param_env).sup(a, b)
//!     // requires that `b <: a`, with `a` considered the "expected" type
//!
//!     infcx.at(cause, param_env).eq(a, b)
//!     // requires that `a == b`, with `a` considered the "expected" type
//! ```
//! For finer-grained control, you can also do use `trace`:
//! ```ignore (fragment)
//!     infcx.at(...).trace(a, b).sub(&c, &d)
//! ```
//! This will set `a` and `b` as the "root" values for
//! error-reporting, but actually operate on `c` and `d`. This is
//! sometimes useful when the types of `c` and `d` are not traceable
//! things. (That system should probably be refactored.)

use relate::lattice::{LatticeOp, LatticeOpKind};
use rustc_middle::bug;
use rustc_middle::ty::relate::solver_relating::RelateExt as NextSolverRelate;
use rustc_middle::ty::{Const, ImplSubject};

use super::*;
use crate::infer::relate::type_relating::TypeRelating;
use crate::infer::relate::{Relate, TypeRelation};
use crate::traits::Obligation;
use crate::traits::solve::Goal;

/// Whether we should define opaque types or just treat them opaquely.
///
/// Currently only used to prevent predicate matching from matching anything
/// against opaque types.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum DefineOpaqueTypes {
    Yes,
    No,
}

#[derive(Clone, Copy)]
pub struct At<'a, 'tcx> {
    pub infcx: &'a InferCtxt<'tcx>,
    pub cause: &'a ObligationCause<'tcx>,
    pub param_env: ty::ParamEnv<'tcx>,
}

impl<'tcx> InferCtxt<'tcx> {
    #[inline]
    pub fn at<'a>(
        &'a self,
        cause: &'a ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> At<'a, 'tcx> {
        At { infcx: self, cause, param_env }
    }

    /// Forks the inference context, creating a new inference context with the same inference
    /// variables in the same state. This can be used to "branch off" many tests from the same
    /// common state.
    pub fn fork(&self) -> Self {
        self.fork_with_intercrate(self.intercrate)
    }

    /// Forks the inference context, creating a new inference context with the same inference
    /// variables in the same state, except possibly changing the intercrate mode. This can be
    /// used to "branch off" many tests from the same common state. Used in negative coherence.
    pub fn fork_with_intercrate(&self, intercrate: bool) -> Self {
        Self {
            tcx: self.tcx,
            defining_opaque_types: self.defining_opaque_types,
            considering_regions: self.considering_regions,
            skip_leak_check: self.skip_leak_check,
            inner: self.inner.clone(),
            lexical_region_resolutions: self.lexical_region_resolutions.clone(),
            selection_cache: self.selection_cache.clone(),
            evaluation_cache: self.evaluation_cache.clone(),
            reported_trait_errors: self.reported_trait_errors.clone(),
            reported_signature_mismatch: self.reported_signature_mismatch.clone(),
            tainted_by_errors: self.tainted_by_errors.clone(),
            universe: self.universe.clone(),
            intercrate,
            next_trait_solver: self.next_trait_solver,
            obligation_inspector: self.obligation_inspector.clone(),
        }
    }
}

pub trait ToTrace<'tcx>: Relate<TyCtxt<'tcx>> + Copy {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx>;
}

impl<'a, 'tcx> At<'a, 'tcx> {
    /// Makes `actual <: expected`. For example, if type-checking a
    /// call like `foo(x)`, where `foo: fn(i32)`, you might have
    /// `sup(i32, x)`, since the "expected" type is the type that
    /// appears in the signature.
    pub fn sup<T>(
        self,
        define_opaque_types: DefineOpaqueTypes,
        expected: T,
        actual: T,
    ) -> InferResult<'tcx, ()>
    where
        T: ToTrace<'tcx>,
    {
        if self.infcx.next_trait_solver {
            NextSolverRelate::relate(
                self.infcx,
                self.param_env,
                expected,
                ty::Contravariant,
                actual,
            )
            .map(|goals| self.goals_to_obligations(goals))
        } else {
            let mut op = TypeRelating::new(
                self.infcx,
                ToTrace::to_trace(self.cause, expected, actual),
                self.param_env,
                define_opaque_types,
                ty::Contravariant,
            );
            op.relate(expected, actual)?;
            Ok(InferOk { value: (), obligations: op.into_obligations() })
        }
    }

    /// Makes `expected <: actual`.
    pub fn sub<T>(
        self,
        define_opaque_types: DefineOpaqueTypes,
        expected: T,
        actual: T,
    ) -> InferResult<'tcx, ()>
    where
        T: ToTrace<'tcx>,
    {
        if self.infcx.next_trait_solver {
            NextSolverRelate::relate(self.infcx, self.param_env, expected, ty::Covariant, actual)
                .map(|goals| self.goals_to_obligations(goals))
        } else {
            let mut op = TypeRelating::new(
                self.infcx,
                ToTrace::to_trace(self.cause, expected, actual),
                self.param_env,
                define_opaque_types,
                ty::Covariant,
            );
            op.relate(expected, actual)?;
            Ok(InferOk { value: (), obligations: op.into_obligations() })
        }
    }

    /// Makes `expected == actual`.
    pub fn eq<T>(
        self,
        define_opaque_types: DefineOpaqueTypes,
        expected: T,
        actual: T,
    ) -> InferResult<'tcx, ()>
    where
        T: ToTrace<'tcx>,
    {
        self.eq_trace(
            define_opaque_types,
            ToTrace::to_trace(self.cause, expected, actual),
            expected,
            actual,
        )
    }

