cargo/core/compiler/unit_dependencies.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
//! Constructs the dependency graph for compilation.
//!
//! Rust code is typically organized as a set of Cargo packages. The
//! dependencies between the packages themselves are stored in the
//! [`Resolve`] struct. However, we can't use that information as is for
//! compilation! A package typically contains several targets, or crates,
//! and these targets has inter-dependencies. For example, you need to
//! compile the `lib` target before the `bin` one, and you need to compile
//! `build.rs` before either of those.
//!
//! So, we need to lower the `Resolve`, which specifies dependencies between
//! *packages*, to a graph of dependencies between their *targets*, and this
//! is exactly what this module is doing! Well, almost exactly: another
//! complication is that we might want to compile the same target several times
//! (for example, with and without tests), so we actually build a dependency
//! graph of [`Unit`]s, which capture these properties.
use std::collections::{HashMap, HashSet};
use tracing::trace;
use crate::core::compiler::artifact::match_artifacts_kind_with_targets;
use crate::core::compiler::unit_graph::{UnitDep, UnitGraph};
use crate::core::compiler::{
CompileKind, CompileMode, CrateType, RustcTargetData, Unit, UnitInterner,
};
use crate::core::dependency::{Artifact, ArtifactKind, ArtifactTarget, DepKind};
use crate::core::profiles::{Profile, Profiles, UnitFor};
use crate::core::resolver::features::{FeaturesFor, ResolvedFeatures};
use crate::core::resolver::Resolve;
use crate::core::{Dependency, Package, PackageId, PackageSet, Target, TargetKind, Workspace};
use crate::ops::resolve_all_features;
use crate::util::interning::InternedString;
use crate::util::GlobalContext;
use crate::CargoResult;
const IS_NO_ARTIFACT_DEP: Option<&'static Artifact> = None;
/// Collection of stuff used while creating the [`UnitGraph`].
struct State<'a, 'gctx> {
ws: &'a Workspace<'gctx>,
gctx: &'gctx GlobalContext,
/// Stores the result of building the [`UnitGraph`].
unit_dependencies: UnitGraph,
package_set: &'a PackageSet<'gctx>,
usr_resolve: &'a Resolve,
usr_features: &'a ResolvedFeatures,
/// Like `usr_resolve` but for building standard library (`-Zbuild-std`).
std_resolve: Option<&'a Resolve>,
/// Like `usr_features` but for building standard library (`-Zbuild-std`).
std_features: Option<&'a ResolvedFeatures>,
/// `true` while generating the dependencies for the standard library.
is_std: bool,
/// The mode we are compiling in. Used for preventing from building lib thrice.
global_mode: CompileMode,
target_data: &'a RustcTargetData<'gctx>,
profiles: &'a Profiles,
interner: &'a UnitInterner,
// Units for `-Zrustdoc-scrape-examples`.
scrape_units: &'a [Unit],
/// A set of edges in `unit_dependencies` where (a, b) means that the
/// dependency from a to b was added purely because it was a dev-dependency.
/// This is used during `connect_run_custom_build_deps`.
dev_dependency_edges: HashSet<(Unit, Unit)>,
}
/// A boolean-like to indicate if a `Unit` is an artifact or not.
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum IsArtifact {
Yes,
No,
}
impl IsArtifact {
pub fn is_true(&self) -> bool {
matches!(self, IsArtifact::Yes)
}
}
/// Then entry point for building a dependency graph of compilation units.
///
/// You can find some information for arguments from doc of [`State`].
#[tracing::instrument(skip_all)]
pub fn build_unit_dependencies<'a, 'gctx>(
ws: &'a Workspace<'gctx>,
package_set: &'a PackageSet<'gctx>,
resolve: &'a Resolve,
features: &'a ResolvedFeatures,
std_resolve: Option<&'a (Resolve, ResolvedFeatures)>,
roots: &[Unit],
scrape_units: &[Unit],
std_roots: &HashMap<CompileKind, Vec<Unit>>,
global_mode: CompileMode,
target_data: &'a RustcTargetData<'gctx>,
profiles: &'a Profiles,
interner: &'a UnitInterner,
) -> CargoResult<UnitGraph> {
if roots.is_empty() {
// If -Zbuild-std, don't attach units if there is nothing to build.
