cargo/core/compiler/unit_dependencies.rs
1//! Constructs the dependency graph for compilation.
2//!
3//! Rust code is typically organized as a set of Cargo packages. The
4//! dependencies between the packages themselves are stored in the
5//! [`Resolve`] struct. However, we can't use that information as is for
6//! compilation! A package typically contains several targets, or crates,
7//! and these targets has inter-dependencies. For example, you need to
8//! compile the `lib` target before the `bin` one, and you need to compile
9//! `build.rs` before either of those.
10//!
11//! So, we need to lower the `Resolve`, which specifies dependencies between
12//! *packages*, to a graph of dependencies between their *targets*, and this
13//! is exactly what this module is doing! Well, almost exactly: another
14//! complication is that we might want to compile the same target several times
15//! (for example, with and without tests), so we actually build a dependency
16//! graph of [`Unit`]s, which capture these properties.
17
18use std::collections::{HashMap, HashSet};
19
20use tracing::trace;
21
22use crate::core::compiler::artifact::match_artifacts_kind_with_targets;
23use crate::core::compiler::unit_graph::{UnitDep, UnitGraph};
24use crate::core::compiler::{
25 CompileKind, CompileMode, CrateType, RustcTargetData, Unit, UnitInterner,
26};
27use crate::core::dependency::{Artifact, ArtifactKind, ArtifactTarget, DepKind};
28use crate::core::profiles::{Profile, Profiles, UnitFor};
29use crate::core::resolver::features::{FeaturesFor, ResolvedFeatures};
30use crate::core::resolver::Resolve;
31use crate::core::{Dependency, Package, PackageId, PackageSet, Target, TargetKind, Workspace};
32use crate::ops::resolve_all_features;
33use crate::util::interning::InternedString;
34use crate::util::GlobalContext;
35use crate::CargoResult;
36
37const IS_NO_ARTIFACT_DEP: Option<&'static Artifact> = None;
38
39/// Collection of stuff used while creating the [`UnitGraph`].
40struct State<'a, 'gctx> {
41 ws: &'a Workspace<'gctx>,
42 gctx: &'gctx GlobalContext,
43 /// Stores the result of building the [`UnitGraph`].
44 unit_dependencies: UnitGraph,
45 package_set: &'a PackageSet<'gctx>,
46 usr_resolve: &'a Resolve,
47 usr_features: &'a ResolvedFeatures,
48 /// Like `usr_resolve` but for building standard library (`-Zbuild-std`).
49 std_resolve: Option<&'a Resolve>,
50 /// Like `usr_features` but for building standard library (`-Zbuild-std`).
51 std_features: Option<&'a ResolvedFeatures>,
52 /// `true` while generating the dependencies for the standard library.
53 is_std: bool,
54 /// The mode we are compiling in. Used for preventing from building lib thrice.
55 global_mode: CompileMode,
56 target_data: &'a RustcTargetData<'gctx>,
57 profiles: &'a Profiles,
58 interner: &'a UnitInterner,
59 // Units for `-Zrustdoc-scrape-examples`.
60 scrape_units: &'a [Unit],
61
62 /// A set of edges in `unit_dependencies` where (a, b) means that the
63 /// dependency from a to b was added purely because it was a dev-dependency.
64 /// This is used during `connect_run_custom_build_deps`.
65 dev_dependency_edges: HashSet<(Unit, Unit)>,
66}
67
68/// A boolean-like to indicate if a `Unit` is an artifact or not.
69#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
70pub enum IsArtifact {
71 Yes,
72 No,
73}
74
75impl IsArtifact {
76 pub fn is_true(&self) -> bool {
77 matches!(self, IsArtifact::Yes)
78 }
79}
80
81/// Then entry point for building a dependency graph of compilation units.
82///
83/// You can find some information for arguments from doc of [`State`].
84#[tracing::instrument(skip_all)]
85pub fn build_unit_dependencies<'a, 'gctx>(
86 ws: &'a Workspace<'gctx>,
87 package_set: &'a PackageSet<'gctx>,
88 resolve: &'a Resolve,
89 features: &'a ResolvedFeatures,
90 std_resolve: Option<&'a (Resolve, ResolvedFeatures)>,
91 roots: &[Unit],
92 scrape_units: &[Unit],
93 std_roots: &HashMap<CompileKind, Vec<Unit>>,
94 global_mode: CompileMode,
95 target_data: &'a RustcTargetData<'gctx>,
96 profiles: &'a Profiles,
97 interner: &'a UnitInterner,
98) -> CargoResult<UnitGraph> {
99 if roots.is_empty() {
100 // If -Zbuild-std, don't attach units if there is nothing to build.
101 // Otherwise, other parts of the code may be confused by seeing units
102 // in the dep graph without a root.