    /// Makes `expected == actual`.
    pub fn eq_trace<T>(
        self,
        define_opaque_types: DefineOpaqueTypes,
        trace: TypeTrace<'tcx>,
        expected: T,
        actual: T,
    ) -> InferResult<'tcx, ()>
    where
        T: Relate<TyCtxt<'tcx>>,
    {
        if self.infcx.next_trait_solver {
            NextSolverRelate::relate(self.infcx, self.param_env, expected, ty::Invariant, actual)
                .map(|goals| self.goals_to_obligations(goals))
        } else {
            let mut op = TypeRelating::new(
                self.infcx,
                trace,
                self.param_env,
                define_opaque_types,
                ty::Invariant,
            );
            op.relate(expected, actual)?;
            Ok(InferOk { value: (), obligations: op.into_obligations() })
        }
    }

    pub fn relate<T>(
        self,
        define_opaque_types: DefineOpaqueTypes,
        expected: T,
        variance: ty::Variance,
        actual: T,
    ) -> InferResult<'tcx, ()>
    where
        T: ToTrace<'tcx>,
    {
        match variance {
            ty::Covariant => self.sub(define_opaque_types, expected, actual),
            ty::Invariant => self.eq(define_opaque_types, expected, actual),
            ty::Contravariant => self.sup(define_opaque_types, expected, actual),

            // We could make this make sense but it's not readily
            // exposed and I don't feel like dealing with it. Note
            // that bivariance in general does a bit more than just
            // *nothing*, it checks that the types are the same
            // "modulo variance" basically.
            ty::Bivariant => panic!("Bivariant given to `relate()`"),
        }
    }

    /// Computes the least-upper-bound, or mutual supertype, of two
    /// values. The order of the arguments doesn't matter, but since
    /// this can result in an error (e.g., if asked to compute LUB of
    /// u32 and i32), it is meaningful to call one of them the
    /// "expected type".
    pub fn lub<T>(self, expected: T, actual: T) -> InferResult<'tcx, T>
    where
        T: ToTrace<'tcx>,
    {
        let mut op = LatticeOp::new(
            self.infcx,
            ToTrace::to_trace(self.cause, expected, actual),
            self.param_env,
            LatticeOpKind::Lub,
        );
        let value = op.relate(expected, actual)?;
        Ok(InferOk { value, obligations: op.into_obligations() })
    }

    fn goals_to_obligations(
        &self,
        goals: Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
    ) -> InferOk<'tcx, ()> {
        InferOk {
            value: (),
            obligations: goals
                .into_iter()
                .map(|goal| {
                    Obligation::new(
                        self.infcx.tcx,
                        self.cause.clone(),
                        goal.param_env,
                        goal.predicate,
                    )
                })
                .collect(),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ImplSubject<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        match (a, b) {
            (ImplSubject::Trait(trait_ref_a), ImplSubject::Trait(trait_ref_b)) => {
                ToTrace::to_trace(cause, trait_ref_a, trait_ref_b)
            }
            (ImplSubject::Inherent(ty_a), ImplSubject::Inherent(ty_b)) => {
                ToTrace::to_trace(cause, ty_a, ty_b)
            }
            (ImplSubject::Trait(_), ImplSubject::Inherent(_))
            | (ImplSubject::Inherent(_), ImplSubject::Trait(_)) => {
                bug!("can not trace TraitRef and Ty");
            }
        }
    }
}

impl<'tcx> ToTrace<'tcx> for Ty<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::Terms(ExpectedFound::new(true, a.into(), b.into())),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::Region<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::Regions(ExpectedFound::new(true, a, b)),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for Const<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::Terms(ExpectedFound::new(true, a.into(), b.into())),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::GenericArg<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: match (a.unpack(), b.unpack()) {
                (GenericArgKind::Lifetime(a), GenericArgKind::Lifetime(b)) => {
                    ValuePairs::Regions(ExpectedFound::new(true, a, b))
                }
                (GenericArgKind::Type(a), GenericArgKind::Type(b)) => {
                    ValuePairs::Terms(ExpectedFound::new(true, a.into(), b.into()))
                }
                (GenericArgKind::Const(a), GenericArgKind::Const(b)) => {
                    ValuePairs::Terms(ExpectedFound::new(true, a.into(), b.into()))
                }
                _ => bug!("relating different kinds: {a:?} {b:?}"),
            },
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::Term<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::Terms(ExpectedFound::new(true, a, b)),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::TraitRef<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::TraitRefs(ExpectedFound::new(true, a, b)),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::AliasTy<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::Aliases(ExpectedFound::new(true, a.into(), b.into())),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::AliasTerm<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::Aliases(ExpectedFound::new(true, a, b)),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::FnSig<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::PolySigs(ExpectedFound::new(
                true,
                ty::Binder::dummy(a),
                ty::Binder::dummy(b),
            )),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::PolyFnSig<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::PolySigs(ExpectedFound::new(true, a, b)),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::PolyExistentialTraitRef<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::ExistentialTraitRef(ExpectedFound::new(true, a, b)),
        }
    }
}

impl<'tcx> ToTrace<'tcx> for ty::PolyExistentialProjection<'tcx> {
    fn to_trace(cause: &ObligationCause<'tcx>, a: Self, b: Self) -> TypeTrace<'tcx> {
        TypeTrace {
            cause: cause.clone(),
            values: ValuePairs::ExistentialProjection(ExpectedFound::new(true, a, b)),
        }
    }
}