rustc_parse/parser/
path.rs

1use std::mem;
2
3use ast::token::IdentIsRaw;
4use rustc_ast::ptr::P;
5use rustc_ast::token::{self, Delimiter, Token, TokenKind};
6use rustc_ast::{
7    self as ast, AngleBracketedArg, AngleBracketedArgs, AnonConst, AssocItemConstraint,
8    AssocItemConstraintKind, BlockCheckMode, GenericArg, GenericArgs, Generics, ParenthesizedArgs,
9    Path, PathSegment, QSelf,
10};
11use rustc_errors::{Applicability, Diag, PResult};
12use rustc_span::{BytePos, Ident, Span, kw, sym};
13use thin_vec::ThinVec;
14use tracing::debug;
15
16use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
17use super::{Parser, Restrictions, TokenType};
18use crate::errors::{PathSingleColon, PathTripleColon};
19use crate::parser::{CommaRecoveryMode, RecoverColon, RecoverComma};
20use crate::{errors, exp, maybe_whole};
21
22/// Specifies how to parse a path.
23#[derive(Copy, Clone, PartialEq)]
24pub(super) enum PathStyle {
25    /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
26    /// with something else. For example, in expressions `segment < ....` can be interpreted
27    /// as a comparison and `segment ( ....` can be interpreted as a function call.
28    /// In all such contexts the non-path interpretation is preferred by default for practical
29    /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
30    /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
31    ///
32    /// Also, a path may never be followed by a `:`. This means that we can eagerly recover if
33    /// we encounter it.
34    Expr,
35    /// The same as `Expr`, but may be followed by a `:`.
36    /// For example, this code:
37    /// ```rust
38    /// struct S;
39    ///
40    /// let S: S;
41    /// //  ^ Followed by a `:`
42    /// ```
43    Pat,
44    /// In other contexts, notably in types, no ambiguity exists and paths can be written
45    /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
46    /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
47    Type,
48    /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
49    /// visibilities or attributes.
50    /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
51    /// (paths in "mod" contexts have to be checked later for absence of generic arguments
52    /// anyway, due to macros), but it is used to avoid weird suggestions about expected
53    /// tokens when something goes wrong.
54    Mod,
55}
56
57impl PathStyle {
58    fn has_generic_ambiguity(&self) -> bool {
59        matches!(self, Self::Expr | Self::Pat)
60    }
61}
62
63impl<'a> Parser<'a> {
64    /// Parses a qualified path.
65    /// Assumes that the leading `<` has been parsed already.
66    ///
67    /// `qualified_path = <type [as trait_ref]>::path`
68    ///
69    /// # Examples
70    /// `<T>::default`
71    /// `<T as U>::a`
72    /// `<T as U>::F::a<S>` (without disambiguator)
73    /// `<T as U>::F::a::<S>` (with disambiguator)
74    pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (P<QSelf>, Path)> {
75        let lo = self.prev_token.span;
76        let ty = self.parse_ty()?;
77
78        // `path` will contain the prefix of the path up to the `>`,
79        // if any (e.g., `U` in the `<T as U>::*` examples
80        // above). `path_span` has the span of that path, or an empty
81        // span in the case of something like `<T>::Bar`.
82        let (mut path, path_span);
83        if self.eat_keyword(exp!(As)) {
84            let path_lo = self.token.span;
85            path = self.parse_path(PathStyle::Type)?;
86            path_span = path_lo.to(self.prev_token.span);
87        } else {
88            path_span = self.token.span.to(self.token.span);
89            path = ast::Path { segments: ThinVec::new(), span: path_span, tokens: None };
90        }
91
92        // See doc comment for `unmatched_angle_bracket_count`.
93        self.expect(exp!(Gt))?;
94        if self.unmatched_angle_bracket_count > 0 {
95            self.unmatched_angle_bracket_count -= 1;
96            debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
97        }
98
99        let is_import_coupler = self.is_import_coupler();
100        if !is_import_coupler && !self.recover_colon_before_qpath_proj() {
101            self.expect(exp!(PathSep))?;
102        }
103
104        let qself = P(QSelf { ty, path_span, position: path.segments.len() });
105        if !is_import_coupler {
106            self.parse_path_segments(&mut path.segments, style, None)?;
107        }
108
109        Ok((
110            qself,
111            Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
112        ))
113    }
114
115    /// Recover from an invalid single colon, when the user likely meant a qualified path.