// Otherwise, other parts of the code may be confused by seeing units
// in the dep graph without a root.
return Ok(HashMap::new());
}
let (std_resolve, std_features) = match std_resolve {
Some((r, f)) => (Some(r), Some(f)),
None => (None, None),
};
let mut state = State {
ws,
gctx: ws.gctx(),
unit_dependencies: HashMap::new(),
package_set,
usr_resolve: resolve,
usr_features: features,
std_resolve,
std_features,
is_std: false,
global_mode,
target_data,
profiles,
interner,
scrape_units,
dev_dependency_edges: HashSet::new(),
};
let std_unit_deps = calc_deps_of_std(&mut state, std_roots)?;
deps_of_roots(roots, &mut state)?;
super::links::validate_links(state.resolve(), &state.unit_dependencies)?;
// Hopefully there aren't any links conflicts with the standard library?
if let Some(std_unit_deps) = std_unit_deps {
attach_std_deps(&mut state, std_roots, std_unit_deps);
}
connect_run_custom_build_deps(&mut state);
// Dependencies are used in tons of places throughout the backend, many of
// which affect the determinism of the build itself. As a result be sure
// that dependency lists are always sorted to ensure we've always got a
// deterministic output.
for list in state.unit_dependencies.values_mut() {
list.sort();
}
trace!("ALL UNIT DEPENDENCIES {:#?}", state.unit_dependencies);
Ok(state.unit_dependencies)
}
/// Compute all the dependencies for the standard library.
fn calc_deps_of_std(
state: &mut State<'_, '_>,
std_roots: &HashMap<CompileKind, Vec<Unit>>,
) -> CargoResult<Option<UnitGraph>> {
if std_roots.is_empty() {
return Ok(None);
}
// Compute dependencies for the standard library.
state.is_std = true;
for roots in std_roots.values() {
deps_of_roots(roots, state)?;
}
state.is_std = false;
Ok(Some(std::mem::take(&mut state.unit_dependencies)))
}
/// Add the standard library units to the `unit_dependencies`.
fn attach_std_deps(
state: &mut State<'_, '_>,
std_roots: &HashMap<CompileKind, Vec<Unit>>,
std_unit_deps: UnitGraph,
) {
// Attach the standard library as a dependency of every target unit.
let mut found = false;
for (unit, deps) in state.unit_dependencies.iter_mut() {
if !unit.kind.is_host() && !unit.mode.is_run_custom_build() {
deps.extend(std_roots[&unit.kind].iter().map(|unit| UnitDep {
unit: unit.clone(),
unit_for: UnitFor::new_normal(unit.kind),
extern_crate_name: unit.pkg.name(),
dep_name: None,
// TODO: Does this `public` make sense?
public: true,
noprelude: true,
}));
found = true;
}
}
// And also include the dependencies of the standard library itself. Don't
// include these if no units actually needed the standard library.
if found {
for (unit, deps) in std_unit_deps.into_iter() {
if let Some(other_unit) = state.unit_dependencies.insert(unit, deps) {
panic!("std unit collision with existing unit: {:?}", other_unit);
}
}
}
}
/// Compute all the dependencies of the given root units.
/// The result is stored in state.unit_dependencies.
fn deps_of_roots(roots: &[Unit], state: &mut State<'_, '_>) -> CargoResult<()> {
for unit in roots.iter() {
// Dependencies of tests/benches should not have `panic` set.
// We check the global test mode to see if we are running in `cargo
// test` in which case we ensure all dependencies have `panic`
// cleared, and avoid building the lib thrice (once with `panic`, once
// without, once for `--test`). In particular, the lib included for
// Doc tests and examples are `Build` mode here.
let root_compile_kind = unit.kind;
let unit_for = if unit.mode.is_any_test() || state.global_mode.is_rustc_test() {
if unit.target.proc_macro() {
// Special-case for proc-macros, which are forced to for-host
// since they need to link with the proc_macro crate.
UnitFor::new_host_test(state.gctx, root_compile_kind)
} else {
UnitFor::new_test(state.gctx, root_compile_kind)
}
} else if unit.target.is_custom_build() {
// This normally doesn't happen, except `clean` aggressively
// generates all units.
UnitFor::new_host(false, root_compile_kind)
} else if unit.target.proc_macro() {
UnitFor::new_host(true, root_compile_kind)
} else if unit.target.for_host() {
// Plugin should never have panic set.
UnitFor::new_compiler(root_compile_kind)
} else {
UnitFor::new_normal(root_compile_kind)
};
deps_of(unit, state, unit_for)?;
}
Ok(())
}
/// Compute the dependencies of a single unit, recursively computing all
/// transitive dependencies.