103 return Ok(HashMap::new());
104 }
105 let (std_resolve, std_features) = match std_resolve {
106 Some((r, f)) => (Some(r), Some(f)),
107 None => (None, None),
108 };
109 let mut state = State {
110 ws,
111 gctx: ws.gctx(),
112 unit_dependencies: HashMap::new(),
113 package_set,
114 usr_resolve: resolve,
115 usr_features: features,
116 std_resolve,
117 std_features,
118 is_std: false,
119 global_mode,
120 target_data,
121 profiles,
122 interner,
123 scrape_units,
124 dev_dependency_edges: HashSet::new(),
125 };
126
127 let std_unit_deps = calc_deps_of_std(&mut state, std_roots)?;
128
129 deps_of_roots(roots, &mut state)?;
130 super::links::validate_links(state.resolve(), &state.unit_dependencies)?;
131 // Hopefully there aren't any links conflicts with the standard library?
132
133 if let Some(std_unit_deps) = std_unit_deps {
134 attach_std_deps(&mut state, std_roots, std_unit_deps);
135 }
136
137 connect_run_custom_build_deps(&mut state);
138
139 // Dependencies are used in tons of places throughout the backend, many of
140 // which affect the determinism of the build itself. As a result be sure
141 // that dependency lists are always sorted to ensure we've always got a
142 // deterministic output.
143 for list in state.unit_dependencies.values_mut() {
144 list.sort();
145 }
146 trace!("ALL UNIT DEPENDENCIES {:#?}", state.unit_dependencies);
147
148 Ok(state.unit_dependencies)
149}
150
151/// Compute all the dependencies for the standard library.
152fn calc_deps_of_std(
153 state: &mut State<'_, '_>,
154 std_roots: &HashMap<CompileKind, Vec<Unit>>,
155) -> CargoResult<Option<UnitGraph>> {
156 if std_roots.is_empty() {
157 return Ok(None);
158 }
159 // Compute dependencies for the standard library.
160 state.is_std = true;
161 for roots in std_roots.values() {
162 deps_of_roots(roots, state)?;
163 }
164 state.is_std = false;
165 Ok(Some(std::mem::take(&mut state.unit_dependencies)))
166}
167
168/// Add the standard library units to the `unit_dependencies`.
169fn attach_std_deps(
170 state: &mut State<'_, '_>,
171 std_roots: &HashMap<CompileKind, Vec<Unit>>,
172 std_unit_deps: UnitGraph,
173) {
174 // Attach the standard library as a dependency of every target unit.
175 let mut found = false;
176 for (unit, deps) in state.unit_dependencies.iter_mut() {
177 if !unit.kind.is_host() && !unit.mode.is_run_custom_build() {
178 deps.extend(std_roots[&unit.kind].iter().map(|unit| UnitDep {
179 unit: unit.clone(),
180 unit_for: UnitFor::new_normal(unit.kind),
181 extern_crate_name: unit.pkg.name(),
182 dep_name: None,
183 // TODO: Does this `public` make sense?
184 public: true,
185 noprelude: true,
186 }));
187 found = true;
188 }
189 }
190 // And also include the dependencies of the standard library itself. Don't
191 // include these if no units actually needed the standard library.
192 if found {
193 for (unit, deps) in std_unit_deps.into_iter() {
194 if let Some(other_unit) = state.unit_dependencies.insert(unit, deps) {
195 panic!("std unit collision with existing unit: {:?}", other_unit);
196 }
197 }
198 }
199}
200
201/// Compute all the dependencies of the given root units.
202/// The result is stored in `state.unit_dependencies`.
203fn deps_of_roots(roots: &[Unit], state: &mut State<'_, '_>) -> CargoResult<()> {
204 for unit in roots.iter() {
205 // Dependencies of tests/benches should not have `panic` set.
206 // We check the global test mode to see if we are running in `cargo
207 // test` in which case we ensure all dependencies have `panic`
208 // cleared, and avoid building the lib thrice (once with `panic`, once
209 // without, once for `--test`). In particular, the lib included for
210 // Doc tests and examples are `Build` mode here.
211 let root_compile_kind = unit.kind;
212 let unit_for = if unit.mode.is_any_test() || state.global_mode.is_rustc_test() {
213 if unit.target.proc_macro() {
214 // Special-case for proc-macros, which are forced to for-host
215 // since they need to link with the proc_macro crate.
216 UnitFor::new_host_test(state.gctx, root_compile_kind)
217 } else {
218 UnitFor::new_test(state.gctx, root_compile_kind)
219 }
220 } else if unit.target.is_custom_build() {
221 // This normally doesn't happen, except `clean` aggressively
222 // generates all units.
223 UnitFor::new_host(false, root_compile_kind)
224 } else if unit.target.proc_macro() {
225 UnitFor::new_host(true, root_compile_kind)
226 } else if unit.target.for_host() {
227 // Plugin should never have panic set.
228 UnitFor::new_compiler(root_compile_kind)
229 } else {
230 UnitFor::new_normal(root_compile_kind)
231 };
232 deps_of(unit, state, unit_for)?;
233 }
234
235 Ok(())
236}
237
238/// Compute the dependencies of a single unit, recursively computing all
239/// transitive dependencies.
240///
241/// The result is stored in `state.unit_dependencies`.