116    /// We avoid emitting this if not followed by an identifier, as our assumption that the user
117    /// intended this to be a qualified path may not be correct.
118    ///
119    /// ```ignore (diagnostics)
120    /// <Bar as Baz<T>>:Qux
121    ///                ^ help: use double colon
122    /// ```
123    fn recover_colon_before_qpath_proj(&mut self) -> bool {
124        if !self.check_noexpect(&TokenKind::Colon)
125            || self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident())
126        {
127            return false;
128        }
129
130        self.bump(); // colon
131
132        self.dcx()
133            .struct_span_err(
134                self.prev_token.span,
135                "found single colon before projection in qualified path",
136            )
137            .with_span_suggestion(
138                self.prev_token.span,
139                "use double colon",
140                "::",
141                Applicability::MachineApplicable,
142            )
143            .emit();
144
145        true
146    }
147
148    pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
149        self.parse_path_inner(style, None)
150    }
151
152    /// Parses simple paths.
153    ///
154    /// `path = [::] segment+`
155    /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
156    ///
157    /// # Examples
158    /// `a::b::C<D>` (without disambiguator)
159    /// `a::b::C::<D>` (with disambiguator)
160    /// `Fn(Args)` (without disambiguator)
161    /// `Fn::(Args)` (with disambiguator)
162    pub(super) fn parse_path_inner(
163        &mut self,
164        style: PathStyle,
165        ty_generics: Option<&Generics>,
166    ) -> PResult<'a, Path> {
167        let reject_generics_if_mod_style = |parser: &Parser<'_>, path: Path| {
168            // Ensure generic arguments don't end up in attribute paths, such as:
169            //
170            //     macro_rules! m {
171            //         ($p:path) => { #[$p] struct S; }
172            //     }
173            //
174            //     m!(inline<u8>); //~ ERROR: unexpected generic arguments in path
175            //
176            if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
177            {
178                let span = path
179                    .segments
180                    .iter()
181                    .filter_map(|segment| segment.args.as_ref())
182                    .map(|arg| arg.span())
183                    .collect::<Vec<_>>();
184                parser.dcx().emit_err(errors::GenericsInPath { span });
185                // Ignore these arguments to prevent unexpected behaviors.
186                let segments = path
187                    .segments
188                    .iter()
189                    .map(|segment| PathSegment { ident: segment.ident, id: segment.id, args: None })
190                    .collect();
191                Path { segments, ..path }
192            } else {
193                path
194            }
195        };
196
197        maybe_whole!(self, NtPath, |path| reject_generics_if_mod_style(self, path.into_inner()));
198
199        if let token::Interpolated(nt) = &self.token.kind {
200            if let token::NtTy(ty) = &**nt {
201                if let ast::TyKind::Path(None, path) = &ty.kind {
202                    let path = path.clone();
203                    self.bump();
204                    return Ok(reject_generics_if_mod_style(self, path));
205                }
206            }
207        }
208
209        let lo = self.token.span;
210        let mut segments = ThinVec::new();
211        let mod_sep_ctxt = self.token.span.ctxt();
212        if self.eat_path_sep() {
213            segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
214        }
215        self.parse_path_segments(&mut segments, style, ty_generics)?;
216        Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
217    }
218
219    pub(super) fn parse_path_segments(
220        &mut self,
221        segments: &mut ThinVec<PathSegment>,
222        style: PathStyle,
223        ty_generics: Option<&Generics>,
224    ) -> PResult<'a, ()> {
225        loop {
226            let segment = self.parse_path_segment(style, ty_generics)?;
227            if style.has_generic_ambiguity() {
228                // In order to check for trailing angle brackets, we must have finished
229                // recursing (`parse_path_segment` can indirectly call this function),
230                // that is, the next token must be the highlighted part of the below example:
231                //
232                // `Foo::<Bar as Baz<T>>::Qux`
233                //                      ^ here
234                //
235                // As opposed to the below highlight (if we had only finished the first
236                // recursion):
237                //
238                // `Foo::<Bar as Baz<T>>::Qux`
239                //                     ^ here
240                //
241                // `PathStyle::Expr` is only provided at the root invocation and never in
242                // `parse_path_segment` to recurse and therefore can be checked to maintain
243                // this invariant.