///
/// The result is stored in `state.unit_dependencies`.
fn deps_of(unit: &Unit, state: &mut State<'_, '_>, unit_for: UnitFor) -> CargoResult<()> {
// Currently the `unit_dependencies` map does not include `unit_for`. This should
// be safe for now. `TestDependency` only exists to clear the `panic`
// flag, and you'll never ask for a `unit` with `panic` set as a
// `TestDependency`. `CustomBuild` should also be fine since if the
// requested unit's settings are the same as `Any`, `CustomBuild` can't
// affect anything else in the hierarchy.
if !state.unit_dependencies.contains_key(unit) {
let unit_deps = compute_deps(unit, state, unit_for)?;
state
.unit_dependencies
.insert(unit.clone(), unit_deps.clone());
for unit_dep in unit_deps {
deps_of(&unit_dep.unit, state, unit_dep.unit_for)?;
}
}
Ok(())
}
/// Returns the direct unit dependencies for the given `Unit`.
fn compute_deps(
unit: &Unit,
state: &mut State<'_, '_>,
unit_for: UnitFor,
) -> CargoResult<Vec<UnitDep>> {
if unit.mode.is_run_custom_build() {
return compute_deps_custom_build(unit, unit_for, state);
} else if unit.mode.is_doc() {
// Note: this does not include doc test.
return compute_deps_doc(unit, state, unit_for);
}
let mut ret = Vec::new();
let mut dev_deps = Vec::new();
for (dep_pkg_id, deps) in state.deps(unit, unit_for) {
let Some(dep_lib) = calc_artifact_deps(unit, unit_for, dep_pkg_id, &deps, state, &mut ret)?
else {
continue;
};
let dep_pkg = state.get(dep_pkg_id);
let mode = check_or_build_mode(unit.mode, dep_lib);
let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());
let start = ret.len();
if state.gctx.cli_unstable().dual_proc_macros
&& dep_lib.proc_macro()
&& !unit.kind.is_host()
{
let unit_dep = new_unit_dep(
state,
unit,
dep_pkg,
dep_lib,
dep_unit_for,
unit.kind,
mode,
IS_NO_ARTIFACT_DEP,
)?;
ret.push(unit_dep);
let unit_dep = new_unit_dep(
state,
unit,
dep_pkg,
dep_lib,
dep_unit_for,
CompileKind::Host,
mode,
IS_NO_ARTIFACT_DEP,
)?;
ret.push(unit_dep);
} else {
let unit_dep = new_unit_dep(
state,
unit,
dep_pkg,
dep_lib,
dep_unit_for,
unit.kind.for_target(dep_lib),
mode,
IS_NO_ARTIFACT_DEP,
)?;
ret.push(unit_dep);
}
// If the unit added was a dev-dependency unit, then record that in the
// dev-dependencies array. We'll add this to
// `state.dev_dependency_edges` at the end and process it later in
// `connect_run_custom_build_deps`.
if deps.iter().all(|d| !d.is_transitive()) {
for dep in ret[start..].iter() {
dev_deps.push((unit.clone(), dep.unit.clone()));
}
}
}
state.dev_dependency_edges.extend(dev_deps);
// If this target is a build script, then what we've collected so far is
// all we need. If this isn't a build script, then it depends on the
// build script if there is one.
if unit.target.is_custom_build() {
return Ok(ret);
}
ret.extend(dep_build_script(unit, unit_for, state)?);
// If this target is a binary, test, example, etc, then it depends on
// the library of the same package. The call to `resolve.deps` above
// didn't include `pkg` in the return values, so we need to special case
// it here and see if we need to push `(pkg, pkg_lib_target)`.
if unit.target.is_lib() && unit.mode != CompileMode::Doctest {
return Ok(ret);
}
ret.extend(maybe_lib(unit, state, unit_for)?);
// If any integration tests/benches are being run, make sure that
// binaries are built as well.
if !unit.mode.is_check()
&& unit.mode.is_any_test()
&& (unit.target.is_test() || unit.target.is_bench())
{
let id = unit.pkg.package_id();
ret.extend(
unit.pkg
.targets()
.iter()
.filter(|t| {
// Skip binaries with required features that have not been selected.
