rustc_hir_analysis/check/compare_impl_item.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
use core::ops::ControlFlow;
use std::borrow::Cow;
use std::iter;
use hir::def_id::{DefId, DefIdMap, LocalDefId};
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_errors::codes::*;
use rustc_errors::{Applicability, ErrorGuaranteed, pluralize, struct_span_code_err};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::{GenericParamKind, ImplItemKind, intravisit};
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
use rustc_infer::traits::util;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::util::ExplicitSelf;
use rustc_middle::ty::{
self, GenericArgs, GenericParamDefKind, Ty, TyCtxt, TypeFoldable, TypeFolder,
TypeSuperFoldable, TypeVisitableExt, TypingMode, Upcast,
};
use rustc_middle::{bug, span_bug};
use rustc_span::Span;
use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::regions::InferCtxtRegionExt;
use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
use rustc_trait_selection::traits::{
self, FulfillmentError, ObligationCause, ObligationCauseCode, ObligationCtxt, Reveal,
};
use tracing::{debug, instrument};
use super::potentially_plural_count;
use crate::errors::{LifetimesOrBoundsMismatchOnTrait, MethodShouldReturnFuture};
mod refine;
/// Checks that a method from an impl conforms to the signature of
/// the same method as declared in the trait.
///
/// # Parameters
///
/// - `impl_m`: type of the method we are checking
/// - `trait_m`: the method in the trait
/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
#[instrument(level = "debug", skip(tcx))]
pub(super) fn compare_impl_method<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: ty::AssocItem,
trait_m: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) {
let _: Result<_, ErrorGuaranteed> = try {
check_method_is_structurally_compatible(tcx, impl_m, trait_m, impl_trait_ref, false)?;
compare_method_predicate_entailment(tcx, impl_m, trait_m, impl_trait_ref)?;
refine::check_refining_return_position_impl_trait_in_trait(
tcx,
impl_m,
trait_m,
impl_trait_ref,
);
};
}
/// Checks a bunch of different properties of the impl/trait methods for
/// compatibility, such as asyncness, number of argument, self receiver kind,
/// and number of early- and late-bound generics.
fn check_method_is_structurally_compatible<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: ty::AssocItem,
trait_m: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
delay: bool,
) -> Result<(), ErrorGuaranteed> {
compare_self_type(tcx, impl_m, trait_m, impl_trait_ref, delay)?;
compare_number_of_generics(tcx, impl_m, trait_m, delay)?;
compare_generic_param_kinds(tcx, impl_m, trait_m, delay)?;
compare_number_of_method_arguments(tcx, impl_m, trait_m, delay)?;
compare_synthetic_generics(tcx, impl_m, trait_m, delay)?;
check_region_bounds_on_impl_item(tcx, impl_m, trait_m, delay)?;
Ok(())
}
/// This function is best explained by example. Consider a trait with its implementation:
///
/// ```rust
/// trait Trait<'t, T> {
/// // `trait_m`
/// fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
/// }
///
/// struct Foo;
///
/// impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
/// // `impl_m`
/// fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo { Foo }
/// }
/// ```
///
/// We wish to decide if those two method types are compatible.
/// For this we have to show that, assuming the bounds of the impl hold, the
/// bounds of `trait_m` imply the bounds of `impl_m`.
///
/// We start out with `trait_to_impl_args`, that maps the trait
/// type parameters to impl type parameters. This is taken from the
/// impl trait reference:
///
/// ```rust,ignore (pseudo-Rust)
/// trait_to_impl_args = {'t => 'j, T => &'i U, Self => Foo}
/// ```
///
/// We create a mapping `dummy_args` that maps from the impl type
/// parameters to fresh types and regions. For type parameters,
/// this is the identity transform, but we could as well use any
/// placeholder types. For regions, we convert from bound to free
/// regions (Note: but only early-bound regions, i.e., those
/// declared on the impl or used in type parameter bounds).
///
/// ```rust,ignore (pseudo-Rust)
/// impl_to_placeholder_args = {'i => 'i0, U => U0, N => N0 }
/// ```
///
/// Now we can apply `placeholder_args` to the type of the impl method
/// to yield a new function type in terms of our fresh, placeholder
/// types:
///
/// ```rust,ignore (pseudo-Rust)
/// <'b> fn(t: &'i0 U0, m: &'b N0) -> Foo
/// ```
///
/// We now want to extract and instantiate the type of the *trait*
/// method and compare it. To do so, we must create a compound
/// instantiation by combining `trait_to_impl_args` and
/// `impl_to_placeholder_args`, and also adding a mapping for the method
/// type parameters. We extend the mapping to also include
/// the method parameters.
///
/// ```rust,ignore (pseudo-Rust)
/// trait_to_placeholder_args = { T => &'i0 U0, Self => Foo, M => N0 }
/// ```
///
/// Applying this to the trait method type yields:
///
/// ```rust,ignore (pseudo-Rust)
/// <'a> fn(t: &'i0 U0, m: &'a N0) -> Foo
/// ```
///
/// This type is also the same but the name of the bound region (`'a`
/// vs `'b`). However, the normal subtyping rules on fn types handle
/// this kind of equivalency just fine.
///
/// We now use these generic parameters to ensure that all declared bounds
/// are satisfied by the implementation's method.
///
/// We do this by creating a parameter environment which contains a
/// generic parameter corresponding to `impl_to_placeholder_args`. We then build
/// `trait_to_placeholder_args` and use it to convert the predicates contained
/// in the `trait_m` generics to the placeholder form.
///
/// Finally we register each of these predicates as an obligation and check that
/// they hold.
#[instrument(level = "debug", skip(tcx, impl_trait_ref))]
fn compare_method_predicate_entailment<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: ty::AssocItem,
trait_m: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
// This node-id should be used for the `body_id` field on each
// `ObligationCause` (and the `FnCtxt`).
//
// FIXME(@lcnr): remove that after removing `cause.body_id` from
// obligations.
let impl_m_def_id = impl_m.def_id.expect_local();
let impl_m_span = tcx.def_span(impl_m_def_id);
let cause =
ObligationCause::new(impl_m_span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
impl_item_def_id: impl_m_def_id,
trait_item_def_id: trait_m.def_id,
kind: impl_m.kind,
});
// Create mapping from trait method to impl method.
let impl_def_id = impl_m.container_id(tcx);
let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_m.def_id).rebase_onto(
tcx,
impl_m.container_id(tcx),
impl_trait_ref.args,
);
debug!(?trait_to_impl_args);
let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
// This is the only tricky bit of the new way we check implementation methods
// We need to build a set of predicates where only the method-level bounds
// are from the trait and we assume all other bounds from the implementation
// to be previously satisfied.
//
// We then register the obligations from the impl_m and check to see
// if all constraints hold.
let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
let mut hybrid_preds = impl_predicates.instantiate_identity(tcx).predicates;
hybrid_preds.extend(
trait_m_predicates.instantiate_own(tcx, trait_to_impl_args).map(|(predicate, _)| predicate),
);
let is_conditionally_const = tcx.is_conditionally_const(impl_def_id);
if is_conditionally_const {
// Augment the hybrid param-env with the const conditions
// of the impl header and the trait method.
hybrid_preds.extend(
tcx.const_conditions(impl_def_id)
.instantiate_identity(tcx)
.into_iter()
.chain(
tcx.const_conditions(trait_m.def_id).instantiate_own(tcx, trait_to_impl_args),
)
.map(|(trait_ref, _)| {
trait_ref.to_host_effect_clause(tcx, ty::BoundConstness::Maybe)
}),
);
}
let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_def_id);
let param_env = ty::ParamEnv::new(tcx.mk_clauses(&hybrid_preds), Reveal::UserFacing);
let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
debug!(caller_bounds=?param_env.caller_bounds());
let infcx = &tcx.infer_ctxt().build(TypingMode::non_body_analysis());
let ocx = ObligationCtxt::new_with_diagnostics(infcx);
// Create obligations for each predicate declared by the impl
// definition in the context of the hybrid param-env. This makes
// sure that the impl's method's where clauses are not more
// restrictive than the trait's method (and the impl itself).
let impl_m_own_bounds = impl_m_predicates.instantiate_own_identity();
for (predicate, span) in impl_m_own_bounds {
let normalize_cause = traits::ObligationCause::misc(span, impl_m_def_id);
let predicate = ocx.normalize(&normalize_cause, param_env, predicate);
let cause =
ObligationCause::new(span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
impl_item_def_id: impl_m_def_id,
trait_item_def_id: trait_m.def_id,
kind: impl_m.kind,
});
ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
}
// If we're within a const implementation, we need to make sure that the method
// does not assume stronger `~const` bounds than the trait definition.
//
// This registers the `~const` bounds of the impl method, which we will prove
// using the hybrid param-env that we earlier augmented with the const conditions
// from the impl header and trait method declaration.
if is_conditionally_const {
for (const_condition, span) in
tcx.const_conditions(impl_m.def_id).instantiate_own_identity()
{
let normalize_cause = traits::ObligationCause::misc(span, impl_m_def_id);
let const_condition = ocx.normalize(&normalize_cause, param_env, const_condition);
let cause =
ObligationCause::new(span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
impl_item_def_id: impl_m_def_id,
trait_item_def_id: trait_m.def_id,
kind: impl_m.kind,
});
ocx.register_obligation(traits::Obligation::new(
tcx,
cause,
param_env,
const_condition.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
));
}
}
// We now need to check that the signature of the impl method is
// compatible with that of the trait method. We do this by
// checking that `impl_fty <: trait_fty`.