242fn deps_of(unit: &Unit, state: &mut State<'_, '_>, unit_for: UnitFor) -> CargoResult<()> {
243 // Currently the `unit_dependencies` map does not include `unit_for`. This should
244 // be safe for now. `TestDependency` only exists to clear the `panic`
245 // flag, and you'll never ask for a `unit` with `panic` set as a
246 // `TestDependency`. `CustomBuild` should also be fine since if the
247 // requested unit's settings are the same as `Any`, `CustomBuild` can't
248 // affect anything else in the hierarchy.
249 if !state.unit_dependencies.contains_key(unit) {
250 let unit_deps = compute_deps(unit, state, unit_for)?;
251 state
252 .unit_dependencies
253 .insert(unit.clone(), unit_deps.clone());
254 for unit_dep in unit_deps {
255 deps_of(&unit_dep.unit, state, unit_dep.unit_for)?;
256 }
257 }
258 Ok(())
259}
260
261/// Returns the direct unit dependencies for the given `Unit`.
262fn compute_deps(
263 unit: &Unit,
264 state: &mut State<'_, '_>,
265 unit_for: UnitFor,
266) -> CargoResult<Vec<UnitDep>> {
267 if unit.mode.is_run_custom_build() {
268 return compute_deps_custom_build(unit, unit_for, state);
269 } else if unit.mode.is_doc() {
270 // Note: this does not include doc test.
271 return compute_deps_doc(unit, state, unit_for);
272 }
273
274 let mut ret = Vec::new();
275 let mut dev_deps = Vec::new();
276 for (dep_pkg_id, deps) in state.deps(unit, unit_for) {
277 let Some(dep_lib) = calc_artifact_deps(unit, unit_for, dep_pkg_id, &deps, state, &mut ret)?
278 else {
279 continue;
280 };
281 let dep_pkg = state.get(dep_pkg_id);
282 let mode = check_or_build_mode(unit.mode, dep_lib);
283 let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());
284
285 let start = ret.len();
286 if state.gctx.cli_unstable().dual_proc_macros
287 && dep_lib.proc_macro()
288 && !unit.kind.is_host()
289 {
290 let unit_dep = new_unit_dep(
291 state,
292 unit,
293 dep_pkg,
294 dep_lib,
295 dep_unit_for,
296 unit.kind,
297 mode,
298 IS_NO_ARTIFACT_DEP,
299 )?;
300 ret.push(unit_dep);
301 let unit_dep = new_unit_dep(
302 state,
303 unit,
304 dep_pkg,
305 dep_lib,
306 dep_unit_for,
307 CompileKind::Host,
308 mode,
309 IS_NO_ARTIFACT_DEP,
310 )?;
311 ret.push(unit_dep);
312 } else {
313 let unit_dep = new_unit_dep(
314 state,
315 unit,
316 dep_pkg,
317 dep_lib,
318 dep_unit_for,
319 unit.kind.for_target(dep_lib),
320 mode,
321 IS_NO_ARTIFACT_DEP,
322 )?;
323 ret.push(unit_dep);
324 }
325
326 // If the unit added was a dev-dependency unit, then record that in the
327 // dev-dependencies array. We'll add this to
328 // `state.dev_dependency_edges` at the end and process it later in
329 // `connect_run_custom_build_deps`.
330 if deps.iter().all(|d| !d.is_transitive()) {
331 for dep in ret[start..].iter() {
332 dev_deps.push((unit.clone(), dep.unit.clone()));
333 }
334 }
335 }
336 state.dev_dependency_edges.extend(dev_deps);
337
338 // If this target is a build script, then what we've collected so far is
339 // all we need. If this isn't a build script, then it depends on the
340 // build script if there is one.
341 if unit.target.is_custom_build() {
342 return Ok(ret);
343 }
344 ret.extend(dep_build_script(unit, unit_for, state)?);
345
346 // If this target is a binary, test, example, etc, then it depends on
347 // the library of the same package. The call to `resolve.deps` above
348 // didn't include `pkg` in the return values, so we need to special case
349 // it here and see if we need to push `(pkg, pkg_lib_target)`.
350 if unit.target.is_lib() && unit.mode != CompileMode::Doctest {
351 return Ok(ret);
352 }
353 ret.extend(maybe_lib(unit, state, unit_for)?);
354
355 // If any integration tests/benches are being run, make sure that
356 // binaries are built as well.
357 if !unit.mode.is_check()
358 && unit.mode.is_any_test()
359 && (unit.target.is_test() || unit.target.is_bench())
360 {
361 let id = unit.pkg.package_id();
362 ret.extend(
363 unit.pkg
364 .targets()
365 .iter()
366 .filter(|t| {
367 // Skip binaries with required features that have not been selected.