match t.required_features() {
Some(rf) if t.is_bin() => {
let features = resolve_all_features(
state.resolve(),
state.features(),
state.package_set,
id,
);
rf.iter().all(|f| features.contains(f))
}
None if t.is_bin() => true,
_ => false,
}
})
.map(|t| {
new_unit_dep(
state,
unit,
&unit.pkg,
t,
UnitFor::new_normal(unit_for.root_compile_kind()),
unit.kind.for_target(t),
CompileMode::Build,
IS_NO_ARTIFACT_DEP,
)
})
.collect::<CargoResult<Vec<UnitDep>>>()?,
);
}
Ok(ret)
}
/// Find artifacts for all `deps` of `unit` and add units that build these artifacts
/// to `ret`.
fn calc_artifact_deps<'a>(
unit: &Unit,
unit_for: UnitFor,
dep_id: PackageId,
deps: &[&Dependency],
state: &State<'a, '_>,
ret: &mut Vec<UnitDep>,
) -> CargoResult<Option<&'a Target>> {
let mut has_artifact_lib = false;
let mut maybe_non_artifact_lib = false;
let artifact_pkg = state.get(dep_id);
for dep in deps {
let Some(artifact) = dep.artifact() else {
maybe_non_artifact_lib = true;
continue;
};
has_artifact_lib |= artifact.is_lib();
// Custom build scripts (build/compile) never get artifact dependencies,
// but the run-build-script step does (where it is handled).
if !unit.target.is_custom_build() {
debug_assert!(
!unit.mode.is_run_custom_build(),
"BUG: This should be handled in a separate branch"
);
ret.extend(artifact_targets_to_unit_deps(
unit,
unit_for.with_artifact_features(artifact),
state,
artifact
.target()
.and_then(|t| match t {
ArtifactTarget::BuildDependencyAssumeTarget => None,
ArtifactTarget::Force(kind) => Some(CompileKind::Target(kind)),
})
.unwrap_or(unit.kind),
artifact_pkg,
dep,
)?);
}
}
if has_artifact_lib || maybe_non_artifact_lib {
Ok(artifact_pkg.targets().iter().find(|t| t.is_lib()))
} else {
Ok(None)
}
}
/// Returns the dependencies needed to run a build script.
///
/// The `unit` provided must represent an execution of a build script, and
/// the returned set of units must all be run before `unit` is run.
fn compute_deps_custom_build(
unit: &Unit,
unit_for: UnitFor,
state: &State<'_, '_>,
) -> CargoResult<Vec<UnitDep>> {
if let Some(links) = unit.pkg.manifest().links() {
if unit.links_overrides.get(links).is_some() {
// Overridden build scripts don't have any dependencies.
return Ok(Vec::new());
}
}
// All dependencies of this unit should use profiles for custom builds.
// If this is a build script of a proc macro, make sure it uses host
// features.
let script_unit_for = unit_for.for_custom_build();
// When not overridden, then the dependencies to run a build script are:
//
// 1. Compiling the build script itself.
// 2. For each immediate dependency of our package which has a `links`
// key, the execution of that build script.
//
// We don't have a great way of handling (2) here right now so this is
// deferred until after the graph of all unit dependencies has been
// constructed.
let compile_script_unit = new_unit_dep(
state,
unit,
&unit.pkg,
&unit.target,
script_unit_for,
// Build scripts always compiled for the host.
CompileKind::Host,
CompileMode::Build,
IS_NO_ARTIFACT_DEP,
)?;
let mut result = vec![compile_script_unit];
// Include any artifact dependencies.
//
// This is essentially the same as `calc_artifact_deps`, but there are some
// subtle differences that require this to be implemented differently.
//
// Produce units that build all required artifact kinds (like binaries,
// static libraries, etc) with the correct compile target.
//
// Computing the compile target for artifact units is more involved as it has to handle
// various target configurations specific to artifacts, like `target = "target"` and
// `target = "<triple>"`, which makes knowing the root units compile target
// `root_unit_compile_target` necessary.
let root_unit_compile_target = unit_for.root_compile_kind();
let unit_for = UnitFor::new_host(/*host_features*/ true, root_unit_compile_target);
for (dep_pkg_id, deps) in state.deps(unit, script_unit_for) {
for dep in deps {
if dep.kind() != DepKind::Build || dep.artifact().is_none() {
continue;
}
let artifact_pkg = state.get(dep_pkg_id);
let artifact = dep.artifact().expect("artifact dep");
let resolved_artifact_compile_kind = artifact
.target()
.map(|target| target.to_resolved_compile_kind(root_unit_compile_target));
result.extend(artifact_targets_to_unit_deps(
unit,
unit_for.with_artifact_features_from_resolved_compile_kind(
resolved_artifact_compile_kind,
),
state,
resolved_artifact_compile_kind.unwrap_or(CompileKind::Host),
artifact_pkg,
dep,
)?);
}
}
Ok(result)
}
/// Given a `parent` unit containing a dependency `dep` whose package is `artifact_pkg`,
/// find all targets in `artifact_pkg` which refer to the `dep`s artifact declaration
/// and turn them into units.