244                self.check_trailing_angle_brackets(&segment, &[exp!(PathSep)]);
245            }
246            segments.push(segment);
247
248            if self.is_import_coupler() || !self.eat_path_sep() {
249                if style == PathStyle::Expr
250                    && self.may_recover()
251                    && self.token == token::Colon
252                    && self.look_ahead(1, |token| token.is_ident() && !token.is_reserved_ident())
253                {
254                    // Emit a special error message for `a::b:c` to help users
255                    // otherwise, `a: c` might have meant to introduce a new binding
256                    if self.token.span.lo() == self.prev_token.span.hi()
257                        && self.look_ahead(1, |token| self.token.span.hi() == token.span.lo())
258                    {
259                        self.bump(); // bump past the colon
260                        self.dcx().emit_err(PathSingleColon {
261                            span: self.prev_token.span,
262                            suggestion: self.prev_token.span.shrink_to_hi(),
263                            type_ascription: self.psess.unstable_features.is_nightly_build(),
264                        });
265                    }
266                    continue;
267                }
268
269                return Ok(());
270            }
271        }
272    }
273
274    /// Eat `::` or, potentially, `:::`.
275    #[must_use]
276    pub(super) fn eat_path_sep(&mut self) -> bool {
277        let result = self.eat(exp!(PathSep));
278        if result && self.may_recover() {
279            if self.eat_noexpect(&token::Colon) {
280                self.dcx().emit_err(PathTripleColon { span: self.prev_token.span });
281            }
282        }
283        result
284    }
285
286    pub(super) fn parse_path_segment(
287        &mut self,
288        style: PathStyle,
289        ty_generics: Option<&Generics>,
290    ) -> PResult<'a, PathSegment> {
291        let ident = self.parse_path_segment_ident()?;
292        let is_args_start = |token: &Token| {
293            matches!(
294                token.kind,
295                token::Lt
296                    | token::BinOp(token::Shl)
297                    | token::OpenDelim(Delimiter::Parenthesis)
298                    | token::LArrow
299            )
300        };
301        let check_args_start = |this: &mut Self| {
302            this.expected_token_types.insert(TokenType::Lt);
303            this.expected_token_types.insert(TokenType::OpenParen);
304            is_args_start(&this.token)
305        };
306
307        Ok(
308            if style == PathStyle::Type && check_args_start(self)
309                || style != PathStyle::Mod && self.check_path_sep_and_look_ahead(is_args_start)
310            {
311                // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
312                // it isn't, then we reset the unmatched angle bracket count as we're about to start
313                // parsing a new path.
314                if style == PathStyle::Expr {
315                    self.unmatched_angle_bracket_count = 0;
316                }
317
318                // Generic arguments are found - `<`, `(`, `::<` or `::(`.
319                // First, eat `::` if it exists.
320                let _ = self.eat_path_sep();
321
322                let lo = self.token.span;
323                let args = if self.eat_lt() {
324                    // `<'a, T, A = U>`
325                    let args = self.parse_angle_args_with_leading_angle_bracket_recovery(
326                        style,
327                        lo,
328                        ty_generics,
329                    )?;
330                    self.expect_gt().map_err(|mut err| {
331                        // Try to recover a `:` into a `::`
332                        if self.token == token::Colon
333                            && self.look_ahead(1, |token| {
334                                token.is_ident() && !token.is_reserved_ident()
335                            })
336                        {
337                            err.cancel();
338                            err = self.dcx().create_err(PathSingleColon {
339                                span: self.token.span,
340                                suggestion: self.prev_token.span.shrink_to_hi(),
341                                type_ascription: self.psess.unstable_features.is_nightly_build(),
342                            });
343                        }
344                        // Attempt to find places where a missing `>` might belong.
345                        else if let Some(arg) = args
346                            .iter()
347                            .rev()
348                            .find(|arg| !matches!(arg, AngleBracketedArg::Constraint(_)))
349                        {
350                            err.span_suggestion_verbose(
351                                arg.span().shrink_to_hi(),
352                                "you might have meant to end the type parameters here",
353                                ">",
354                                Applicability::MaybeIncorrect,
355                            );
356                        }
357                        err
358                    })?;
359                    let span = lo.to(self.prev_token.span);
360                    AngleBracketedArgs { args, span }.into()
361                } else if self.token == token::OpenDelim(Delimiter::Parenthesis)
362                    // FIXME(return_type_notation): Could also recover `...` here.