368 match t.required_features() {
369 Some(rf) if t.is_bin() => {
370 let features = resolve_all_features(
371 state.resolve(),
372 state.features(),
373 state.package_set,
374 id,
375 );
376 rf.iter().all(|f| features.contains(f))
377 }
378 None if t.is_bin() => true,
379 _ => false,
380 }
381 })
382 .map(|t| {
383 new_unit_dep(
384 state,
385 unit,
386 &unit.pkg,
387 t,
388 UnitFor::new_normal(unit_for.root_compile_kind()),
389 unit.kind.for_target(t),
390 CompileMode::Build,
391 IS_NO_ARTIFACT_DEP,
392 )
393 })
394 .collect::<CargoResult<Vec<UnitDep>>>()?,
395 );
396 }
397
398 Ok(ret)
399}
400
401/// Find artifacts for all `deps` of `unit` and add units that build these artifacts
402/// to `ret`.
403fn calc_artifact_deps<'a>(
404 unit: &Unit,
405 unit_for: UnitFor,
406 dep_id: PackageId,
407 deps: &[&Dependency],
408 state: &State<'a, '_>,
409 ret: &mut Vec<UnitDep>,
410) -> CargoResult<Option<&'a Target>> {
411 let mut has_artifact_lib = false;
412 let mut maybe_non_artifact_lib = false;
413 let artifact_pkg = state.get(dep_id);
414 for dep in deps {
415 let Some(artifact) = dep.artifact() else {
416 maybe_non_artifact_lib = true;
417 continue;
418 };
419 has_artifact_lib |= artifact.is_lib();
420 // Custom build scripts (build/compile) never get artifact dependencies,
421 // but the run-build-script step does (where it is handled).
422 if !unit.target.is_custom_build() {
423 debug_assert!(
424 !unit.mode.is_run_custom_build(),
425 "BUG: This should be handled in a separate branch"
426 );
427 ret.extend(artifact_targets_to_unit_deps(
428 unit,
429 unit_for.with_artifact_features(artifact),
430 state,
431 artifact
432 .target()
433 .and_then(|t| match t {
434 ArtifactTarget::BuildDependencyAssumeTarget => None,
435 ArtifactTarget::Force(kind) => Some(CompileKind::Target(kind)),
436 })
437 .unwrap_or(unit.kind),
438 artifact_pkg,
439 dep,
440 )?);
441 }
442 }
443 if has_artifact_lib || maybe_non_artifact_lib {
444 Ok(artifact_pkg.targets().iter().find(|t| t.is_lib()))
445 } else {
446 Ok(None)
447 }
448}
449
450/// Returns the dependencies needed to run a build script.
451///
452/// The `unit` provided must represent an execution of a build script, and
453/// the returned set of units must all be run before `unit` is run.
454fn compute_deps_custom_build(
455 unit: &Unit,
456 unit_for: UnitFor,
457 state: &State<'_, '_>,
458) -> CargoResult<Vec<UnitDep>> {
459 if let Some(links) = unit.pkg.manifest().links() {
460 if unit.links_overrides.get(links).is_some() {
461 // Overridden build scripts don't have any dependencies.
462 return Ok(Vec::new());
463 }
464 }
465 // All dependencies of this unit should use profiles for custom builds.
466 // If this is a build script of a proc macro, make sure it uses host
467 // features.
468 let script_unit_for = unit_for.for_custom_build();
469 // When not overridden, then the dependencies to run a build script are:
470 //
471 // 1. Compiling the build script itself.
472 // 2. For each immediate dependency of our package which has a `links`
473 // key, the execution of that build script.
474 //
475 // We don't have a great way of handling (2) here right now so this is
476 // deferred until after the graph of all unit dependencies has been
477 // constructed.
478 let compile_script_unit = new_unit_dep(
479 state,
480 unit,
481 &unit.pkg,
482 &unit.target,
483 script_unit_for,
484 // Build scripts always compiled for the host.
485 CompileKind::Host,
486 CompileMode::Build,
487 IS_NO_ARTIFACT_DEP,
488 )?;
489
490 let mut result = vec![compile_script_unit];
491
492 // Include any artifact dependencies.
493 //
494 // This is essentially the same as `calc_artifact_deps`, but there are some
495 // subtle differences that require this to be implemented differently.
496 //
497 // Produce units that build all required artifact kinds (like binaries,
498 // static libraries, etc) with the correct compile target.
499 //
500 // Computing the compile target for artifact units is more involved as it has to handle
501 // various target configurations specific to artifacts, like `target = "target"` and
502 // `target = "<triple>"`, which makes knowing the root units compile target
503 // `root_unit_compile_target` necessary.
504 let root_unit_compile_target = unit_for.root_compile_kind();
505 let unit_for = UnitFor::new_host(/*host_features*/ true, root_unit_compile_target);
506 for (dep_pkg_id, deps) in state.deps(unit, script_unit_for) {
507 for dep in deps {
508 if dep.kind() != DepKind::Build || dep.artifact().is_none() {
509 continue;
510 }
511 let artifact_pkg = state.get(dep_pkg_id);
512 let artifact = dep.artifact().expect("artifact dep");
513 let resolved_artifact_compile_kind = artifact
514 .target()
515 .map(|target| target.to_resolved_compile_kind(root_unit_compile_target));
516
517 result.extend(artifact_targets_to_unit_deps(
518 unit,
519 unit_for.with_artifact_features_from_resolved_compile_kind(
520 resolved_artifact_compile_kind,
521 ),
522 state,
523 resolved_artifact_compile_kind.unwrap_or(CompileKind::Host),
524 artifact_pkg,
525 dep,
526 )?);
527 }
528 }
529
530 Ok(result)
531}
532
533/// Given a `parent` unit containing a dependency `dep` whose package is `artifact_pkg`,
534/// find all targets in `artifact_pkg` which refer to the `dep`s artifact declaration
535/// and turn them into units.