//
// FIXME. Unfortunately, this doesn't quite work right now because
// associated type normalization is not integrated into subtype
// checks. For the comparison to be valid, we need to
// normalize the associated types in the impl/trait methods
// first. However, because function types bind regions, just
// calling `FnCtxt::normalize` would have no effect on
// any associated types appearing in the fn arguments or return
// type.
let mut wf_tys = FxIndexSet::default();
let unnormalized_impl_sig = infcx.instantiate_binder_with_fresh_vars(
impl_m_span,
infer::HigherRankedType,
tcx.fn_sig(impl_m.def_id).instantiate_identity(),
);
let norm_cause = ObligationCause::misc(impl_m_span, impl_m_def_id);
let impl_sig = ocx.normalize(&norm_cause, param_env, unnormalized_impl_sig);
debug!(?impl_sig);
let trait_sig = tcx.fn_sig(trait_m.def_id).instantiate(tcx, trait_to_impl_args);
let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
// Next, add all inputs and output as well-formed tys. Importantly,
// we have to do this before normalization, since the normalized ty may
// not contain the input parameters. See issue #87748.
wf_tys.extend(trait_sig.inputs_and_output.iter());
let trait_sig = ocx.normalize(&norm_cause, param_env, trait_sig);
// We also have to add the normalized trait signature
// as we don't normalize during implied bounds computation.
wf_tys.extend(trait_sig.inputs_and_output.iter());
debug!(?trait_sig);
// FIXME: We'd want to keep more accurate spans than "the method signature" when
// processing the comparison between the trait and impl fn, but we sadly lose them
// and point at the whole signature when a trait bound or specific input or output
// type would be more appropriate. In other places we have a `Vec<Span>`
// corresponding to their `Vec<Predicate>`, but we don't have that here.
// Fixing this would improve the output of test `issue-83765.rs`.
let result = ocx.sup(&cause, param_env, trait_sig, impl_sig);
if let Err(terr) = result {
debug!(?impl_sig, ?trait_sig, ?terr, "sub_types failed");
let emitted = report_trait_method_mismatch(
infcx,
cause,
param_env,
terr,
(trait_m, trait_sig),
(impl_m, impl_sig),
impl_trait_ref,
);
return Err(emitted);
}
if !(impl_sig, trait_sig).references_error() {
// Select obligations to make progress on inference before processing
// the wf obligation below.
// FIXME(-Znext-solver): Not needed when the hack below is removed.
let errors = ocx.select_where_possible();
if !errors.is_empty() {
let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
return Err(reported);
}
// See #108544. Annoying, we can end up in cases where, because of winnowing,
// we pick param env candidates over a more general impl, leading to more
// stricter lifetime requirements than we would otherwise need. This can
// trigger the lint. Instead, let's only consider type outlives and
// region outlives obligations.
//
// FIXME(-Znext-solver): Try removing this hack again once the new
// solver is stable. We should just be able to register a WF pred for
// the fn sig.
let mut wf_args: smallvec::SmallVec<[_; 4]> =
unnormalized_impl_sig.inputs_and_output.iter().map(|ty| ty.into()).collect();
// Annoyingly, asking for the WF predicates of an array (with an unevaluated const (only?))
// will give back the well-formed predicate of the same array.
let mut wf_args_seen: FxHashSet<_> = wf_args.iter().copied().collect();
while let Some(arg) = wf_args.pop() {
let Some(obligations) = rustc_trait_selection::traits::wf::obligations(
infcx,
param_env,
impl_m_def_id,
0,
arg,
impl_m_span,
) else {
continue;
};
for obligation in obligations {
debug!(?obligation);
match obligation.predicate.kind().skip_binder() {
// We need to register Projection oblgiations too, because we may end up with
// an implied `X::Item: 'a`, which gets desugared into `X::Item = ?0`, `?0: 'a`.
// If we only register the region outlives obligation, this leads to an unconstrained var.
// See `implied_bounds_entailment_alias_var.rs` test.
ty::PredicateKind::Clause(
ty::ClauseKind::RegionOutlives(..)
| ty::ClauseKind::TypeOutlives(..)
| ty::ClauseKind::Projection(..),
) => ocx.register_obligation(obligation),
ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
if wf_args_seen.insert(arg) {
wf_args.push(arg)
}
}
_ => {}
}
}
}
}
// Check that all obligations are satisfied by the implementation's
// version.
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
return Err(reported);
}
// Finally, resolve all regions. This catches wily misuses of
// lifetime parameters.
let outlives_env = OutlivesEnvironment::with_bounds(
param_env,
infcx.implied_bounds_tys(param_env, impl_m_def_id, &wf_tys),
);
let errors = infcx.resolve_regions(&outlives_env);
if !errors.is_empty() {
return Err(infcx
.tainted_by_errors()
.unwrap_or_else(|| infcx.err_ctxt().report_region_errors(impl_m_def_id, &errors)));
}
Ok(())
}
struct RemapLateBound<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
mapping: &'a FxIndexMap<ty::BoundRegionKind, ty::BoundRegionKind>,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for RemapLateBound<'_, 'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
if let ty::ReLateParam(fr) = *r {
ty::Region::new_late_param(
self.tcx,
fr.scope,
self.mapping.get(&fr.bound_region).copied().unwrap_or(fr.bound_region),
)
} else {
r
}
}
}
/// Given a method def-id in an impl, compare the method signature of the impl
/// against the trait that it's implementing. In doing so, infer the hidden types
/// that this method's signature provides to satisfy each return-position `impl Trait`
/// in the trait signature.
///
/// The method is also responsible for making sure that the hidden types for each
/// RPITIT actually satisfy the bounds of the `impl Trait`, i.e. that if we infer
/// `impl Trait = Foo`, that `Foo: Trait` holds.
///
/// For example, given the sample code:
///
/// ```
/// use std::ops::Deref;
///
/// trait Foo {
/// fn bar() -> impl Deref<Target = impl Sized>;
/// // ^- RPITIT #1 ^- RPITIT #2
/// }
///
/// impl Foo for () {
/// fn bar() -> Box<String> { Box::new(String::new()) }
/// }
/// ```
///
/// The hidden types for the RPITITs in `bar` would be inferred to:
/// * `impl Deref` (RPITIT #1) = `Box<String>`
/// * `impl Sized` (RPITIT #2) = `String`
///
/// The relationship between these two types is straightforward in this case, but
/// may be more tenuously connected via other `impl`s and normalization rules for
/// cases of more complicated nested RPITITs.
#[instrument(skip(tcx), level = "debug", ret)]
pub(super) fn collect_return_position_impl_trait_in_trait_tys<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m_def_id: LocalDefId,
) -> Result<&'tcx DefIdMap<ty::EarlyBinder<'tcx, Ty<'tcx>>>, ErrorGuaranteed> {
let impl_m = tcx.opt_associated_item(impl_m_def_id.to_def_id()).unwrap();
let trait_m = tcx.opt_associated_item(impl_m.trait_item_def_id.unwrap()).unwrap();
let impl_trait_ref =
tcx.impl_trait_ref(impl_m.impl_container(tcx).unwrap()).unwrap().instantiate_identity();
// First, check a few of the same things as `compare_impl_method`,
// just so we don't ICE during instantiation later.
check_method_is_structurally_compatible(tcx, impl_m, trait_m, impl_trait_ref, true)?;
let impl_m_hir_id = tcx.local_def_id_to_hir_id(impl_m_def_id);
let return_span = tcx.hir().fn_decl_by_hir_id(impl_m_hir_id).unwrap().output.span();
let cause =
ObligationCause::new(return_span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
impl_item_def_id: impl_m_def_id,
trait_item_def_id: trait_m.def_id,
kind: impl_m.kind,
});
// Create mapping from trait to impl (i.e. impl trait header + impl method identity args).
let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_m.def_id).rebase_onto(
tcx,
impl_m.container_id(tcx),
impl_trait_ref.args,
);
let hybrid_preds = tcx
.predicates_of(impl_m.container_id(tcx))
.instantiate_identity(tcx)
.into_iter()
.chain(tcx.predicates_of(trait_m.def_id).instantiate_own(tcx, trait_to_impl_args))
.map(|(clause, _)| clause);
let param_env = ty::ParamEnv::new(tcx.mk_clauses_from_iter(hybrid_preds), Reveal::UserFacing);
let param_env = traits::normalize_param_env_or_error(
tcx,
param_env,
ObligationCause::misc(tcx.def_span(impl_m_def_id), impl_m_def_id),
);
let infcx = &tcx.infer_ctxt().build(TypingMode::non_body_analysis());
let ocx = ObligationCtxt::new_with_diagnostics(infcx);
// Normalize the impl signature with fresh variables for lifetime inference.
let misc_cause = ObligationCause::misc(return_span, impl_m_def_id);
let impl_sig = ocx.normalize(
&misc_cause,
param_env,
tcx.liberate_late_bound_regions(
impl_m.def_id,
tcx.fn_sig(impl_m.def_id).instantiate_identity(),
),
);
impl_sig.error_reported()?;
let impl_return_ty = impl_sig.output();
// Normalize the trait signature with liberated bound vars, passing it through
// the ImplTraitInTraitCollector, which gathers all of the RPITITs and replaces
// them with inference variables.