/// Due to the nature of artifact dependencies, a single dependency in a manifest can
/// cause one or more targets to be build, for instance with
/// `artifact = ["bin:a", "bin:b", "staticlib"]`, which is very different from normal
/// dependencies which cause only a single unit to be created.
///
/// `compile_kind` is the computed kind for the future artifact unit
/// dependency, only the caller can pick the correct one.
fn artifact_targets_to_unit_deps(
parent: &Unit,
parent_unit_for: UnitFor,
state: &State<'_, '_>,
compile_kind: CompileKind,
artifact_pkg: &Package,
dep: &Dependency,
) -> CargoResult<Vec<UnitDep>> {
let ret =
match_artifacts_kind_with_targets(dep, artifact_pkg.targets(), parent.pkg.name().as_str())?
.into_iter()
.flat_map(|(artifact_kind, target)| {
// We split target libraries into individual units, even though rustc is able
// to produce multiple kinds in a single invocation for the sole reason that
// each artifact kind has its own output directory, something we can't easily
// teach rustc for now.
match target.kind() {
TargetKind::Lib(kinds) => Box::new(
kinds
.iter()
.filter(move |tk| match (tk, artifact_kind) {
(CrateType::Cdylib, ArtifactKind::Cdylib) => true,
(CrateType::Staticlib, ArtifactKind::Staticlib) => true,
_ => false,
})
.map(|target_kind| {
new_unit_dep(
state,
parent,
artifact_pkg,
target
.clone()
.set_kind(TargetKind::Lib(vec![target_kind.clone()])),
parent_unit_for,
compile_kind,
CompileMode::Build,
dep.artifact(),
)
}),
) as Box<dyn Iterator<Item = _>>,
_ => Box::new(std::iter::once(new_unit_dep(
state,
parent,
artifact_pkg,
target,
parent_unit_for,
compile_kind,
CompileMode::Build,
dep.artifact(),
))),
}
})
.collect::<Result<Vec<_>, _>>()?;
Ok(ret)
}
/// Returns the dependencies necessary to document a package.
fn compute_deps_doc(
unit: &Unit,
state: &mut State<'_, '_>,
unit_for: UnitFor,
) -> CargoResult<Vec<UnitDep>> {
// To document a library, we depend on dependencies actually being
// built. If we're documenting *all* libraries, then we also depend on
// the documentation of the library being built.
let mut ret = Vec::new();
for (id, deps) in state.deps(unit, unit_for) {
let Some(dep_lib) = calc_artifact_deps(unit, unit_for, id, &deps, state, &mut ret)? else {
continue;
};
let dep_pkg = state.get(id);
// Rustdoc only needs rmeta files for regular dependencies.
// However, for plugins/proc macros, deps should be built like normal.
let mode = check_or_build_mode(unit.mode, dep_lib);
let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());
let lib_unit_dep = new_unit_dep(
state,
unit,
dep_pkg,
dep_lib,
dep_unit_for,
unit.kind.for_target(dep_lib),
mode,
IS_NO_ARTIFACT_DEP,
)?;
ret.push(lib_unit_dep);
if dep_lib.documented() {
if let CompileMode::Doc { deps: true, .. } = unit.mode {
// Document this lib as well.
let doc_unit_dep = new_unit_dep(
state,
unit,
dep_pkg,
dep_lib,
dep_unit_for,
unit.kind.for_target(dep_lib),
unit.mode,
IS_NO_ARTIFACT_DEP,
)?;
ret.push(doc_unit_dep);
}
}
}
// Be sure to build/run the build script for documented libraries.
ret.extend(dep_build_script(unit, unit_for, state)?);
// If we document a binary/example, we need the library available.