536/// Due to the nature of artifact dependencies, a single dependency in a manifest can
537/// cause one or more targets to be build, for instance with
538/// `artifact = ["bin:a", "bin:b", "staticlib"]`, which is very different from normal
539/// dependencies which cause only a single unit to be created.
540///
541/// `compile_kind` is the computed kind for the future artifact unit
542/// dependency, only the caller can pick the correct one.
543fn artifact_targets_to_unit_deps(
544 parent: &Unit,
545 parent_unit_for: UnitFor,
546 state: &State<'_, '_>,
547 compile_kind: CompileKind,
548 artifact_pkg: &Package,
549 dep: &Dependency,
550) -> CargoResult<Vec<UnitDep>> {
551 let ret =
552 match_artifacts_kind_with_targets(dep, artifact_pkg.targets(), parent.pkg.name().as_str())?
553 .into_iter()
554 .flat_map(|(artifact_kind, target)| {
555 // We split target libraries into individual units, even though rustc is able
556 // to produce multiple kinds in a single invocation for the sole reason that
557 // each artifact kind has its own output directory, something we can't easily
558 // teach rustc for now.
559 match target.kind() {
560 TargetKind::Lib(kinds) => Box::new(
561 kinds
562 .iter()
563 .filter(move |tk| match (tk, artifact_kind) {
564 (CrateType::Cdylib, ArtifactKind::Cdylib) => true,
565 (CrateType::Staticlib, ArtifactKind::Staticlib) => true,
566 _ => false,
567 })
568 .map(|target_kind| {
569 new_unit_dep(
570 state,
571 parent,
572 artifact_pkg,
573 target
574 .clone()
575 .set_kind(TargetKind::Lib(vec![target_kind.clone()])),
576 parent_unit_for,
577 compile_kind,
578 CompileMode::Build,
579 dep.artifact(),
580 )
581 }),
582 ) as Box<dyn Iterator<Item = _>>,
583 _ => Box::new(std::iter::once(new_unit_dep(
584 state,
585 parent,
586 artifact_pkg,
587 target,
588 parent_unit_for,
589 compile_kind,
590 CompileMode::Build,
591 dep.artifact(),
592 ))),
593 }
594 })
595 .collect::<Result<Vec<_>, _>>()?;
596 Ok(ret)
597}
598
599/// Returns the dependencies necessary to document a package.
600fn compute_deps_doc(
601 unit: &Unit,
602 state: &mut State<'_, '_>,
603 unit_for: UnitFor,
604) -> CargoResult<Vec<UnitDep>> {
605 // To document a library, we depend on dependencies actually being
606 // built. If we're documenting *all* libraries, then we also depend on
607 // the documentation of the library being built.
608 let mut ret = Vec::new();
609 for (id, deps) in state.deps(unit, unit_for) {
610 let Some(dep_lib) = calc_artifact_deps(unit, unit_for, id, &deps, state, &mut ret)? else {
611 continue;
612 };
613 let dep_pkg = state.get(id);
614 // Rustdoc only needs rmeta files for regular dependencies.
615 // However, for plugins/proc macros, deps should be built like normal.
616 let mode = check_or_build_mode(unit.mode, dep_lib);
617 let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());
618 let lib_unit_dep = new_unit_dep(
619 state,
620 unit,
621 dep_pkg,
622 dep_lib,
623 dep_unit_for,
624 unit.kind.for_target(dep_lib),
625 mode,
626 IS_NO_ARTIFACT_DEP,
627 )?;
628 ret.push(lib_unit_dep);
629 if dep_lib.documented() {
630 if let CompileMode::Doc { deps: true, .. } = unit.mode {
631 // Document this lib as well.
632 let doc_unit_dep = new_unit_dep(
633 state,
634 unit,
635 dep_pkg,
636 dep_lib,
637 dep_unit_for,
638 unit.kind.for_target(dep_lib),
639 unit.mode,
640 IS_NO_ARTIFACT_DEP,
641 )?;
642 ret.push(doc_unit_dep);
643 }
644 }
645 }
646
647 // Be sure to build/run the build script for documented libraries.
648 ret.extend(dep_build_script(unit, unit_for, state)?);
649
650 // If we document a binary/example, we need the library available.