// We will use these inference variables to collect the hidden types of RPITITs.
let mut collector = ImplTraitInTraitCollector::new(&ocx, return_span, param_env, impl_m_def_id);
let unnormalized_trait_sig = infcx
.instantiate_binder_with_fresh_vars(
return_span,
infer::HigherRankedType,
tcx.fn_sig(trait_m.def_id).instantiate(tcx, trait_to_impl_args),
)
.fold_with(&mut collector);
let trait_sig = ocx.normalize(&misc_cause, param_env, unnormalized_trait_sig);
trait_sig.error_reported()?;
let trait_return_ty = trait_sig.output();
// RPITITs are allowed to use the implied predicates of the method that
// defines them. This is because we want code like:
// ```
// trait Foo {
// fn test<'a, T>(_: &'a T) -> impl Sized;
// }
// impl Foo for () {
// fn test<'a, T>(x: &'a T) -> &'a T { x }
// }
// ```
// .. to compile. However, since we use both the normalized and unnormalized
// inputs and outputs from the instantiated trait signature, we will end up
// seeing the hidden type of an RPIT in the signature itself. Naively, this
// means that we will use the hidden type to imply the hidden type's own
// well-formedness.
//
// To avoid this, we replace the infer vars used for hidden type inference
// with placeholders, which imply nothing about outlives bounds, and then
// prove below that the hidden types are well formed.
let universe = infcx.create_next_universe();
let mut idx = 0;
let mapping: FxIndexMap<_, _> = collector
.types
.iter()
.map(|(_, &(ty, _))| {
assert!(
infcx.resolve_vars_if_possible(ty) == ty && ty.is_ty_var(),
"{ty:?} should not have been constrained via normalization",
ty = infcx.resolve_vars_if_possible(ty)
);
idx += 1;
(
ty,
Ty::new_placeholder(tcx, ty::Placeholder {
universe,
bound: ty::BoundTy {
var: ty::BoundVar::from_usize(idx),
kind: ty::BoundTyKind::Anon,
},
}),
)
})
.collect();
let mut type_mapper = BottomUpFolder {
tcx,
ty_op: |ty| *mapping.get(&ty).unwrap_or(&ty),
lt_op: |lt| lt,
ct_op: |ct| ct,
};
let wf_tys = FxIndexSet::from_iter(
unnormalized_trait_sig
.inputs_and_output
.iter()
.chain(trait_sig.inputs_and_output.iter())
.map(|ty| ty.fold_with(&mut type_mapper)),
);
match ocx.eq(&cause, param_env, trait_return_ty, impl_return_ty) {
Ok(()) => {}
Err(terr) => {
let mut diag = struct_span_code_err!(
tcx.dcx(),
cause.span,
E0053,
"method `{}` has an incompatible return type for trait",
trait_m.name
);
let hir = tcx.hir();
infcx.err_ctxt().note_type_err(
&mut diag,
&cause,
hir.get_if_local(impl_m.def_id)
.and_then(|node| node.fn_decl())
.map(|decl| (decl.output.span(), Cow::from("return type in trait"), false)),
Some(param_env.and(infer::ValuePairs::Terms(ExpectedFound {
expected: trait_return_ty.into(),
found: impl_return_ty.into(),
}))),
terr,
false,
);
return Err(diag.emit());
}
}
debug!(?trait_sig, ?impl_sig, "equating function signatures");
// Unify the whole function signature. We need to do this to fully infer
// the lifetimes of the return type, but do this after unifying just the
// return types, since we want to avoid duplicating errors from
// `compare_method_predicate_entailment`.
match ocx.eq(&cause, param_env, trait_sig, impl_sig) {
Ok(()) => {}
Err(terr) => {
// This function gets called during `compare_method_predicate_entailment` when normalizing a
// signature that contains RPITIT. When the method signatures don't match, we have to
// emit an error now because `compare_method_predicate_entailment` will not report the error
// when normalization fails.
let emitted = report_trait_method_mismatch(
infcx,
cause,
param_env,
terr,
(trait_m, trait_sig),
(impl_m, impl_sig),
impl_trait_ref,
);
return Err(emitted);
}
}
if !unnormalized_trait_sig.output().references_error() && collector.types.is_empty() {
tcx.dcx().delayed_bug(
"expect >0 RPITITs in call to `collect_return_position_impl_trait_in_trait_tys`",
);
}
// FIXME: This has the same issue as #108544, but since this isn't breaking
// existing code, I'm not particularly inclined to do the same hack as above
// where we process wf obligations manually. This can be fixed in a forward-
// compatible way later.
let collected_types = collector.types;
for (_, &(ty, _)) in &collected_types {
ocx.register_obligation(traits::Obligation::new(
tcx,
misc_cause.clone(),
param_env,
ty::ClauseKind::WellFormed(ty.into()),
));
}
// Check that all obligations are satisfied by the implementation's
// RPITs.
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
if let Err(guar) = try_report_async_mismatch(tcx, infcx, &errors, trait_m, impl_m, impl_sig)
{
return Err(guar);
}
let guar = infcx.err_ctxt().report_fulfillment_errors(errors);
return Err(guar);
}
// Finally, resolve all regions. This catches wily misuses of
// lifetime parameters.
let outlives_env = OutlivesEnvironment::with_bounds(
param_env,
infcx.implied_bounds_tys(param_env, impl_m_def_id, &wf_tys),
);
ocx.resolve_regions_and_report_errors(impl_m_def_id, &outlives_env)?;
let mut remapped_types = DefIdMap::default();
for (def_id, (ty, args)) in collected_types {
match infcx.fully_resolve((ty, args)) {
Ok((ty, args)) => {
// `ty` contains free regions that we created earlier while liberating the
// trait fn signature. However, projection normalization expects `ty` to
// contains `def_id`'s early-bound regions.
let id_args = GenericArgs::identity_for_item(tcx, def_id);
debug!(?id_args, ?args);
let map: FxIndexMap<_, _> = std::iter::zip(args, id_args)
.skip(tcx.generics_of(trait_m.def_id).count())
.filter_map(|(a, b)| Some((a.as_region()?, b.as_region()?)))
.collect();
debug!(?map);
// NOTE(compiler-errors): RPITITs, like all other RPITs, have early-bound
// region args that are synthesized during AST lowering. These are args
// that are appended to the parent args (trait and trait method). However,
// we're trying to infer the uninstantiated type value of the RPITIT inside
// the *impl*, so we can later use the impl's method args to normalize
// an RPITIT to a concrete type (`confirm_impl_trait_in_trait_candidate`).
//
// Due to the design of RPITITs, during AST lowering, we have no idea that
// an impl method corresponds to a trait method with RPITITs in it. Therefore,
// we don't have a list of early-bound region args for the RPITIT in the impl.
// Since early region parameters are index-based, we can't just rebase these
// (trait method) early-bound region args onto the impl, and there's no
// guarantee that the indices from the trait args and impl args line up.
// So to fix this, we subtract the number of trait args and add the number of
// impl args to *renumber* these early-bound regions to their corresponding
// indices in the impl's generic parameters list.
//
// Also, we only need to account for a difference in trait and impl args,
// since we previously enforce that the trait method and impl method have the
// same generics.
let num_trait_args = impl_trait_ref.args.len();
let num_impl_args = tcx.generics_of(impl_m.container_id(tcx)).own_params.len();
let ty = match ty.try_fold_with(&mut RemapHiddenTyRegions {
tcx,
map,
num_trait_args,
num_impl_args,
def_id,
impl_m_def_id: impl_m.def_id,
ty,
return_span,
}) {
Ok(ty) => ty,
Err(guar) => Ty::new_error(tcx, guar),
};
remapped_types.insert(def_id, ty::EarlyBinder::bind(ty));
}
Err(err) => {
// This code path is not reached in any tests, but may be
// reachable. If this is triggered, it should be converted to
// `span_delayed_bug` and the triggering case turned into a
// test.
tcx.dcx()
.span_bug(return_span, format!("could not fully resolve: {ty} => {err:?}"));
}
}
}
// We may not collect all RPITITs that we see in the HIR for a trait signature
// because an RPITIT was located within a missing item. Like if we have a sig
// returning `-> Missing<impl Sized>`, that gets converted to `-> {type error}`,
// and when walking through the signature we end up never collecting the def id
// of the `impl Sized`. Insert that here, so we don't ICE later.
for assoc_item in tcx.associated_types_for_impl_traits_in_associated_fn(trait_m.def_id) {
if !remapped_types.contains_key(assoc_item) {
remapped_types.insert(
*assoc_item,
ty::EarlyBinder::bind(Ty::new_error_with_message(
tcx,
return_span,
"missing synthetic item for RPITIT",
)),
);
}
}
Ok(&*tcx.arena.alloc(remapped_types))
}
struct ImplTraitInTraitCollector<'a, 'tcx, E> {
ocx: &'a ObligationCtxt<'a, 'tcx, E>,
types: FxIndexMap<DefId, (Ty<'tcx>, ty::GenericArgsRef<'tcx>)>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
body_id: LocalDefId,
}
impl<'a, 'tcx, E> ImplTraitInTraitCollector<'a, 'tcx, E>
where
E: 'tcx,
{
fn new(
ocx: &'a ObligationCtxt<'a, 'tcx, E>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
body_id: LocalDefId,
) -> Self {
ImplTraitInTraitCollector { ocx, types: FxIndexMap::default(), span, param_env, body_id }
}
}
impl<'tcx, E> TypeFolder<TyCtxt<'tcx>> for ImplTraitInTraitCollector<'_, 'tcx, E>
where
E: 'tcx,
{
fn cx(&self) -> TyCtxt<'tcx> {
self.ocx.infcx.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Alias(ty::Projection, proj) = ty.kind()
&& self.cx().is_impl_trait_in_trait(proj.def_id)
{
if let Some((ty, _)) = self.types.get(&proj.def_id) {
return *ty;
}
//FIXME(RPITIT): Deny nested RPITIT in args too
if proj.args.has_escaping_bound_vars() {
bug!("FIXME(RPITIT): error here");
}
// Replace with infer var
let infer_ty = self.ocx.infcx.next_ty_var(self.span);
self.types.insert(proj.def_id, (infer_ty, proj.args));
// Recurse into bounds
for (pred, pred_span) in self
.cx()
.explicit_item_bounds(proj.def_id)
.iter_instantiated_copied(self.cx(), proj.args)
{
let pred = pred.fold_with(self);
let pred = self.ocx.normalize(
&ObligationCause::misc(self.span, self.body_id),
self.param_env,
pred,
);
self.ocx.register_obligation(traits::Obligation::new(
self.cx(),
ObligationCause::new(
self.span,
self.body_id,
ObligationCauseCode::WhereClause(proj.def_id, pred_span),
),
self.param_env,
pred,
));
}
infer_ty
} else {
ty.super_fold_with(self)
}
}
}
struct RemapHiddenTyRegions<'tcx> {
tcx: TyCtxt<'tcx>,
/// Map from early/late params of the impl to identity regions of the RPITIT (GAT)
/// in the trait.