if unit.target.is_bin() || unit.target.is_example() {
// build the lib
ret.extend(maybe_lib(unit, state, unit_for)?);
// and also the lib docs for intra-doc links
if let Some(lib) = unit
.pkg
.targets()
.iter()
.find(|t| t.is_linkable() && t.documented())
{
let dep_unit_for = unit_for.with_dependency(unit, lib, unit_for.root_compile_kind());
let lib_doc_unit = new_unit_dep(
state,
unit,
&unit.pkg,
lib,
dep_unit_for,
unit.kind.for_target(lib),
unit.mode,
IS_NO_ARTIFACT_DEP,
)?;
ret.push(lib_doc_unit);
}
}
// Add all units being scraped for examples as a dependency of top-level Doc units.
if state.ws.unit_needs_doc_scrape(unit) {
for scrape_unit in state.scrape_units.iter() {
let scrape_unit_for = UnitFor::new_normal(scrape_unit.kind);
deps_of(scrape_unit, state, scrape_unit_for)?;
ret.push(new_unit_dep(
state,
scrape_unit,
&scrape_unit.pkg,
&scrape_unit.target,
scrape_unit_for,
scrape_unit.kind,
scrape_unit.mode,
IS_NO_ARTIFACT_DEP,
)?);
}
}
Ok(ret)
}
fn maybe_lib(
unit: &Unit,
state: &mut State<'_, '_>,
unit_for: UnitFor,
) -> CargoResult<Option<UnitDep>> {
unit.pkg
.targets()
.iter()
.find(|t| t.is_linkable())
.map(|t| {
let mode = check_or_build_mode(unit.mode, t);
let dep_unit_for = unit_for.with_dependency(unit, t, unit_for.root_compile_kind());
new_unit_dep(
state,
unit,
&unit.pkg,
t,
dep_unit_for,
unit.kind.for_target(t),
mode,
IS_NO_ARTIFACT_DEP,
)
})
.transpose()
}
/// If a build script is scheduled to be run for the package specified by
/// `unit`, this function will return the unit to run that build script.
///
/// Overriding a build script simply means that the running of the build
/// script itself doesn't have any dependencies, so even in that case a unit
/// of work is still returned. `None` is only returned if the package has no
/// build script.
fn dep_build_script(
unit: &Unit,
unit_for: UnitFor,
state: &State<'_, '_>,
) -> CargoResult<Option<UnitDep>> {
unit.pkg
.targets()
.iter()
.find(|t| t.is_custom_build())
.map(|t| {
// The profile stored in the Unit is the profile for the thing
// the custom build script is running for.
let profile = state.profiles.get_profile_run_custom_build(&unit.profile);
// UnitFor::for_custom_build is used because we want the `host` flag set
// for all of our build dependencies (so they all get
// build-override profiles), including compiling the build.rs
// script itself.
//
// If `is_for_host_features` here is `false`, that means we are a
// build.rs script for a normal dependency and we want to set the
// CARGO_FEATURE_* environment variables to the features as a
// normal dep.
//
// If `is_for_host_features` here is `true`, that means that this
// package is being used as a build dependency or proc-macro, and
// so we only want to set CARGO_FEATURE_* variables for the host
// side of the graph.
//
// Keep in mind that the RunCustomBuild unit and the Compile
// build.rs unit use the same features. This is because some
// people use `cfg!` and `#[cfg]` expressions to check for enabled
// features instead of just checking `CARGO_FEATURE_*` at runtime.
// In the case with the new feature resolver (decoupled host
// deps), and a shared dependency has different features enabled
// for normal vs. build, then the build.rs script will get
// compiled twice. I believe it is not feasible to only build it
// once because it would break a large number of scripts (they
// would think they have the wrong set of features enabled).
let script_unit_for = unit_for.for_custom_build();
new_unit_dep_with_profile(
state,
unit,
&unit.pkg,
t,
script_unit_for,
unit.kind,
CompileMode::RunCustomBuild,
profile,
IS_NO_ARTIFACT_DEP,
)
})
.transpose()
}
/// Choose the correct mode for dependencies.
fn check_or_build_mode(mode: CompileMode, target: &Target) -> CompileMode {
match mode {
CompileMode::Check { .. } | CompileMode::Doc { .. } | CompileMode::Docscrape => {
if target.for_host() {
// Plugin and proc macro targets should be compiled like
// normal.
CompileMode::Build
} else {
// Regular dependencies should not be checked with --test.
// Regular dependencies of doc targets should emit rmeta only.