363                    && self.look_ahead(1, |t| *t == token::DotDot)
364                {
365                    self.bump(); // (
366                    self.bump(); // ..
367                    self.expect(exp!(CloseParen))?;
368                    let span = lo.to(self.prev_token.span);
369
370                    self.psess.gated_spans.gate(sym::return_type_notation, span);
371
372                    if self.eat_noexpect(&token::RArrow) {
373                        let lo = self.prev_token.span;
374                        let ty = self.parse_ty()?;
375                        self.dcx()
376                            .emit_err(errors::BadReturnTypeNotationOutput { span: lo.to(ty.span) });
377                    }
378
379                    P(ast::GenericArgs::ParenthesizedElided(span))
380                } else {
381                    // `(T, U) -> R`
382
383                    let prev_token_before_parsing = self.prev_token.clone();
384                    let token_before_parsing = self.token.clone();
385                    let mut snapshot = None;
386                    if self.may_recover()
387                        && prev_token_before_parsing == token::PathSep
388                        && (style == PathStyle::Expr && self.token.can_begin_expr()
389                            || style == PathStyle::Pat
390                                && self.token.can_begin_pattern(token::NtPatKind::PatParam {
391                                    inferred: false,
392                                }))
393                    {
394                        snapshot = Some(self.create_snapshot_for_diagnostic());
395                    }
396
397                    let (inputs, _) = match self.parse_paren_comma_seq(|p| p.parse_ty()) {
398                        Ok(output) => output,
399                        Err(mut error) if prev_token_before_parsing == token::PathSep => {
400                            error.span_label(
401                                prev_token_before_parsing.span.to(token_before_parsing.span),
402                                "while parsing this parenthesized list of type arguments starting here",
403                            );
404
405                            if let Some(mut snapshot) = snapshot {
406                                snapshot.recover_fn_call_leading_path_sep(
407                                    style,
408                                    prev_token_before_parsing,
409                                    &mut error,
410                                )
411                            }
412
413                            return Err(error);
414                        }
415                        Err(error) => return Err(error),
416                    };
417                    let inputs_span = lo.to(self.prev_token.span);
418                    let output =
419                        self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
420                    let span = ident.span.to(self.prev_token.span);
421                    ParenthesizedArgs { span, inputs, inputs_span, output }.into()
422                };
423
424                PathSegment { ident, args: Some(args), id: ast::DUMMY_NODE_ID }
425            } else {
426                // Generic arguments are not found.
427                PathSegment::from_ident(ident)
428            },
429        )
430    }
431
432    pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
433        match self.token.ident() {
434            Some((ident, IdentIsRaw::No)) if ident.is_path_segment_keyword() => {
435                self.bump();
436                Ok(ident)
437            }
438            _ => self.parse_ident(),
439        }
440    }
441
442    /// Recover `$path::(...)` as `$path(...)`.
443    ///
444    /// ```ignore (diagnostics)
445    /// foo::(420, "bar")
446    ///    ^^ remove extra separator to make the function call
447    /// // or
448    /// match x {
449    ///    Foo::(420, "bar") => { ... },
450    ///       ^^ remove extra separator to turn this into tuple struct pattern
451    ///    _ => { ... },
452    /// }
453    /// ```
454    fn recover_fn_call_leading_path_sep(
455        &mut self,
456        style: PathStyle,
457        prev_token_before_parsing: Token,
458        error: &mut Diag<'_>,
459    ) {
460        match style {
461            PathStyle::Expr
462                if let Ok(_) = self
463                    .parse_paren_comma_seq(|p| p.parse_expr())
464                    .map_err(|error| error.cancel()) => {}
465            PathStyle::Pat
466                if let Ok(_) = self
467                    .parse_paren_comma_seq(|p| {
468                        p.parse_pat_allow_top_guard(
469                            None,
470                            RecoverComma::No,
471                            RecoverColon::No,
472                            CommaRecoveryMode::LikelyTuple,
473                        )
474                    })
475                    .map_err(|error| error.cancel()) => {}
476            _ => {
477                return;
478            }
479        }
480
481        if let token::PathSep | token::RArrow = self.token.kind {
482            return;
483        }
484
485        error.span_suggestion_verbose(
486            prev_token_before_parsing.span,
487            format!(
488                "consider removing the `::` here to {}",
489                match style {
490                    PathStyle::Expr => "call the expression",
491                    PathStyle::Pat => "turn this into a tuple struct pattern",
492                    _ => {
493                        return;
494                    }
495                }
496            ),
497            "",
498            Applicability::MaybeIncorrect,
499        );
500    }
501
502    /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
503    /// For the purposes of understanding the parsing logic of generic arguments, this function
504    /// can be thought of being the same as just calling `self.parse_angle_args()` if the source
505    /// had the correct amount of leading angle brackets.