651 if unit.target.is_bin() || unit.target.is_example() {
652 // build the lib
653 ret.extend(maybe_lib(unit, state, unit_for)?);
654 // and also the lib docs for intra-doc links
655 if let Some(lib) = unit
656 .pkg
657 .targets()
658 .iter()
659 .find(|t| t.is_linkable() && t.documented())
660 {
661 let dep_unit_for = unit_for.with_dependency(unit, lib, unit_for.root_compile_kind());
662 let lib_doc_unit = new_unit_dep(
663 state,
664 unit,
665 &unit.pkg,
666 lib,
667 dep_unit_for,
668 unit.kind.for_target(lib),
669 unit.mode,
670 IS_NO_ARTIFACT_DEP,
671 )?;
672 ret.push(lib_doc_unit);
673 }
674 }
675
676 // Add all units being scraped for examples as a dependency of top-level Doc units.
677 if state.ws.unit_needs_doc_scrape(unit) {
678 for scrape_unit in state.scrape_units.iter() {
679 let scrape_unit_for = UnitFor::new_normal(scrape_unit.kind);
680 deps_of(scrape_unit, state, scrape_unit_for)?;
681 ret.push(new_unit_dep(
682 state,
683 scrape_unit,
684 &scrape_unit.pkg,
685 &scrape_unit.target,
686 scrape_unit_for,
687 scrape_unit.kind,
688 scrape_unit.mode,
689 IS_NO_ARTIFACT_DEP,
690 )?);
691 }
692 }
693
694 Ok(ret)
695}
696
697fn maybe_lib(
698 unit: &Unit,
699 state: &mut State<'_, '_>,
700 unit_for: UnitFor,
701) -> CargoResult<Option<UnitDep>> {
702 unit.pkg
703 .targets()
704 .iter()
705 .find(|t| t.is_linkable())
706 .map(|t| {
707 let mode = check_or_build_mode(unit.mode, t);
708 let dep_unit_for = unit_for.with_dependency(unit, t, unit_for.root_compile_kind());
709 new_unit_dep(
710 state,
711 unit,
712 &unit.pkg,
713 t,
714 dep_unit_for,
715 unit.kind.for_target(t),
716 mode,
717 IS_NO_ARTIFACT_DEP,
718 )
719 })
720 .transpose()
721}
722
723/// If a build script is scheduled to be run for the package specified by
724/// `unit`, this function will return the unit to run that build script.
725///
726/// Overriding a build script simply means that the running of the build
727/// script itself doesn't have any dependencies, so even in that case a unit
728/// of work is still returned. `None` is only returned if the package has no
729/// build script.
730fn dep_build_script(
731 unit: &Unit,
732 unit_for: UnitFor,
733 state: &State<'_, '_>,
734) -> CargoResult<Option<UnitDep>> {
735 unit.pkg
736 .targets()
737 .iter()
738 .find(|t| t.is_custom_build())
739 .map(|t| {
740 // The profile stored in the Unit is the profile for the thing
741 // the custom build script is running for.
742 let profile = state.profiles.get_profile_run_custom_build(&unit.profile);
743 // UnitFor::for_custom_build is used because we want the `host` flag set
744 // for all of our build dependencies (so they all get
745 // build-override profiles), including compiling the build.rs
746 // script itself.
747 //
748 // If `is_for_host_features` here is `false`, that means we are a
749 // build.rs script for a normal dependency and we want to set the
750 // CARGO_FEATURE_* environment variables to the features as a
751 // normal dep.
752 //
753 // If `is_for_host_features` here is `true`, that means that this
754 // package is being used as a build dependency or proc-macro, and
755 // so we only want to set CARGO_FEATURE_* variables for the host
756 // side of the graph.
757 //
758 // Keep in mind that the RunCustomBuild unit and the Compile
759 // build.rs unit use the same features. This is because some
760 // people use `cfg!` and `#[cfg]` expressions to check for enabled
761 // features instead of just checking `CARGO_FEATURE_*` at runtime.
762 // In the case with the new feature resolver (decoupled host
763 // deps), and a shared dependency has different features enabled
764 // for normal vs. build, then the build.rs script will get
765 // compiled twice. I believe it is not feasible to only build it
766 // once because it would break a large number of scripts (they
767 // would think they have the wrong set of features enabled).
768 let script_unit_for = unit_for.for_custom_build();
769 new_unit_dep_with_profile(
770 state,
771 unit,
772 &unit.pkg,
773 t,
774 script_unit_for,
775 unit.kind,
776 CompileMode::RunCustomBuild,
777 profile,
778 IS_NO_ARTIFACT_DEP,
779 )
780 })
781 .transpose()
782}
783
784/// Choose the correct mode for dependencies.
785fn check_or_build_mode(mode: CompileMode, target: &Target) -> CompileMode {
786 match mode {
787 CompileMode::Check { .. } | CompileMode::Doc { .. } | CompileMode::Docscrape => {
788 if target.for_host() {
789 // Plugin and proc macro targets should be compiled like
790 // normal.
791 CompileMode::Build
792 } else {
793 // Regular dependencies should not be checked with --test.
794 // Regular dependencies of doc targets should emit rmeta only.
795 CompileMode::Check { test: false }
796 }
797 }
798 _ => CompileMode::Build,
799 }
800}
801
802/// Create a new Unit for a dependency from `parent` to `pkg` and `target`.