CompileMode::Check { test: false }
}
}
_ => CompileMode::Build,
}
}
/// Create a new Unit for a dependency from `parent` to `pkg` and `target`.
fn new_unit_dep(
state: &State<'_, '_>,
parent: &Unit,
pkg: &Package,
target: &Target,
unit_for: UnitFor,
kind: CompileKind,
mode: CompileMode,
artifact: Option<&Artifact>,
) -> CargoResult<UnitDep> {
let is_local = pkg.package_id().source_id().is_path() && !state.is_std;
let profile = state.profiles.get_profile(
pkg.package_id(),
state.ws.is_member(pkg),
is_local,
unit_for,
kind,
);
new_unit_dep_with_profile(
state, parent, pkg, target, unit_for, kind, mode, profile, artifact,
)
}
fn new_unit_dep_with_profile(
state: &State<'_, '_>,
parent: &Unit,
pkg: &Package,
target: &Target,
unit_for: UnitFor,
kind: CompileKind,
mode: CompileMode,
profile: Profile,
artifact: Option<&Artifact>,
) -> CargoResult<UnitDep> {
let (extern_crate_name, dep_name) = state.resolve().extern_crate_name_and_dep_name(
parent.pkg.package_id(),
pkg.package_id(),
target,
)?;
let public = state
.resolve()
.is_public_dep(parent.pkg.package_id(), pkg.package_id());
let features_for = unit_for.map_to_features_for(artifact);
let artifact_target = match features_for {
FeaturesFor::ArtifactDep(target) => Some(target),
_ => None,
};
let features = state.activated_features(pkg.package_id(), features_for);
let unit = state.interner.intern(
pkg,
target,
profile,
kind,
mode,
features,
state.target_data.info(kind).rustflags.clone(),
state.target_data.info(kind).rustdocflags.clone(),
state
.target_data
.target_config(kind)
.links_overrides
.clone(),
state.is_std,
/*dep_hash*/ 0,
artifact.map_or(IsArtifact::No, |_| IsArtifact::Yes),
artifact_target,
);
Ok(UnitDep {
unit,
unit_for,
extern_crate_name,
dep_name,
public,
noprelude: false,
})
}
/// Fill in missing dependencies for units of the `RunCustomBuild`
///
/// As mentioned above in `compute_deps_custom_build` each build script
/// execution has two dependencies. The first is compiling the build script
/// itself (already added) and the second is that all crates the package of the
/// build script depends on with `links` keys, their build script execution. (a
/// bit confusing eh?)
///
/// Here we take the entire `deps` map and add more dependencies from execution
/// of one build script to execution of another build script.
fn connect_run_custom_build_deps(state: &mut State<'_, '_>) {
let mut new_deps = Vec::new();
{
let state = &*state;
// First up build a reverse dependency map. This is a mapping of all
// `RunCustomBuild` known steps to the unit which depends on them. For
// example a library might depend on a build script, so this map will
// have the build script as the key and the library would be in the
// value's set.
let mut reverse_deps_map = HashMap::new();
for (unit, deps) in state.unit_dependencies.iter() {
for dep in deps {
if dep.unit.mode == CompileMode::RunCustomBuild {
reverse_deps_map
.entry(dep.unit.clone())
.or_insert_with(HashSet::new)
.insert(unit);
}
}
}
// Next, we take a look at all build scripts executions listed in the
// dependency map. Our job here is to take everything that depends on
// this build script (from our reverse map above) and look at the other
// package dependencies of these parents.
//
// If we depend on a linkable target and the build script mentions
// `links`, then we depend on that package's build script! Here we use
// `dep_build_script` to manufacture an appropriate build script unit to
// depend on.
for unit in state
.unit_dependencies
.keys()
.filter(|k| k.mode == CompileMode::RunCustomBuild)
{
// This list of dependencies all depend on `unit`, an execution of
// the build script.
let Some(reverse_deps) = reverse_deps_map.get(unit) else {
continue;
};
let to_add = reverse_deps
.iter()
// Get all sibling dependencies of `unit`
.flat_map(|reverse_dep| {
state.unit_dependencies[reverse_dep]
.iter()
.map(move |a| (reverse_dep, a))
})
// Only deps with `links`.
.filter(|(_parent, other)| {
other.unit.pkg != unit.pkg
&& other.unit.target.is_linkable()
&& other.unit.pkg.manifest().links().is_some()
})
// Avoid cycles when using the doc --scrape-examples feature:
// Say a workspace has crates A and B where A has a build-dependency on B.