map: FxIndexMap<ty::Region<'tcx>, ty::Region<'tcx>>,
num_trait_args: usize,
num_impl_args: usize,
/// Def id of the RPITIT (GAT) in the *trait*.
def_id: DefId,
/// Def id of the impl method which owns the opaque hidden type we're remapping.
impl_m_def_id: DefId,
/// The hidden type we're remapping. Useful for diagnostics.
ty: Ty<'tcx>,
/// Span of the return type. Useful for diagnostics.
return_span: Span,
}
impl<'tcx> ty::FallibleTypeFolder<TyCtxt<'tcx>> for RemapHiddenTyRegions<'tcx> {
type Error = ErrorGuaranteed;
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn try_fold_ty(&mut self, t: Ty<'tcx>) -> Result<Ty<'tcx>, Self::Error> {
if let ty::Alias(ty::Opaque, ty::AliasTy { args, def_id, .. }) = *t.kind() {
let mut mapped_args = Vec::with_capacity(args.len());
for (arg, v) in std::iter::zip(args, self.tcx.variances_of(def_id)) {
mapped_args.push(match (arg.unpack(), v) {
// Skip uncaptured opaque args
(ty::GenericArgKind::Lifetime(_), ty::Bivariant) => arg,
_ => arg.try_fold_with(self)?,
});
}
Ok(Ty::new_opaque(self.tcx, def_id, self.tcx.mk_args(&mapped_args)))
} else {
t.try_super_fold_with(self)
}
}
fn try_fold_region(
&mut self,
region: ty::Region<'tcx>,
) -> Result<ty::Region<'tcx>, Self::Error> {
match region.kind() {
// Remap late-bound regions from the function.
ty::ReLateParam(_) => {}
// Remap early-bound regions as long as they don't come from the `impl` itself,
// in which case we don't really need to renumber them.
ty::ReEarlyParam(ebr) if ebr.index as usize >= self.num_impl_args => {}
_ => return Ok(region),
}
let e = if let Some(id_region) = self.map.get(®ion) {
if let ty::ReEarlyParam(e) = id_region.kind() {
e
} else {
bug!(
"expected to map region {region} to early-bound identity region, but got {id_region}"
);
}
} else {
let guar = match region.opt_param_def_id(self.tcx, self.impl_m_def_id) {
Some(def_id) => {
let return_span = if let ty::Alias(ty::Opaque, opaque_ty) = self.ty.kind() {
self.tcx.def_span(opaque_ty.def_id)
} else {
self.return_span
};
self.tcx
.dcx()
.struct_span_err(
return_span,
"return type captures more lifetimes than trait definition",
)
.with_span_label(self.tcx.def_span(def_id), "this lifetime was captured")
.with_span_note(
self.tcx.def_span(self.def_id),
"hidden type must only reference lifetimes captured by this impl trait",
)
.with_note(format!("hidden type inferred to be `{}`", self.ty))
.emit()
}
None => {
// This code path is not reached in any tests, but may be
// reachable. If this is triggered, it should be converted
// to `delayed_bug` and the triggering case turned into a
// test.
self.tcx.dcx().bug("should've been able to remap region");
}
};
return Err(guar);
};
Ok(ty::Region::new_early_param(self.tcx, ty::EarlyParamRegion {
name: e.name,
index: (e.index as usize - self.num_trait_args + self.num_impl_args) as u32,
}))
}
}
fn report_trait_method_mismatch<'tcx>(
infcx: &InferCtxt<'tcx>,
mut cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
terr: TypeError<'tcx>,
(trait_m, trait_sig): (ty::AssocItem, ty::FnSig<'tcx>),
(impl_m, impl_sig): (ty::AssocItem, ty::FnSig<'tcx>),
impl_trait_ref: ty::TraitRef<'tcx>,
) -> ErrorGuaranteed {
let tcx = infcx.tcx;
let (impl_err_span, trait_err_span) =
extract_spans_for_error_reporting(infcx, terr, &cause, impl_m, trait_m);
let mut diag = struct_span_code_err!(
tcx.dcx(),
impl_err_span,
E0053,
"method `{}` has an incompatible type for trait",
trait_m.name
);
match &terr {
TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
if trait_m.fn_has_self_parameter =>
{
let ty = trait_sig.inputs()[0];
let sugg = match ExplicitSelf::determine(ty, |ty| ty == impl_trait_ref.self_ty()) {
ExplicitSelf::ByValue => "self".to_owned(),
ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
_ => format!("self: {ty}"),
};
// When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
// span points only at the type `Box<Self`>, but we want to cover the whole
// argument pattern and type.
let (sig, body) = tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
let span = tcx
.hir()
.body_param_names(body)
.zip(sig.decl.inputs.iter())
.map(|(param, ty)| param.span.to(ty.span))
.next()
.unwrap_or(impl_err_span);
diag.span_suggestion_verbose(
span,
"change the self-receiver type to match the trait",
sugg,
Applicability::MachineApplicable,
);
}
TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
if trait_sig.inputs().len() == *i {
// Suggestion to change output type. We do not suggest in `async` functions
// to avoid complex logic or incorrect output.
if let ImplItemKind::Fn(sig, _) =
&tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind
&& !sig.header.asyncness.is_async()
{
let msg = "change the output type to match the trait";
let ap = Applicability::MachineApplicable;
match sig.decl.output {
hir::FnRetTy::DefaultReturn(sp) => {
let sugg = format!(" -> {}", trait_sig.output());
diag.span_suggestion_verbose(sp, msg, sugg, ap);
}
hir::FnRetTy::Return(hir_ty) => {
let sugg = trait_sig.output();
diag.span_suggestion_verbose(hir_ty.span, msg, sugg, ap);
}
};
};
} else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
diag.span_suggestion_verbose(
impl_err_span,
"change the parameter type to match the trait",
trait_ty,
Applicability::MachineApplicable,
);
}
}
_ => {}
}
cause.span = impl_err_span;
infcx.err_ctxt().note_type_err(
&mut diag,
&cause,
trait_err_span.map(|sp| (sp, Cow::from("type in trait"), false)),
Some(param_env.and(infer::ValuePairs::PolySigs(ExpectedFound {
expected: ty::Binder::dummy(trait_sig),
found: ty::Binder::dummy(impl_sig),
}))),
terr,
false,
);
diag.emit()
}
fn check_region_bounds_on_impl_item<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: ty::AssocItem,
trait_m: ty::AssocItem,
delay: bool,
) -> Result<(), ErrorGuaranteed> {
let impl_generics = tcx.generics_of(impl_m.def_id);
let impl_params = impl_generics.own_counts().lifetimes;
let trait_generics = tcx.generics_of(trait_m.def_id);
let trait_params = trait_generics.own_counts().lifetimes;
debug!(?trait_generics, ?impl_generics);
// Must have same number of early-bound lifetime parameters.
// Unfortunately, if the user screws up the bounds, then this
// will change classification between early and late. E.g.,
// if in trait we have `<'a,'b:'a>`, and in impl we just have
// `<'a,'b>`, then we have 2 early-bound lifetime parameters
// in trait but 0 in the impl. But if we report "expected 2
// but found 0" it's confusing, because it looks like there
// are zero. Since I don't quite know how to phrase things at
// the moment, give a kind of vague error message.
if trait_params != impl_params {
let span = tcx
.hir()
.get_generics(impl_m.def_id.expect_local())
.expect("expected impl item to have generics or else we can't compare them")
.span;
let mut generics_span = None;
let mut bounds_span = vec![];
let mut where_span = None;
if let Some(trait_node) = tcx.hir().get_if_local(trait_m.def_id)
&& let Some(trait_generics) = trait_node.generics()
{
generics_span = Some(trait_generics.span);
// FIXME: we could potentially look at the impl's bounds to not point at bounds that
// *are* present in the impl.