506    ///
507    /// ```ignore (diagnostics)
508    /// bar::<<<<T as Foo>::Output>();
509    ///      ^^ help: remove extra angle brackets
510    /// ```
511    fn parse_angle_args_with_leading_angle_bracket_recovery(
512        &mut self,
513        style: PathStyle,
514        lo: Span,
515        ty_generics: Option<&Generics>,
516    ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
517        // We need to detect whether there are extra leading left angle brackets and produce an
518        // appropriate error and suggestion. This cannot be implemented by looking ahead at
519        // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
520        // then there won't be matching `>` tokens to find.
521        //
522        // To explain how this detection works, consider the following example:
523        //
524        // ```ignore (diagnostics)
525        // bar::<<<<T as Foo>::Output>();
526        //      ^^ help: remove extra angle brackets
527        // ```
528        //
529        // Parsing of the left angle brackets starts in this function. We start by parsing the
530        // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
531        // `eat_lt`):
532        //
533        // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
534        // *Unmatched count:* 1
535        // *`parse_path_segment` calls deep:* 0
536        //
537        // This has the effect of recursing as this function is called if a `<` character
538        // is found within the expected generic arguments:
539        //
540        // *Upcoming tokens:* `<<<T as Foo>::Output>;`
541        // *Unmatched count:* 2
542        // *`parse_path_segment` calls deep:* 1
543        //
544        // Eventually we will have recursed until having consumed all of the `<` tokens and
545        // this will be reflected in the count:
546        //
547        // *Upcoming tokens:* `T as Foo>::Output>;`
548        // *Unmatched count:* 4
549        // `parse_path_segment` calls deep:* 3
550        //
551        // The parser will continue until reaching the first `>` - this will decrement the
552        // unmatched angle bracket count and return to the parent invocation of this function
553        // having succeeded in parsing:
554        //
555        // *Upcoming tokens:* `::Output>;`
556        // *Unmatched count:* 3
557        // *`parse_path_segment` calls deep:* 2
558        //
559        // This will continue until the next `>` character which will also return successfully
560        // to the parent invocation of this function and decrement the count:
561        //
562        // *Upcoming tokens:* `;`
563        // *Unmatched count:* 2
564        // *`parse_path_segment` calls deep:* 1
565        //
566        // At this point, this function will expect to find another matching `>` character but
567        // won't be able to and will return an error. This will continue all the way up the
568        // call stack until the first invocation:
569        //
570        // *Upcoming tokens:* `;`
571        // *Unmatched count:* 2
572        // *`parse_path_segment` calls deep:* 0
573        //
574        // In doing this, we have managed to work out how many unmatched leading left angle
575        // brackets there are, but we cannot recover as the unmatched angle brackets have
576        // already been consumed. To remedy this, we keep a snapshot of the parser state
577        // before we do the above. We can then inspect whether we ended up with a parsing error
578        // and unmatched left angle brackets and if so, restore the parser state before we
579        // consumed any `<` characters to emit an error and consume the erroneous tokens to
580        // recover by attempting to parse again.
581        //
582        // In practice, the recursion of this function is indirect and there will be other
583        // locations that consume some `<` characters - as long as we update the count when
584        // this happens, it isn't an issue.
585
586        let is_first_invocation = style == PathStyle::Expr;
587        // Take a snapshot before attempting to parse - we can restore this later.
588        let snapshot = is_first_invocation.then(|| self.clone());
589
590        self.angle_bracket_nesting += 1;
591        debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
592        match self.parse_angle_args(ty_generics) {
593            Ok(args) => {
594                self.angle_bracket_nesting -= 1;
595                Ok(args)
596            }
597            Err(e) if self.angle_bracket_nesting > 10 => {
598                self.angle_bracket_nesting -= 1;
599                // When encountering severely malformed code where there are several levels of
600                // nested unclosed angle args (`f::<f::<f::<f::<...`), we avoid severe O(n^2)
601                // behavior by bailing out earlier (#117080).