// The Doc units for A and B will have a dependency on the Docscrape for both A and B.
// So this would add a dependency from B-build to A-build, causing a cycle:
// B (build) -> A (build) -> B(build)
// See the test scrape_examples_avoid_build_script_cycle for a concrete example.
// To avoid this cycle, we filter out the B -> A (docscrape) dependency.
.filter(|(_parent, other)| !other.unit.mode.is_doc_scrape())
// Skip dependencies induced via dev-dependencies since
// connections between `links` and build scripts only happens
// via normal dependencies. Otherwise since dev-dependencies can
// be cyclic we could have cyclic build-script executions.
.filter_map(move |(parent, other)| {
if state
.dev_dependency_edges
.contains(&((*parent).clone(), other.unit.clone()))
{
None
} else {
Some(other)
}
})
// Get the RunCustomBuild for other lib.
.filter_map(|other| {
state.unit_dependencies[&other.unit]
.iter()
.find(|other_dep| other_dep.unit.mode == CompileMode::RunCustomBuild)
.cloned()
})
.collect::<HashSet<_>>();
if !to_add.is_empty() {
// (RunCustomBuild, set(other RunCustomBuild))
new_deps.push((unit.clone(), to_add));
}
}
}
// And finally, add in all the missing dependencies!
for (unit, new_deps) in new_deps {
state
.unit_dependencies
.get_mut(&unit)
.unwrap()
.extend(new_deps);
}
}
impl<'a, 'gctx> State<'a, 'gctx> {
/// Gets `std_resolve` during building std, otherwise `usr_resolve`.
fn resolve(&self) -> &'a Resolve {
if self.is_std {
self.std_resolve.unwrap()
} else {
self.usr_resolve
}
}
/// Gets `std_features` during building std, otherwise `usr_features`.
fn features(&self) -> &'a ResolvedFeatures {
if self.is_std {
self.std_features.unwrap()
} else {
self.usr_features
}
}
fn activated_features(
&self,
pkg_id: PackageId,
features_for: FeaturesFor,
) -> Vec<InternedString> {
let features = self.features();
features.activated_features(pkg_id, features_for)
}
fn is_dep_activated(
&self,
pkg_id: PackageId,
features_for: FeaturesFor,
dep_name: InternedString,
) -> bool {
self.features()
.is_dep_activated(pkg_id, features_for, dep_name)
}
fn get(&self, id: PackageId) -> &'a Package {
self.package_set
.get_one(id)
.unwrap_or_else(|_| panic!("expected {} to be downloaded", id))
}
/// Returns a filtered set of dependencies for the given unit.
fn deps(&self, unit: &Unit, unit_for: UnitFor) -> Vec<(PackageId, Vec<&Dependency>)> {
let pkg_id = unit.pkg.package_id();
let kind = unit.kind;
self.resolve()
.deps(pkg_id)
.filter_map(|(id, deps)| {
assert!(!deps.is_empty());
let deps: Vec<_> = deps
.iter()
.filter(|dep| {
// If this target is a build command, then we only want build
// dependencies, otherwise we want everything *other than* build
// dependencies.
if unit.target.is_custom_build() != dep.is_build() {
return false;
}
// If this dependency is **not** a transitive dependency, then it
// only applies to test/example targets.
if !dep.is_transitive()
&& !unit.target.is_test()
&& !unit.target.is_example()
&& !unit.mode.is_any_test()
{
return false;
}
// If this dependency is only available for certain platforms,
// make sure we're only enabling it for that platform.
if !self.target_data.dep_platform_activated(dep, kind) {
return false;
}
// If this is an optional dependency, and the new feature resolver
// did not enable it, don't include it.
if dep.is_optional() {
// This `unit_for` is from parent dep and *SHOULD* contains its own
// artifact dep information inside `artifact_target_for_features`.
// So, no need to map any artifact info from an incorrect `dep.artifact()`.
let features_for = unit_for.map_to_features_for(IS_NO_ARTIFACT_DEP);
if !self.is_dep_activated(pkg_id, features_for, dep.name_in_toml()) {
return false;
}
}
// If we've gotten past all that, then this dependency is
// actually used!
true
})
.collect();
if deps.is_empty() {
None
} else {
Some((id, deps))
}
})
.collect()
}
}