803fn new_unit_dep(
804 state: &State<'_, '_>,
805 parent: &Unit,
806 pkg: &Package,
807 target: &Target,
808 unit_for: UnitFor,
809 kind: CompileKind,
810 mode: CompileMode,
811 artifact: Option<&Artifact>,
812) -> CargoResult<UnitDep> {
813 let is_local = pkg.package_id().source_id().is_path() && !state.is_std;
814 let profile = state.profiles.get_profile(
815 pkg.package_id(),
816 state.ws.is_member(pkg),
817 is_local,
818 unit_for,
819 kind,
820 );
821 new_unit_dep_with_profile(
822 state, parent, pkg, target, unit_for, kind, mode, profile, artifact,
823 )
824}
825
826fn new_unit_dep_with_profile(
827 state: &State<'_, '_>,
828 parent: &Unit,
829 pkg: &Package,
830 target: &Target,
831 unit_for: UnitFor,
832 kind: CompileKind,
833 mode: CompileMode,
834 profile: Profile,
835 artifact: Option<&Artifact>,
836) -> CargoResult<UnitDep> {
837 let (extern_crate_name, dep_name) = state.resolve().extern_crate_name_and_dep_name(
838 parent.pkg.package_id(),
839 pkg.package_id(),
840 target,
841 )?;
842 let public = state
843 .resolve()
844 .is_public_dep(parent.pkg.package_id(), pkg.package_id());
845 let features_for = unit_for.map_to_features_for(artifact);
846 let artifact_target = match features_for {
847 FeaturesFor::ArtifactDep(target) => Some(target),
848 _ => None,
849 };
850 let features = state.activated_features(pkg.package_id(), features_for);
851 let unit = state.interner.intern(
852 pkg,
853 target,
854 profile,
855 kind,
856 mode,
857 features,
858 state.target_data.info(kind).rustflags.clone(),
859 state.target_data.info(kind).rustdocflags.clone(),
860 state
861 .target_data
862 .target_config(kind)
863 .links_overrides
864 .clone(),
865 state.is_std,
866 /*dep_hash*/ 0,
867 artifact.map_or(IsArtifact::No, |_| IsArtifact::Yes),
868 artifact_target,
869 );
870 Ok(UnitDep {
871 unit,
872 unit_for,
873 extern_crate_name,
874 dep_name,
875 public,
876 noprelude: false,
877 })
878}
879
880/// Fill in missing dependencies for units of the `RunCustomBuild`
881///
882/// As mentioned above in `compute_deps_custom_build` each build script
883/// execution has two dependencies. The first is compiling the build script
884/// itself (already added) and the second is that all crates the package of the
885/// build script depends on with `links` keys, their build script execution. (a
886/// bit confusing eh?)
887///
888/// Here we take the entire `deps` map and add more dependencies from execution
889/// of one build script to execution of another build script.
890fn connect_run_custom_build_deps(state: &mut State<'_, '_>) {
891 let mut new_deps = Vec::new();
892
893 {
894 let state = &*state;
895 // First up build a reverse dependency map. This is a mapping of all
896 // `RunCustomBuild` known steps to the unit which depends on them. For
897 // example a library might depend on a build script, so this map will
898 // have the build script as the key and the library would be in the
899 // value's set.
900 let mut reverse_deps_map = HashMap::new();
901 for (unit, deps) in state.unit_dependencies.iter() {
902 for dep in deps {
903 if dep.unit.mode == CompileMode::RunCustomBuild {
904 reverse_deps_map
905 .entry(dep.unit.clone())
906 .or_insert_with(HashSet::new)
907 .insert(unit);
908 }
909 }
910 }
911
912 // Next, we take a look at all build scripts executions listed in the
913 // dependency map. Our job here is to take everything that depends on
914 // this build script (from our reverse map above) and look at the other
915 // package dependencies of these parents.
916 //
917 // If we depend on a linkable target and the build script mentions
918 // `links`, then we depend on that package's build script! Here we use
919 // `dep_build_script` to manufacture an appropriate build script unit to
920 // depend on.
921 for unit in state
922 .unit_dependencies
923 .keys()
924 .filter(|k| k.mode == CompileMode::RunCustomBuild)
925 {
926 // This list of dependencies all depend on `unit`, an execution of
927 // the build script.
928 let Some(reverse_deps) = reverse_deps_map.get(unit) else {
929 continue;
930 };
931
932 let to_add = reverse_deps
933 .iter()
934 // Get all sibling dependencies of `unit`
935 .flat_map(|reverse_dep| {
936 state.unit_dependencies[reverse_dep]
937 .iter()
938 .map(move |a| (reverse_dep, a))
939 })
940 // Only deps with `links`.
941 .filter(|(_parent, other)| {
942 other.unit.pkg != unit.pkg
943 && other.unit.target.is_linkable()
944 && other.unit.pkg.manifest().links().is_some()
945 })
946 // Avoid cycles when using the doc --scrape-examples feature:
947 // Say a workspace has crates A and B where A has a build-dependency on B.
948 // The Doc units for A and B will have a dependency on the Docscrape for both A and B.
