rustc_const_eval/interpret/
discriminant.rs

1//! Functions for reading and writing discriminants of multi-variant layouts (enums and coroutines).
2
3use rustc_abi::{self as abi, TagEncoding, VariantIdx, Variants};
4use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt, TyAndLayout};
5use rustc_middle::ty::{self, CoroutineArgsExt, ScalarInt, Ty};
6use rustc_middle::{mir, span_bug};
7use tracing::{instrument, trace};
8
9use super::{
10    ImmTy, InterpCx, InterpResult, Machine, Projectable, Scalar, Writeable, err_ub, interp_ok,
11    throw_ub,
12};
13
14impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
15    /// Writes the discriminant of the given variant.
16    ///
17    /// If the variant is uninhabited, this is UB.
18    #[instrument(skip(self), level = "trace")]
19    pub fn write_discriminant(
20        &mut self,
21        variant_index: VariantIdx,
22        dest: &impl Writeable<'tcx, M::Provenance>,
23    ) -> InterpResult<'tcx> {
24        match self.tag_for_variant(dest.layout(), variant_index)? {
25            Some((tag, tag_field)) => {
26                // No need to validate that the discriminant here because the
27                // `TyAndLayout::for_variant()` call earlier already checks the
28                // variant is valid.
29                let tag_dest = self.project_field(dest, tag_field)?;
30                self.write_scalar(tag, &tag_dest)
31            }
32            None => {
33                // No need to write the tag here, because an untagged variant is
34                // implicitly encoded. For `Niche`-optimized enums, this works by
35                // simply by having a value that is outside the niche variants.
36                // But what if the data stored here does not actually encode
37                // this variant? That would be bad! So let's double-check...
38                let actual_variant = self.read_discriminant(&dest.to_op(self)?)?;
39                if actual_variant != variant_index {
40                    throw_ub!(InvalidNichedEnumVariantWritten { enum_ty: dest.layout().ty });
41                }
42                interp_ok(())
43            }
44        }
45    }
46
47    /// Read discriminant, return the variant index.
48    /// Can also legally be called on non-enums (e.g. through the discriminant_value intrinsic)!
49    ///
50    /// Will never return an uninhabited variant.
51    #[instrument(skip(self), level = "trace")]
52    pub fn read_discriminant(
53        &self,
54        op: &impl Projectable<'tcx, M::Provenance>,
55    ) -> InterpResult<'tcx, VariantIdx> {
56        let ty = op.layout().ty;
57        trace!("read_discriminant_value {:#?}", op.layout());
58        // Get type and layout of the discriminant.
59        let discr_layout = self.layout_of(ty.discriminant_ty(*self.tcx))?;
60        trace!("discriminant type: {:?}", discr_layout.ty);
61
62        // We use "discriminant" to refer to the value associated with a particular enum variant.
63        // This is not to be confused with its "variant index", which is just determining its position in the
64        // declared list of variants -- they can differ with explicitly assigned discriminants.
65        // We use "tag" to refer to how the discriminant is encoded in memory, which can be either
66        // straight-forward (`TagEncoding::Direct`) or with a niche (`TagEncoding::Niche`).
67        let (tag_scalar_layout, tag_encoding, tag_field) = match op.layout().variants {
68            Variants::Empty => {
69                throw_ub!(UninhabitedEnumVariantRead(None));
70            }
71            Variants::Single { index } => {
72                if op.layout().is_uninhabited() {
73                    // For consistency with `write_discriminant`, and to make sure that
74                    // `project_downcast` cannot fail due to strange layouts, we declare immediate UB
75                    // for uninhabited enums.
76                    throw_ub!(UninhabitedEnumVariantRead(Some(index)));
77                }
78                // Since the type is inhabited, there must be an index.
79                return interp_ok(index);
80            }
81            Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
82                (tag, tag_encoding, tag_field)
83            }
84        };
85
86        // There are *three* layouts that come into play here:
87        // - The discriminant has a type for typechecking. This is `discr_layout`, and is used for
88        //   the `Scalar` we return.
89        // - The tag (encoded discriminant) has layout `tag_layout`. This is always an integer type,
90        //   and used to interpret the value we read from the tag field.
91        //   For the return value, a cast to `discr_layout` is performed.
92        // - The field storing the tag has a layout, which is very similar to `tag_layout` but
93        //   may be a pointer. This is `tag_val.layout`; we just use it for sanity checks.
94
95        // Get layout for tag.
96        let tag_layout = self.layout_of(tag_scalar_layout.primitive().to_int_ty(*self.tcx))?;
97
98        // Read tag and sanity-check `tag_layout`.