for p in trait_generics.predicates {
if let hir::WherePredicate::BoundPredicate(pred) = p {
for b in pred.bounds {
if let hir::GenericBound::Outlives(lt) = b {
bounds_span.push(lt.ident.span);
}
}
}
}
if let Some(impl_node) = tcx.hir().get_if_local(impl_m.def_id)
&& let Some(impl_generics) = impl_node.generics()
{
let mut impl_bounds = 0;
for p in impl_generics.predicates {
if let hir::WherePredicate::BoundPredicate(pred) = p {
for b in pred.bounds {
if let hir::GenericBound::Outlives(_) = b {
impl_bounds += 1;
}
}
}
}
if impl_bounds == bounds_span.len() {
bounds_span = vec![];
} else if impl_generics.has_where_clause_predicates {
where_span = Some(impl_generics.where_clause_span);
}
}
}
let reported = tcx
.dcx()
.create_err(LifetimesOrBoundsMismatchOnTrait {
span,
item_kind: impl_m.descr(),
ident: impl_m.ident(tcx),
generics_span,
bounds_span,
where_span,
})
.emit_unless(delay);
return Err(reported);
}
Ok(())
}
#[instrument(level = "debug", skip(infcx))]
fn extract_spans_for_error_reporting<'tcx>(
infcx: &infer::InferCtxt<'tcx>,
terr: TypeError<'_>,
cause: &ObligationCause<'tcx>,
impl_m: ty::AssocItem,
trait_m: ty::AssocItem,
) -> (Span, Option<Span>) {
let tcx = infcx.tcx;
let mut impl_args = {
let (sig, _) = tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
};
let trait_args = trait_m.def_id.as_local().map(|def_id| {
let (sig, _) = tcx.hir().expect_trait_item(def_id).expect_fn();
sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
});
match terr {
TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
(impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
}
_ => (cause.span, tcx.hir().span_if_local(trait_m.def_id)),
}
}
fn compare_self_type<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: ty::AssocItem,
trait_m: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
delay: bool,
) -> Result<(), ErrorGuaranteed> {
// Try to give more informative error messages about self typing
// mismatches. Note that any mismatch will also be detected
// below, where we construct a canonical function type that
// includes the self parameter as a normal parameter. It's just
// that the error messages you get out of this code are a bit more
// inscrutable, particularly for cases where one method has no
// self.
let self_string = |method: ty::AssocItem| {
let untransformed_self_ty = match method.container {
ty::AssocItemContainer::Impl => impl_trait_ref.self_ty(),
ty::AssocItemContainer::Trait => tcx.types.self_param,
};
let self_arg_ty = tcx.fn_sig(method.def_id).instantiate_identity().input(0);
let (infcx, param_env) = tcx
.infer_ctxt()
.build_with_typing_env(ty::TypingEnv::non_body_analysis(tcx, method.def_id));
let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty);
match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
ExplicitSelf::ByValue => "self".to_owned(),
ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
_ => format!("self: {self_arg_ty}"),
}
};
match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
(false, false) | (true, true) => {}
(false, true) => {
let self_descr = self_string(impl_m);
let impl_m_span = tcx.def_span(impl_m.def_id);
let mut err = struct_span_code_err!(
tcx.dcx(),
impl_m_span,
E0185,
"method `{}` has a `{}` declaration in the impl, but not in the trait",
trait_m.name,
self_descr
);
err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
err.span_label(span, format!("trait method declared without `{self_descr}`"));
} else {
err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
}
return Err(err.emit_unless(delay));
}
(true, false) => {
let self_descr = self_string(trait_m);
let impl_m_span = tcx.def_span(impl_m.def_id);
let mut err = struct_span_code_err!(
tcx.dcx(),
impl_m_span,
E0186,
"method `{}` has a `{}` declaration in the trait, but not in the impl",
trait_m.name,
self_descr
);
err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
err.span_label(span, format!("`{self_descr}` used in trait"));
} else {
err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
}
return Err(err.emit_unless(delay));
}
}
Ok(())
}
/// Checks that the number of generics on a given assoc item in a trait impl is the same
/// as the number of generics on the respective assoc item in the trait definition.
///
/// For example this code emits the errors in the following code:
/// ```rust,compile_fail
/// trait Trait {
/// fn foo();
/// type Assoc<T>;
/// }
///
/// impl Trait for () {
/// fn foo<T>() {}
/// //~^ error
/// type Assoc = u32;
/// //~^ error
/// }
/// ```
///
/// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
/// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
/// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
fn compare_number_of_generics<'tcx>(
tcx: TyCtxt<'tcx>,
impl_: ty::AssocItem,
trait_: ty::AssocItem,
delay: bool,
) -> Result<(), ErrorGuaranteed> {
let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
// This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
// in `compare_generic_param_kinds` which will give a nicer error message than something like:
// "expected 1 type parameter, found 0 type parameters"
if (trait_own_counts.types + trait_own_counts.consts)
== (impl_own_counts.types + impl_own_counts.consts)
{
return Ok(());
}
// We never need to emit a separate error for RPITITs, since if an RPITIT
// has mismatched type or const generic arguments, then the method that it's
// inheriting the generics from will also have mismatched arguments, and
// we'll report an error for that instead. Delay a bug for safety, though.
if trait_.is_impl_trait_in_trait() {
// FIXME: no tests trigger this. If you find example code that does
// trigger this, please add it to the test suite.
tcx.dcx()
.bug("errors comparing numbers of generics of trait/impl functions were not emitted");
}
let matchings = [
("type", trait_own_counts.types, impl_own_counts.types),
("const", trait_own_counts.consts, impl_own_counts.consts),
];
let item_kind = impl_.descr();
let mut err_occurred = None;
for (kind, trait_count, impl_count) in matchings {
if impl_count != trait_count {
let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
let mut spans = generics
.params
.iter()
.filter(|p| match p.kind {
hir::GenericParamKind::Lifetime {
kind: hir::LifetimeParamKind::Elided(_),
} => {
// A fn can have an arbitrary number of extra elided lifetimes for the
// same signature.
!matches!(kind, ty::AssocKind::Fn)
}
_ => true,
})
.map(|p| p.span)
.collect::<Vec<Span>>();
if spans.is_empty() {
spans = vec![generics.span]
}
spans
};
let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
let trait_item = tcx.hir().expect_trait_item(def_id);
let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
let impl_trait_spans: Vec<Span> = trait_item
.generics
.params
.iter()
.filter_map(|p| match p.kind {
GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
_ => None,
})
.collect();
(Some(arg_spans), impl_trait_spans)
} else {
let trait_span = tcx.hir().span_if_local(trait_.def_id);
(trait_span.map(|s| vec![s]), vec![])
};
let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
let impl_item_impl_trait_spans: Vec<Span> = impl_item
.generics
.params
.iter()
.filter_map(|p| match p.kind {
GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
_ => None,
})
.collect();
let spans = arg_spans(impl_.kind, impl_item.generics);
let span = spans.first().copied();
let mut err = tcx.dcx().struct_span_err(
spans,
format!(
"{} `{}` has {} {kind} parameter{} but its trait \
declaration has {} {kind} parameter{}",
item_kind,
trait_.name,
impl_count,
pluralize!(impl_count),
trait_count,
pluralize!(trait_count),
kind = kind,
),
);
err.code(E0049);
let msg =
format!("expected {trait_count} {kind} parameter{}", pluralize!(trait_count),);
if let Some(spans) = trait_spans {
let mut spans = spans.iter();
if let Some(span) = spans.next() {
err.span_label(*span, msg);
}
for span in spans {
err.span_label(*span, "");
}
} else {
err.span_label(tcx.def_span(trait_.def_id), msg);
}
if let Some(span) = span {
err.span_label(
span,
format!("found {} {} parameter{}", impl_count, kind, pluralize!(impl_count),),
);
}
for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
}
let reported = err.emit_unless(delay);
err_occurred = Some(reported);
}
}
if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
}
fn compare_number_of_method_arguments<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: ty::AssocItem,
trait_m: ty::AssocItem,
delay: bool,
) -> Result<(), ErrorGuaranteed> {
let impl_m_fty = tcx.fn_sig(impl_m.def_id);
let trait_m_fty = tcx.fn_sig(trait_m.def_id);
let trait_number_args = trait_m_fty.skip_binder().inputs().skip_binder().len();
let impl_number_args = impl_m_fty.skip_binder().inputs().skip_binder().len();
if trait_number_args != impl_number_args {
let trait_span = trait_m
.def_id
.as_local()
.and_then(|def_id| {
let (trait_m_sig, _) = &tcx.hir().expect_trait_item(def_id).expect_fn();
let pos = trait_number_args.saturating_sub(1);
trait_m_sig.decl.inputs.get(pos).map(|arg| {
if pos == 0 {
arg.span
} else {
arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
}
})
})
.or_else(|| tcx.hir().span_if_local(trait_m.def_id));
let (impl_m_sig, _) = &tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
let pos = impl_number_args.saturating_sub(1);
let impl_span = impl_m_sig
.decl
.inputs
.get(pos)
.map(|arg| {
if pos == 0 {
arg.span
} else {
arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
}
})
.unwrap_or_else(|| tcx.def_span(impl_m.def_id));
let mut err = struct_span_code_err!(
tcx.dcx(),
impl_span,
E0050,
"method `{}` has {} but the declaration in trait `{}` has {}",
trait_m.name,
potentially_plural_count(impl_number_args, "parameter"),
tcx.def_path_str(trait_m.def_id),
trait_number_args
);
if let Some(trait_span) = trait_span {
err.span_label(
trait_span,
format!(
"trait requires {}",
potentially_plural_count(trait_number_args, "parameter")
),
);
} else {
err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
}
err.span_label(
impl_span,
format!(
"expected {}, found {}",
potentially_plural_count(trait_number_args, "parameter"),
impl_number_args
),
);
return Err(err.emit_unless(delay));
}
Ok(())
}
fn compare_synthetic_generics<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: ty::AssocItem,
trait_m: ty::AssocItem,
delay: bool,
) -> Result<(), ErrorGuaranteed> {
// FIXME(chrisvittal) Clean up this function, list of FIXME items:
// 1. Better messages for the span labels
// 2. Explanation as to what is going on
// If we get here, we already have the same number of generics, so the zip will
// be okay.