949 // So this would add a dependency from B-build to A-build, causing a cycle:
950 // B (build) -> A (build) -> B(build)
951 // See the test scrape_examples_avoid_build_script_cycle for a concrete example.
952 // To avoid this cycle, we filter out the B -> A (docscrape) dependency.
953 .filter(|(_parent, other)| !other.unit.mode.is_doc_scrape())
954 // Skip dependencies induced via dev-dependencies since
955 // connections between `links` and build scripts only happens
956 // via normal dependencies. Otherwise since dev-dependencies can
957 // be cyclic we could have cyclic build-script executions.
958 .filter_map(move |(parent, other)| {
959 if state
960 .dev_dependency_edges
961 .contains(&((*parent).clone(), other.unit.clone()))
962 {
963 None
964 } else {
965 Some(other)
966 }
967 })
968 // Get the RunCustomBuild for other lib.
969 .filter_map(|other| {
970 state.unit_dependencies[&other.unit]
971 .iter()
972 .find(|other_dep| other_dep.unit.mode == CompileMode::RunCustomBuild)
973 .cloned()
974 })
975 .collect::<HashSet<_>>();
976
977 if !to_add.is_empty() {
978 // (RunCustomBuild, set(other RunCustomBuild))
979 new_deps.push((unit.clone(), to_add));
980 }
981 }
982 }
983
984 // And finally, add in all the missing dependencies!
985 for (unit, new_deps) in new_deps {
986 state
987 .unit_dependencies
988 .get_mut(&unit)
989 .unwrap()
990 .extend(new_deps);
991 }
992}
993
994impl<'a, 'gctx> State<'a, 'gctx> {
995 /// Gets `std_resolve` during building std, otherwise `usr_resolve`.
996 fn resolve(&self) -> &'a Resolve {
997 if self.is_std {
998 self.std_resolve.unwrap()
999 } else {
1000 self.usr_resolve
1001 }
1002 }
1003
1004 /// Gets `std_features` during building std, otherwise `usr_features`.
1005 fn features(&self) -> &'a ResolvedFeatures {
1006 if self.is_std {
1007 self.std_features.unwrap()
1008 } else {
1009 self.usr_features
1010 }
1011 }
1012
1013 fn activated_features(
1014 &self,
1015 pkg_id: PackageId,
1016 features_for: FeaturesFor,
1017 ) -> Vec<InternedString> {
1018 let features = self.features();
1019 features.activated_features(pkg_id, features_for)
1020 }
1021
1022 fn is_dep_activated(
1023 &self,
1024 pkg_id: PackageId,
1025 features_for: FeaturesFor,
1026 dep_name: InternedString,
1027 ) -> bool {
1028 self.features()
1029 .is_dep_activated(pkg_id, features_for, dep_name)
1030 }
1031
1032 fn get(&self, id: PackageId) -> &'a Package {
1033 self.package_set
1034 .get_one(id)
1035 .unwrap_or_else(|_| panic!("expected {} to be downloaded", id))
1036 }
1037
1038 /// Returns a filtered set of dependencies for the given unit.
1039 fn deps(&self, unit: &Unit, unit_for: UnitFor) -> Vec<(PackageId, Vec<&Dependency>)> {
1040 let pkg_id = unit.pkg.package_id();
1041 let kind = unit.kind;
1042 self.resolve()
1043 .deps(pkg_id)
1044 .filter_map(|(id, deps)| {
1045 assert!(!deps.is_empty());
1046 let deps: Vec<_> = deps
1047 .iter()
1048 .filter(|dep| {
1049 // If this target is a build command, then we only want build
1050 // dependencies, otherwise we want everything *other than* build
1051 // dependencies.
1052 if unit.target.is_custom_build() != dep.is_build() {
1053 return false;
1054 }
1055
1056 // If this dependency is **not** a transitive dependency, then it
1057 // only applies to test/example targets.
1058 if !dep.is_transitive()
1059 && !unit.target.is_test()
1060 && !unit.target.is_example()
1061 && !unit.mode.is_any_test()
1062 {
1063 return false;
1064 }
1065
1066 // If this dependency is only available for certain platforms,
1067 // make sure we're only enabling it for that platform.
1068 if !self.target_data.dep_platform_activated(dep, kind) {
1069 return false;
1070 }
1071
1072 // If this is an optional dependency, and the new feature resolver
1073 // did not enable it, don't include it.
1074 if dep.is_optional() {
1075 // This `unit_for` is from parent dep and *SHOULD* contains its own
1076 // artifact dep information inside `artifact_target_for_features`.
1077 // So, no need to map any artifact info from an incorrect `dep.artifact()`.
1078 let features_for = unit_for.map_to_features_for(IS_NO_ARTIFACT_DEP);
1079 if !self.is_dep_activated(pkg_id, features_for, dep.name_in_toml()) {
1080 return false;
1081 }
1082 }
1083
1084 // If we've gotten past all that, then this dependency is
1085 // actually used!
1086 true
1087 })
1088 .collect();
1089 if deps.is_empty() {
1090 None
1091 } else {
1092 Some((id, deps))
1093 }
1094 })
1095 .collect()
1096 }
1097}