602                e.emit().raise_fatal();
603            }
604            Err(e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
605                self.angle_bracket_nesting -= 1;
606
607                // Swap `self` with our backup of the parser state before attempting to parse
608                // generic arguments.
609                let snapshot = mem::replace(self, snapshot.unwrap());
610
611                // Eat the unmatched angle brackets.
612                let all_angle_brackets = (0..snapshot.unmatched_angle_bracket_count)
613                    .fold(true, |a, _| a && self.eat_lt());
614
615                if !all_angle_brackets {
616                    // If there are other tokens in between the extraneous `<`s, we cannot simply
617                    // suggest to remove them. This check also prevents us from accidentally ending
618                    // up in the middle of a multibyte character (issue #84104).
619                    let _ = mem::replace(self, snapshot);
620                    Err(e)
621                } else {
622                    // Cancel error from being unable to find `>`. We know the error
623                    // must have been this due to a non-zero unmatched angle bracket
624                    // count.
625                    e.cancel();
626
627                    debug!(
628                        "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
629                         snapshot.count={:?}",
630                        snapshot.unmatched_angle_bracket_count,
631                    );
632
633                    // Make a span over ${unmatched angle bracket count} characters.
634                    // This is safe because `all_angle_brackets` ensures that there are only `<`s,
635                    // i.e. no multibyte characters, in this range.
636                    let span = lo
637                        .with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count.into()));
638                    self.dcx().emit_err(errors::UnmatchedAngle {
639                        span,
640                        plural: snapshot.unmatched_angle_bracket_count > 1,
641                    });
642
643                    // Try again without unmatched angle bracket characters.
644                    self.parse_angle_args(ty_generics)
645                }
646            }
647            Err(e) => {
648                self.angle_bracket_nesting -= 1;
649                Err(e)
650            }
651        }
652    }
653
654    /// Parses (possibly empty) list of generic arguments / associated item constraints,
655    /// possibly including trailing comma.
656    pub(super) fn parse_angle_args(
657        &mut self,
658        ty_generics: Option<&Generics>,
659    ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
660        let mut args = ThinVec::new();
661        while let Some(arg) = self.parse_angle_arg(ty_generics)? {
662            args.push(arg);
663            if !self.eat(exp!(Comma)) {
664                if self.check_noexpect(&TokenKind::Semi)
665                    && self.look_ahead(1, |t| t.is_ident() || t.is_lifetime())
666                {
667                    // Add `>` to the list of expected tokens.
668                    self.check(exp!(Gt));
669                    // Handle `,` to `;` substitution
670                    let mut err = self.unexpected().unwrap_err();
671                    self.bump();
672                    err.span_suggestion_verbose(
673                        self.prev_token.span.until(self.token.span),
674                        "use a comma to separate type parameters",
675                        ", ",
676                        Applicability::MachineApplicable,
677                    );
678                    err.emit();
679                    continue;
680                }
681                if !self.token.kind.should_end_const_arg()
682                    && self.handle_ambiguous_unbraced_const_arg(&mut args)?
683                {
684                    // We've managed to (partially) recover, so continue trying to parse
685                    // arguments.
686                    continue;
687                }
688                break;
689            }
690        }
691        Ok(args)
692    }
693
694    /// Parses a single argument in the angle arguments `<...>` of a path segment.
695    fn parse_angle_arg(
696        &mut self,
697        ty_generics: Option<&Generics>,
698    ) -> PResult<'a, Option<AngleBracketedArg>> {
699        let lo = self.token.span;
700        let arg = self.parse_generic_arg(ty_generics)?;
701        match arg {
702            Some(arg) => {
703                // we are using noexpect here because we first want to find out if either `=` or `:`
704                // is present and then use that info to push the other token onto the tokens list
705                let separated =
706                    self.check_noexpect(&token::Colon) || self.check_noexpect(&token::Eq);
707                if separated && (self.check(exp!(Colon)) | self.check(exp!(Eq))) {
708                    let arg_span = arg.span();
709                    let (binder, ident, gen_args) = match self.get_ident_from_generic_arg(&arg) {
710                        Ok(ident_gen_args) => ident_gen_args,
711                        Err(()) => return Ok(Some(AngleBracketedArg::Arg(arg))),
712                    };
713                    if binder {
714                        // FIXME(compiler-errors): this could be improved by suggesting lifting
715                        // this up to the trait, at least before this becomes real syntax.