99        let tag_val = self.read_immediate(&self.project_field(op, tag_field)?)?;
100        assert_eq!(tag_layout.size, tag_val.layout.size);
101        assert_eq!(tag_layout.backend_repr.is_signed(), tag_val.layout.backend_repr.is_signed());
102        trace!("tag value: {}", tag_val);
103
104        // Figure out which discriminant and variant this corresponds to.
105        let index = match *tag_encoding {
106            TagEncoding::Direct => {
107                // Generate a specific error if `tag_val` is not an integer.
108                // (`tag_bits` itself is only used for error messages below.)
109                let tag_bits = tag_val
110                    .to_scalar()
111                    .try_to_scalar_int()
112                    .map_err(|dbg_val| err_ub!(InvalidTag(dbg_val)))?
113                    .to_bits(tag_layout.size);
114                // Cast bits from tag layout to discriminant layout.
115                // After the checks we did above, this cannot fail, as
116                // discriminants are int-like.
117                let discr_val = self.int_to_int_or_float(&tag_val, discr_layout).unwrap();
118                let discr_bits = discr_val.to_scalar().to_bits(discr_layout.size)?;
119                // Convert discriminant to variant index, and catch invalid discriminants.
120                let index = match *ty.kind() {
121                    ty::Adt(adt, _) => {
122                        adt.discriminants(*self.tcx).find(|(_, var)| var.val == discr_bits)
123                    }
124                    ty::Coroutine(def_id, args) => {
125                        let args = args.as_coroutine();
126                        args.discriminants(def_id, *self.tcx).find(|(_, var)| var.val == discr_bits)
127                    }
128                    _ => span_bug!(self.cur_span(), "tagged layout for non-adt non-coroutine"),
129                }
130                .ok_or_else(|| err_ub!(InvalidTag(Scalar::from_uint(tag_bits, tag_layout.size))))?;
131                // Return the cast value, and the index.
132                index.0
133            }
134            TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
135                let tag_val = tag_val.to_scalar();
136                // Compute the variant this niche value/"tag" corresponds to. With niche layout,
137                // discriminant (encoded in niche/tag) and variant index are the same.
138                let variants_start = niche_variants.start().as_u32();
139                let variants_end = niche_variants.end().as_u32();
140                let variant = match tag_val.try_to_scalar_int() {
141                    Err(dbg_val) => {
142                        // So this is a pointer then, and casting to an int failed.
143                        // Can only happen during CTFE.
144                        // The niche must be just 0, and the ptr not null, then we know this is
145                        // okay. Everything else, we conservatively reject.
146                        let ptr_valid = niche_start == 0
147                            && variants_start == variants_end
148                            && !self.scalar_may_be_null(tag_val)?;
149                        if !ptr_valid {
150                            throw_ub!(InvalidTag(dbg_val))
151                        }
152                        untagged_variant
153                    }
154                    Ok(tag_bits) => {
155                        let tag_bits = tag_bits.to_bits(tag_layout.size);
156                        // We need to use machine arithmetic to get the relative variant idx:
157                        // variant_index_relative = tag_val - niche_start_val
158                        let tag_val = ImmTy::from_uint(tag_bits, tag_layout);
159                        let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
160                        let variant_index_relative_val =
161                            self.binary_op(mir::BinOp::Sub, &tag_val, &niche_start_val)?;
162                        let variant_index_relative =
163                            variant_index_relative_val.to_scalar().to_bits(tag_val.layout.size)?;
164                        // Check if this is in the range that indicates an actual discriminant.
165                        if variant_index_relative <= u128::from(variants_end - variants_start) {
166                            let variant_index_relative = u32::try_from(variant_index_relative)
167                                .expect("we checked that this fits into a u32");
168                            // Then computing the absolute variant idx should not overflow any more.
169                            let variant_index = VariantIdx::from_u32(
170                                variants_start
171                                    .checked_add(variant_index_relative)
172                                    .expect("overflow computing absolute variant idx"),
173                            );
174                            let variants =
175                                ty.ty_adt_def().expect("tagged layout for non adt").variants();
176                            assert!(variant_index < variants.next_index());
177                            if variant_index == untagged_variant {
178                                // The untagged variant can be in the niche range, but even then it
179                                // is not a valid encoding.
180                                throw_ub!(InvalidTag(Scalar::from_uint(tag_bits, tag_layout.size)))
181                            }
182                            variant_index
183                        } else {
184                            untagged_variant
185                        }
186                    }
187                };
188                // Compute the size of the scalar we need to return.
189                // No need to cast, because the variant index directly serves as discriminant and is
190                // encoded in the tag.
191                variant
192            }
193        };
194        // Reading the discriminant of an uninhabited variant is UB. This is the basis for the
195        // `uninhabited_enum_branching` MIR pass. It also ensures consistency with
196        // `write_discriminant`.