let mut error_found = None;
let impl_m_generics = tcx.generics_of(impl_m.def_id);
let trait_m_generics = tcx.generics_of(trait_m.def_id);
let impl_m_type_params =
impl_m_generics.own_params.iter().filter_map(|param| match param.kind {
GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
});
let trait_m_type_params =
trait_m_generics.own_params.iter().filter_map(|param| match param.kind {
GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
});
for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
iter::zip(impl_m_type_params, trait_m_type_params)
{
if impl_synthetic != trait_synthetic {
let impl_def_id = impl_def_id.expect_local();
let impl_span = tcx.def_span(impl_def_id);
let trait_span = tcx.def_span(trait_def_id);
let mut err = struct_span_code_err!(
tcx.dcx(),
impl_span,
E0643,
"method `{}` has incompatible signature for trait",
trait_m.name
);
err.span_label(trait_span, "declaration in trait here");
if impl_synthetic {
// The case where the impl method uses `impl Trait` but the trait method uses
// explicit generics
err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
let _: Option<_> = try {
// try taking the name from the trait impl
// FIXME: this is obviously suboptimal since the name can already be used
// as another generic argument
let new_name = tcx.opt_item_name(trait_def_id)?;
let trait_m = trait_m.def_id.as_local()?;
let trait_m = tcx.hir().expect_trait_item(trait_m);
let impl_m = impl_m.def_id.as_local()?;
let impl_m = tcx.hir().expect_impl_item(impl_m);
// in case there are no generics, take the spot between the function name
// and the opening paren of the argument list
let new_generics_span = tcx.def_ident_span(impl_def_id)?.shrink_to_hi();
// in case there are generics, just replace them
let generics_span = impl_m.generics.span.substitute_dummy(new_generics_span);
// replace with the generics from the trait
let new_generics =
tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
err.multipart_suggestion(
"try changing the `impl Trait` argument to a generic parameter",
vec![
// replace `impl Trait` with `T`
(impl_span, new_name.to_string()),
// replace impl method generics with trait method generics
// This isn't quite right, as users might have changed the names
// of the generics, but it works for the common case
(generics_span, new_generics),
],
Applicability::MaybeIncorrect,
);
};
} else {
// The case where the trait method uses `impl Trait`, but the impl method uses
// explicit generics.
err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
let _: Option<_> = try {
let impl_m = impl_m.def_id.as_local()?;
let impl_m = tcx.hir().expect_impl_item(impl_m);
let (sig, _) = impl_m.expect_fn();
let input_tys = sig.decl.inputs;
struct Visitor(hir::def_id::LocalDefId);
impl<'v> intravisit::Visitor<'v> for Visitor {
type Result = ControlFlow<Span>;
fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) -> Self::Result {
if let hir::TyKind::Path(hir::QPath::Resolved(None, path)) = ty.kind
&& let Res::Def(DefKind::TyParam, def_id) = path.res
&& def_id == self.0.to_def_id()
{
ControlFlow::Break(ty.span)
} else {
intravisit::walk_ty(self, ty)
}
}
}
let span = input_tys.iter().find_map(|ty| {
intravisit::Visitor::visit_ty(&mut Visitor(impl_def_id), ty).break_value()
})?;
let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
let bounds = bounds.first()?.span().to(bounds.last()?.span());
let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
err.multipart_suggestion(
"try removing the generic parameter and using `impl Trait` instead",
vec![
// delete generic parameters
(impl_m.generics.span, String::new()),
// replace param usage with `impl Trait`
(span, format!("impl {bounds}")),
],
Applicability::MaybeIncorrect,
);
};
}
error_found = Some(err.emit_unless(delay));
}
}
if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
}
/// Checks that all parameters in the generics of a given assoc item in a trait impl have
/// the same kind as the respective generic parameter in the trait def.
///
/// For example all 4 errors in the following code are emitted here:
/// ```rust,ignore (pseudo-Rust)
/// trait Foo {
/// fn foo<const N: u8>();
/// type Bar<const N: u8>;
/// fn baz<const N: u32>();
/// type Blah<T>;
/// }
///
/// impl Foo for () {
/// fn foo<const N: u64>() {}
/// //~^ error
/// type Bar<const N: u64> = ();
/// //~^ error
/// fn baz<T>() {}
/// //~^ error
/// type Blah<const N: i64> = u32;
/// //~^ error
/// }
/// ```
///
/// This function does not handle lifetime parameters
fn compare_generic_param_kinds<'tcx>(
tcx: TyCtxt<'tcx>,
impl_item: ty::AssocItem,
trait_item: ty::AssocItem,
delay: bool,
) -> Result<(), ErrorGuaranteed> {
assert_eq!(impl_item.kind, trait_item.kind);
let ty_const_params_of = |def_id| {
tcx.generics_of(def_id).own_params.iter().filter(|param| {
matches!(
param.kind,
GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
)
})
};
for (param_impl, param_trait) in
iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
{
use GenericParamDefKind::*;
if match (¶m_impl.kind, ¶m_trait.kind) {
(Const { .. }, Const { .. })
if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
{
true
}
(Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
// this is exhaustive so that anyone adding new generic param kinds knows
// to make sure this error is reported for them.
(Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
(Lifetime { .. }, _) | (_, Lifetime { .. }) => {
bug!("lifetime params are expected to be filtered by `ty_const_params_of`")
}
} {
let param_impl_span = tcx.def_span(param_impl.def_id);
let param_trait_span = tcx.def_span(param_trait.def_id);
let mut err = struct_span_code_err!(
tcx.dcx(),
param_impl_span,
E0053,
"{} `{}` has an incompatible generic parameter for trait `{}`",
impl_item.descr(),
trait_item.name,
&tcx.def_path_str(tcx.parent(trait_item.def_id))
);
let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
Const { .. } => {
format!(
"{} const parameter of type `{}`",
prefix,
tcx.type_of(param.def_id).instantiate_identity()
)
}
Type { .. } => format!("{prefix} type parameter"),
Lifetime { .. } => span_bug!(
tcx.def_span(param.def_id),
"lifetime params are expected to be filtered by `ty_const_params_of`"
),
};
let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
err.span_label(trait_header_span, "");
err.span_label(param_trait_span, make_param_message("expected", param_trait));
let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
err.span_label(impl_header_span, "");
err.span_label(param_impl_span, make_param_message("found", param_impl));
let reported = err.emit_unless(delay);
return Err(reported);
}
}
Ok(())
}
/// Use `tcx.compare_impl_const` instead
pub(super) fn compare_impl_const_raw(
tcx: TyCtxt<'_>,
(impl_const_item_def, trait_const_item_def): (LocalDefId, DefId),
) -> Result<(), ErrorGuaranteed> {
let impl_const_item = tcx.associated_item(impl_const_item_def);
let trait_const_item = tcx.associated_item(trait_const_item_def);
let impl_trait_ref =
tcx.impl_trait_ref(impl_const_item.container_id(tcx)).unwrap().instantiate_identity();
debug!(?impl_trait_ref);
compare_number_of_generics(tcx, impl_const_item, trait_const_item, false)?;
compare_generic_param_kinds(tcx, impl_const_item, trait_const_item, false)?;
check_region_bounds_on_impl_item(tcx, impl_const_item, trait_const_item, false)?;
compare_const_predicate_entailment(tcx, impl_const_item, trait_const_item, impl_trait_ref)
}
/// The equivalent of [compare_method_predicate_entailment], but for associated constants
/// instead of associated functions.
// FIXME(generic_const_items): If possible extract the common parts of `compare_{type,const}_predicate_entailment`.
#[instrument(level = "debug", skip(tcx))]
fn compare_const_predicate_entailment<'tcx>(
tcx: TyCtxt<'tcx>,
impl_ct: ty::AssocItem,
trait_ct: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
let impl_ct_def_id = impl_ct.def_id.expect_local();
let impl_ct_span = tcx.def_span(impl_ct_def_id);
// The below is for the most part highly similar to the procedure
// for methods above. It is simpler in many respects, especially
// because we shouldn't really have to deal with lifetimes or
// predicates. In fact some of this should probably be put into
// shared functions because of DRY violations...
let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_ct.def_id).rebase_onto(
tcx,
impl_ct.container_id(tcx),
impl_trait_ref.args,
);
// Create a parameter environment that represents the implementation's
// associated const.
let impl_ty = tcx.type_of(impl_ct_def_id).instantiate_identity();
let trait_ty = tcx.type_of(trait_ct.def_id).instantiate(tcx, trait_to_impl_args);
let code = ObligationCauseCode::CompareImplItem {
impl_item_def_id: impl_ct_def_id,
trait_item_def_id: trait_ct.def_id,
kind: impl_ct.kind,
};
let mut cause = ObligationCause::new(impl_ct_span, impl_ct_def_id, code.clone());
let impl_ct_predicates = tcx.predicates_of(impl_ct.def_id);
let trait_ct_predicates = tcx.predicates_of(trait_ct.def_id);
// The predicates declared by the impl definition, the trait and the
// associated const in the trait are assumed.
let impl_predicates = tcx.predicates_of(impl_ct_predicates.parent.unwrap());
let mut hybrid_preds = impl_predicates.instantiate_identity(tcx).predicates;
hybrid_preds.extend(
trait_ct_predicates
.instantiate_own(tcx, trait_to_impl_args)
.map(|(predicate, _)| predicate),
);
let param_env = ty::ParamEnv::new(tcx.mk_clauses(&hybrid_preds), Reveal::UserFacing);
let param_env = traits::normalize_param_env_or_error(
tcx,
param_env,
ObligationCause::misc(impl_ct_span, impl_ct_def_id),
);
let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
let impl_ct_own_bounds = impl_ct_predicates.instantiate_own_identity();
for (predicate, span) in impl_ct_own_bounds {
let cause = ObligationCause::misc(span, impl_ct_def_id);
let predicate = ocx.normalize(&cause, param_env, predicate);
let cause = ObligationCause::new(span, impl_ct_def_id, code.clone());
ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
}
// There is no "body" here, so just pass dummy id.
let impl_ty = ocx.normalize(&cause, param_env, impl_ty);
debug!(?impl_ty);
let trait_ty = ocx.normalize(&cause, param_env, trait_ty);
debug!(?trait_ty);
let err = ocx.sup(&cause, param_env, trait_ty, impl_ty);
if let Err(terr) = err {
debug!(?impl_ty, ?trait_ty);
// Locate the Span containing just the type of the offending impl
let (ty, _) = tcx.hir().expect_impl_item(impl_ct_def_id).expect_const();
cause.span = ty.span;
let mut diag = struct_span_code_err!(
tcx.dcx(),
cause.span,
E0326,
"implemented const `{}` has an incompatible type for trait",
trait_ct.name
);
let trait_c_span = trait_ct.def_id.as_local().map(|trait_ct_def_id| {
// Add a label to the Span containing just the type of the const
let (ty, _) = tcx.hir().expect_trait_item(trait_ct_def_id).expect_const();
ty.span
});
infcx.err_ctxt().note_type_err(
&mut diag,
&cause,
trait_c_span.map(|span| (span, Cow::from("type in trait"), false)),
Some(param_env.and(infer::ValuePairs::Terms(ExpectedFound {
expected: trait_ty.into(),
found: impl_ty.into(),
}))),
terr,
false,
);
return Err(diag.emit());
};
// Check that all obligations are satisfied by the implementation's
// version.
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
return Err(infcx.err_ctxt().report_fulfillment_errors(errors));
}
let outlives_env = OutlivesEnvironment::new(param_env);
ocx.resolve_regions_and_report_errors(impl_ct_def_id, &outlives_env)
}
#[instrument(level = "debug", skip(tcx))]
pub(super) fn compare_impl_ty<'tcx>(
tcx: TyCtxt<'tcx>,
impl_ty: ty::AssocItem,
trait_ty: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) {
let _: Result<(), ErrorGuaranteed> = try {
compare_number_of_generics(tcx, impl_ty, trait_ty, false)?;
compare_generic_param_kinds(tcx, impl_ty, trait_ty, false)?;
check_region_bounds_on_impl_item(tcx, impl_ty, trait_ty, false)?;
compare_type_predicate_entailment(tcx, impl_ty, trait_ty, impl_trait_ref)?;
check_type_bounds(tcx, trait_ty, impl_ty, impl_trait_ref)?;
};
}
/// The equivalent of [compare_method_predicate_entailment], but for associated types
/// instead of associated functions.
#[instrument(level = "debug", skip(tcx))]
fn compare_type_predicate_entailment<'tcx>(
tcx: TyCtxt<'tcx>,
impl_ty: ty::AssocItem,
trait_ty: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
let impl_def_id = impl_ty.container_id(tcx);
let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_ty.def_id).rebase_onto(
tcx,
impl_def_id,
impl_trait_ref.args,
);
let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
let impl_ty_own_bounds = impl_ty_predicates.instantiate_own_identity();
// If there are no bounds, then there are no const conditions, so no need to check that here.
if impl_ty_own_bounds.len() == 0 {
// Nothing to check.
return Ok(());
}
// This `DefId` should be used for the `body_id` field on each
// `ObligationCause` (and the `FnCtxt`). This is what
// `regionck_item` expects.
let impl_ty_def_id = impl_ty.def_id.expect_local();
debug!(?trait_to_impl_args);
// The predicates declared by the impl definition, the trait and the
// associated type in the trait are assumed.
let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
let mut hybrid_preds = impl_predicates.instantiate_identity(tcx).predicates;
hybrid_preds.extend(
trait_ty_predicates
.instantiate_own(tcx, trait_to_impl_args)
.map(|(predicate, _)| predicate),
);
debug!(?hybrid_preds);
let impl_ty_span = tcx.def_span(impl_ty_def_id);
let normalize_cause = ObligationCause::misc(impl_ty_span, impl_ty_def_id);
let is_conditionally_const = tcx.is_conditionally_const(impl_ty.def_id);
if is_conditionally_const {
// Augment the hybrid param-env with the const conditions
// of the impl header and the trait assoc type.
hybrid_preds.extend(
tcx.const_conditions(impl_ty_predicates.parent.unwrap())
.instantiate_identity(tcx)
.into_iter()
.chain(
tcx.const_conditions(trait_ty.def_id).instantiate_own(tcx, trait_to_impl_args),
)
.map(|(trait_ref, _)| {
trait_ref.to_host_effect_clause(tcx, ty::BoundConstness::Maybe)
}),
);
}
let param_env = ty::ParamEnv::new(tcx.mk_clauses(&hybrid_preds), Reveal::UserFacing);
let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
debug!(caller_bounds=?param_env.caller_bounds());
let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
for (predicate, span) in impl_ty_own_bounds {
let cause = ObligationCause::misc(span, impl_ty_def_id);
let predicate = ocx.normalize(&cause, param_env, predicate);
let cause =
ObligationCause::new(span, impl_ty_def_id, ObligationCauseCode::CompareImplItem {
impl_item_def_id: impl_ty.def_id.expect_local(),
trait_item_def_id: trait_ty.def_id,
kind: impl_ty.kind,
});
ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
}
if is_conditionally_const {
// Validate the const conditions of the impl associated type.
let impl_ty_own_const_conditions =
tcx.const_conditions(impl_ty.def_id).instantiate_own_identity();
for (const_condition, span) in impl_ty_own_const_conditions {
let normalize_cause = traits::ObligationCause::misc(span, impl_ty_def_id);
let const_condition = ocx.normalize(&normalize_cause, param_env, const_condition);
let cause =
ObligationCause::new(span, impl_ty_def_id, ObligationCauseCode::CompareImplItem {
impl_item_def_id: impl_ty_def_id,
trait_item_def_id: trait_ty.def_id,
kind: impl_ty.kind,
});
ocx.register_obligation(traits::Obligation::new(
tcx,
cause,
param_env,
const_condition.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
));
}
}
// Check that all obligations are satisfied by the implementation's
// version.
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
return Err(reported);
}
// Finally, resolve all regions. This catches wily misuses of
// lifetime parameters.
let outlives_env = OutlivesEnvironment::new(param_env);
ocx.resolve_regions_and_report_errors(impl_ty_def_id, &outlives_env)
}
/// Validate that `ProjectionCandidate`s created for this associated type will
/// be valid.
///
/// Usually given
///
/// trait X { type Y: Copy } impl X for T { type Y = S; }
///
/// We are able to normalize `<T as X>::Y` to `S`, and so when we check the
/// impl is well-formed we have to prove `S: Copy`.
///
/// For default associated types the normalization is not possible (the value
/// from the impl could be overridden). We also can't normalize generic
/// associated types (yet) because they contain bound parameters.
#[instrument(level = "debug", skip(tcx))]
pub(super) fn check_type_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ty: ty::AssocItem,
impl_ty: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
// Avoid bogus "type annotations needed `Foo: Bar`" errors on `impl Bar for Foo` in case
// other `Foo` impls are incoherent.
tcx.ensure().coherent_trait(impl_trait_ref.def_id)?;
let param_env = tcx.param_env(impl_ty.def_id);
debug!(?param_env);
let container_id = impl_ty.container_id(tcx);
let impl_ty_def_id = impl_ty.def_id.expect_local();
let impl_ty_args = GenericArgs::identity_for_item(tcx, impl_ty.def_id);
let rebased_args = impl_ty_args.rebase_onto(tcx, container_id, impl_trait_ref.args);
let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
// A synthetic impl Trait for RPITIT desugaring or assoc type for effects desugaring has no HIR,
// which we currently use to get the span for an impl's associated type. Instead, for these,
// use the def_span for the synthesized associated type.
let impl_ty_span = if impl_ty.is_impl_trait_in_trait() {
tcx.def_span(impl_ty_def_id)
} else {
match tcx.hir_node_by_def_id(impl_ty_def_id) {
hir::Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Type(_, Some(ty)),
..
}) => ty.span,
hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Type(ty), .. }) => ty.span,
item => span_bug!(
tcx.def_span(impl_ty_def_id),
"cannot call `check_type_bounds` on item: {item:?}",
),
}
};
let assumed_wf_types = ocx.assumed_wf_types_and_report_errors(param_env, impl_ty_def_id)?;
let normalize_cause = ObligationCause::new(
impl_ty_span,
impl_ty_def_id,
ObligationCauseCode::CheckAssociatedTypeBounds {
impl_item_def_id: impl_ty.def_id.expect_local(),
trait_item_def_id: trait_ty.def_id,
},
);
let mk_cause = |span: Span| {
let code = ObligationCauseCode::WhereClause(trait_ty.def_id, span);
ObligationCause::new(impl_ty_span, impl_ty_def_id, code)
};
let mut obligations: Vec<_> = tcx
.explicit_item_bounds(trait_ty.def_id)
.iter_instantiated_copied(tcx, rebased_args)
.map(|(concrete_ty_bound, span)| {
debug!(?concrete_ty_bound);
traits::Obligation::new(tcx, mk_cause(span), param_env, concrete_ty_bound)
})
.collect();
// Only in a const implementation do we need to check that the `~const` item bounds hold.
if tcx.is_conditionally_const(impl_ty_def_id) {
obligations.extend(
tcx.explicit_implied_const_bounds(trait_ty.def_id)
.iter_instantiated_copied(tcx, rebased_args)
.map(|(c, span)| {
traits::Obligation::new(
tcx,
mk_cause(span),
param_env,
c.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
)
}),
);
}
debug!(item_bounds=?obligations);
// Normalize predicates with the assumption that the GAT may always normalize
// to its definition type. This should be the param-env we use to *prove* the
// predicate too, but we don't do that because of performance issues.