197        if op.layout().for_variant(self, index).is_uninhabited() {
198            throw_ub!(UninhabitedEnumVariantRead(Some(index)))
199        }
200        interp_ok(index)
201    }
202
203    /// Read discriminant, return the user-visible discriminant.
204    /// Can also legally be called on non-enums (e.g. through the discriminant_value intrinsic)!
205    pub fn discriminant_for_variant(
206        &self,
207        ty: Ty<'tcx>,
208        variant: VariantIdx,
209    ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
210        let discr_layout = self.layout_of(ty.discriminant_ty(*self.tcx))?;
211        let discr_value = match ty.discriminant_for_variant(*self.tcx, variant) {
212            Some(discr) => {
213                // This type actually has discriminants.
214                assert_eq!(discr.ty, discr_layout.ty);
215                Scalar::from_uint(discr.val, discr_layout.size)
216            }
217            None => {
218                // On a type without actual discriminants, variant is 0.
219                assert_eq!(variant.as_u32(), 0);
220                Scalar::from_uint(variant.as_u32(), discr_layout.size)
221            }
222        };
223        interp_ok(ImmTy::from_scalar(discr_value, discr_layout))
224    }
225
226    /// Computes how to write the tag of a given variant of enum `ty`:
227    /// - `None` means that nothing needs to be done as the variant is encoded implicitly
228    /// - `Some((val, field_idx))` means that the given integer value needs to be stored at the
229    ///   given field index.
230    pub(crate) fn tag_for_variant(
231        &self,
232        layout: TyAndLayout<'tcx>,
233        variant_index: VariantIdx,
234    ) -> InterpResult<'tcx, Option<(ScalarInt, usize)>> {
235        // Layout computation excludes uninhabited variants from consideration.
236        // Therefore, there's no way to represent those variants in the given layout.
237        // Essentially, uninhabited variants do not have a tag that corresponds to their
238        // discriminant, so we have to bail out here.
239        if layout.for_variant(self, variant_index).is_uninhabited() {
240            throw_ub!(UninhabitedEnumVariantWritten(variant_index))
241        }
242
243        match layout.variants {
244            abi::Variants::Empty => unreachable!("we already handled uninhabited types"),
245            abi::Variants::Single { .. } => {
246                // The tag of a `Single` enum is like the tag of the niched
247                // variant: there's no tag as the discriminant is encoded
248                // entirely implicitly. If `write_discriminant` ever hits this
249                // case, we do a "validation read" to ensure the right
250                // discriminant is encoded implicitly, so any attempt to write
251                // the wrong discriminant for a `Single` enum will reliably
252                // result in UB.
253                interp_ok(None)
254            }
255
256            abi::Variants::Multiple {
257                tag_encoding: TagEncoding::Direct,
258                tag: tag_layout,
259                tag_field,
260                ..
261            } => {
262                // raw discriminants for enums are isize or bigger during
263                // their computation, but the in-memory tag is the smallest possible
264                // representation
265                let discr = self.discriminant_for_variant(layout.ty, variant_index)?;
266                let discr_size = discr.layout.size;
267                let discr_val = discr.to_scalar().to_bits(discr_size)?;
268                let tag_size = tag_layout.size(self);
269                let tag_val = tag_size.truncate(discr_val);
270                let tag = ScalarInt::try_from_uint(tag_val, tag_size).unwrap();
271                interp_ok(Some((tag, tag_field)))
272            }
273
274            abi::Variants::Multiple {
275                tag_encoding: TagEncoding::Niche { untagged_variant, .. },
276                ..
277            } if untagged_variant == variant_index => {
278                // The untagged variant is implicitly encoded simply by having a
279                // value that is outside the niche variants.
280                interp_ok(None)
281            }
282
283            abi::Variants::Multiple {
284                tag_encoding:
285                    TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start },
286                tag: tag_layout,
287                tag_field,
288                ..
289            } => {
290                assert!(variant_index != untagged_variant);
291                // We checked that this variant is inhabited, so it must be in the niche range.
292                assert!(
293                    niche_variants.contains(&variant_index),
294                    "invalid variant index for this enum"
295                );
296                let variants_start = niche_variants.start().as_u32();
297                let variant_index_relative = variant_index.as_u32().strict_sub(variants_start);
298                // We need to use machine arithmetic when taking into account `niche_start`:
299                // tag_val = variant_index_relative + niche_start_val
300                let tag_layout = self.layout_of(tag_layout.primitive().to_int_ty(*self.tcx))?;
301                let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
302                let variant_index_relative_val =
303                    ImmTy::from_uint(variant_index_relative, tag_layout);
304                let tag = self
305                    .binary_op(mir::BinOp::Add, &variant_index_relative_val, &niche_start_val)?
306                    .to_scalar_int()?;
307                interp_ok(Some((tag, tag_field)))
308            }
309        }
310    }
311}