// See <https://github.com/rust-lang/rust/pull/117542#issue-1976337685>.
let trait_projection_ty = Ty::new_projection_from_args(tcx, trait_ty.def_id, rebased_args);
let impl_identity_ty = tcx.type_of(impl_ty.def_id).instantiate_identity();
let normalize_param_env = param_env_with_gat_bounds(tcx, impl_ty, impl_trait_ref);
for mut obligation in util::elaborate(tcx, obligations) {
let normalized_predicate = if infcx.next_trait_solver() {
obligation.predicate.fold_with(&mut ReplaceTy {
tcx,
from: trait_projection_ty,
to: impl_identity_ty,
})
} else {
ocx.normalize(&normalize_cause, normalize_param_env, obligation.predicate)
};
debug!(?normalized_predicate);
obligation.predicate = normalized_predicate;
ocx.register_obligation(obligation);
}
// Check that all obligations are satisfied by the implementation's
// version.
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
return Err(reported);
}
// Finally, resolve all regions. This catches wily misuses of
// lifetime parameters.
let implied_bounds = infcx.implied_bounds_tys(param_env, impl_ty_def_id, &assumed_wf_types);
let outlives_env = OutlivesEnvironment::with_bounds(param_env, implied_bounds);
ocx.resolve_regions_and_report_errors(impl_ty_def_id, &outlives_env)
}
struct ReplaceTy<'tcx> {
tcx: TyCtxt<'tcx>,
from: Ty<'tcx>,
to: Ty<'tcx>,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceTy<'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if self.from == ty { self.to } else { ty.super_fold_with(self) }
}
}
/// Install projection predicates that allow GATs to project to their own
/// definition types. This is not allowed in general in cases of default
/// associated types in trait definitions, or when specialization is involved,
/// but is needed when checking these definition types actually satisfy the
/// trait bounds of the GAT.
///
/// # How it works
///
/// ```ignore (example)
/// impl<A, B> Foo<u32> for (A, B) {
/// type Bar<C> = Wrapper<A, B, C>
/// }
/// ```
///
/// - `impl_trait_ref` would be `<(A, B) as Foo<u32>>`
/// - `normalize_impl_ty_args` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
/// - `normalize_impl_ty` would be `Wrapper<A, B, ^0.0>`
/// - `rebased_args` would be `[(A, B), u32, ^0.0]`, combining the args from
/// the *trait* with the generic associated type parameters (as bound vars).
///
/// A note regarding the use of bound vars here:
/// Imagine as an example
/// ```
/// trait Family {
/// type Member<C: Eq>;
/// }
///
/// impl Family for VecFamily {
/// type Member<C: Eq> = i32;
/// }
/// ```
/// Here, we would generate
/// ```ignore (pseudo-rust)
/// forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
/// ```
///
/// when we really would like to generate
/// ```ignore (pseudo-rust)
/// forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
/// ```
///
/// But, this is probably fine, because although the first clause can be used with types `C` that
/// do not implement `Eq`, for it to cause some kind of problem, there would have to be a
/// `VecFamily::Member<X>` for some type `X` where `!(X: Eq)`, that appears in the value of type
/// `Member<C: Eq> = ....` That type would fail a well-formedness check that we ought to be doing
/// elsewhere, which would check that any `<T as Family>::Member<X>` meets the bounds declared in
/// the trait (notably, that `X: Eq` and `T: Family`).
fn param_env_with_gat_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
impl_ty: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) -> ty::ParamEnv<'tcx> {
let param_env = tcx.param_env(impl_ty.def_id);
let container_id = impl_ty.container_id(tcx);
let mut predicates = param_env.caller_bounds().to_vec();
// for RPITITs, we should install predicates that allow us to project all
// of the RPITITs associated with the same body. This is because checking
// the item bounds of RPITITs often involves nested RPITITs having to prove
// bounds about themselves.
let impl_tys_to_install = match impl_ty.opt_rpitit_info {
None => vec![impl_ty],
Some(
ty::ImplTraitInTraitData::Impl { fn_def_id }
| ty::ImplTraitInTraitData::Trait { fn_def_id, .. },
) => tcx
.associated_types_for_impl_traits_in_associated_fn(fn_def_id)
.iter()
.map(|def_id| tcx.associated_item(*def_id))
.collect(),
};
for impl_ty in impl_tys_to_install {
let trait_ty = match impl_ty.container {
ty::AssocItemContainer::Trait => impl_ty,
ty::AssocItemContainer::Impl => tcx.associated_item(impl_ty.trait_item_def_id.unwrap()),
};
let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
smallvec::SmallVec::with_capacity(tcx.generics_of(impl_ty.def_id).own_params.len());
// Extend the impl's identity args with late-bound GAT vars
let normalize_impl_ty_args = ty::GenericArgs::identity_for_item(tcx, container_id)
.extend_to(tcx, impl_ty.def_id, |param, _| match param.kind {
GenericParamDefKind::Type { .. } => {
let kind = ty::BoundTyKind::Param(param.def_id, param.name);
let bound_var = ty::BoundVariableKind::Ty(kind);
bound_vars.push(bound_var);
Ty::new_bound(tcx, ty::INNERMOST, ty::BoundTy {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind,
})
.into()
}
GenericParamDefKind::Lifetime => {
let kind = ty::BoundRegionKind::Named(param.def_id, param.name);
let bound_var = ty::BoundVariableKind::Region(kind);
bound_vars.push(bound_var);
ty::Region::new_bound(tcx, ty::INNERMOST, ty::BoundRegion {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind,
})
.into()
}
GenericParamDefKind::Const { .. } => {
let bound_var = ty::BoundVariableKind::Const;
bound_vars.push(bound_var);
ty::Const::new_bound(
tcx,
ty::INNERMOST,
ty::BoundVar::from_usize(bound_vars.len() - 1),
)
.into()
}
});
// When checking something like
//
// trait X { type Y: PartialEq<<Self as X>::Y> }
// impl X for T { default type Y = S; }
//
// We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
// we want <T as X>::Y to normalize to S. This is valid because we are
// checking the default value specifically here. Add this equality to the
// ParamEnv for normalization specifically.
let normalize_impl_ty =
tcx.type_of(impl_ty.def_id).instantiate(tcx, normalize_impl_ty_args);
let rebased_args =
normalize_impl_ty_args.rebase_onto(tcx, container_id, impl_trait_ref.args);
let bound_vars = tcx.mk_bound_variable_kinds(&bound_vars);
match normalize_impl_ty.kind() {
ty::Alias(ty::Projection, proj)
if proj.def_id == trait_ty.def_id && proj.args == rebased_args =>
{
// Don't include this predicate if the projected type is
// exactly the same as the projection. This can occur in
// (somewhat dubious) code like this:
//
// impl<T> X for T where T: X { type Y = <T as X>::Y; }
}
_ => predicates.push(
ty::Binder::bind_with_vars(
ty::ProjectionPredicate {
projection_term: ty::AliasTerm::new_from_args(
tcx,
trait_ty.def_id,
rebased_args,
),
term: normalize_impl_ty.into(),
},
bound_vars,
)
.upcast(tcx),
),
};
}
ty::ParamEnv::new(tcx.mk_clauses(&predicates), Reveal::UserFacing)
}
/// Manually check here that `async fn foo()` wasn't matched against `fn foo()`,
/// and extract a better error if so.
fn try_report_async_mismatch<'tcx>(
tcx: TyCtxt<'tcx>,
infcx: &InferCtxt<'tcx>,
errors: &[FulfillmentError<'tcx>],
trait_m: ty::AssocItem,
impl_m: ty::AssocItem,
impl_sig: ty::FnSig<'tcx>,
) -> Result<(), ErrorGuaranteed> {
if !tcx.asyncness(trait_m.def_id).is_async() {
return Ok(());
}
let ty::Alias(ty::Projection, ty::AliasTy { def_id: async_future_def_id, .. }) =
*tcx.fn_sig(trait_m.def_id).skip_binder().skip_binder().output().kind()
else {
bug!("expected `async fn` to return an RPITIT");
};
for error in errors {
if let ObligationCauseCode::WhereClause(def_id, _) = *error.root_obligation.cause.code()
&& def_id == async_future_def_id
&& let Some(proj) = error.root_obligation.predicate.as_projection_clause()
&& let Some(proj) = proj.no_bound_vars()
&& infcx.can_eq(
error.root_obligation.param_env,
proj.term.expect_type(),
impl_sig.output(),
)
{
// FIXME: We should suggest making the fn `async`, but extracting
// the right span is a bit difficult.
return Err(tcx.sess.dcx().emit_err(MethodShouldReturnFuture {
span: tcx.def_span(impl_m.def_id),
method_name: trait_m.name,
trait_item_span: tcx.hir().span_if_local(trait_m.def_id),
}));
}
}
Ok(())
}