716                        // e.g. `Trait<for<'a> Assoc = Ty>` -> `for<'a> Trait<Assoc = Ty>`
717                        return Err(self.dcx().struct_span_err(
718                            arg_span,
719                            "`for<...>` is not allowed on associated type bounds",
720                        ));
721                    }
722                    let kind = if self.eat(exp!(Colon)) {
723                        AssocItemConstraintKind::Bound { bounds: self.parse_generic_bounds()? }
724                    } else if self.eat(exp!(Eq)) {
725                        self.parse_assoc_equality_term(
726                            ident,
727                            gen_args.as_ref(),
728                            self.prev_token.span,
729                        )?
730                    } else {
731                        unreachable!();
732                    };
733
734                    let span = lo.to(self.prev_token.span);
735
736                    let constraint =
737                        AssocItemConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
738                    Ok(Some(AngleBracketedArg::Constraint(constraint)))
739                } else {
740                    // we only want to suggest `:` and `=` in contexts where the previous token
741                    // is an ident and the current token or the next token is an ident
742                    if self.prev_token.is_ident()
743                        && (self.token.is_ident() || self.look_ahead(1, |token| token.is_ident()))
744                    {
745                        self.check(exp!(Colon));
746                        self.check(exp!(Eq));
747                    }
748                    Ok(Some(AngleBracketedArg::Arg(arg)))
749                }
750            }
751            _ => Ok(None),
752        }
753    }
754
755    /// Parse the term to the right of an associated item equality constraint.
756    ///
757    /// That is, parse `$term` in `Item = $term` where `$term` is a type or
758    /// a const expression (wrapped in curly braces if complex).
759    fn parse_assoc_equality_term(
760        &mut self,
761        ident: Ident,
762        gen_args: Option<&GenericArgs>,
763        eq: Span,
764    ) -> PResult<'a, AssocItemConstraintKind> {
765        let arg = self.parse_generic_arg(None)?;
766        let span = ident.span.to(self.prev_token.span);
767        let term = match arg {
768            Some(GenericArg::Type(ty)) => ty.into(),
769            Some(GenericArg::Const(c)) => {
770                self.psess.gated_spans.gate(sym::associated_const_equality, span);
771                c.into()
772            }
773            Some(GenericArg::Lifetime(lt)) => {
774                let guar = self.dcx().emit_err(errors::LifetimeInEqConstraint {
775                    span: lt.ident.span,
776                    lifetime: lt.ident,
777                    binding_label: span,
778                    colon_sugg: gen_args
779                        .map_or(ident.span, |args| args.span())
780                        .between(lt.ident.span),
781                });
782                self.mk_ty(lt.ident.span, ast::TyKind::Err(guar)).into()
783            }
784            None => {
785                let after_eq = eq.shrink_to_hi();
786                let before_next = self.token.span.shrink_to_lo();
787                let mut err = self
788                    .dcx()
789                    .struct_span_err(after_eq.to(before_next), "missing type to the right of `=`");
790                if matches!(self.token.kind, token::Comma | token::Gt) {
791                    err.span_suggestion(
792                        self.psess.source_map().next_point(eq).to(before_next),
793                        "to constrain the associated type, add a type after `=`",
794                        " TheType",
795                        Applicability::HasPlaceholders,
796                    );
797                    err.span_suggestion(
798                        eq.to(before_next),
799                        format!("remove the `=` if `{ident}` is a type"),
800                        "",
801                        Applicability::MaybeIncorrect,
802                    )
803                } else {
804                    err.span_label(
805                        self.token.span,
806                        format!("expected type, found {}", super::token_descr(&self.token)),
807                    )
808                };
809                return Err(err);
810            }
811        };
812        Ok(AssocItemConstraintKind::Equality { term })
813    }
814
815    /// We do not permit arbitrary expressions as const arguments. They must be one of:
816    /// - An expression surrounded in `{}`.
817    /// - A literal.
818    /// - A numeric literal prefixed by `-`.
819    /// - A single-segment path.
820    pub(super) fn expr_is_valid_const_arg(&self, expr: &P<rustc_ast::Expr>) -> bool {
821        match &expr.kind {
822            ast::ExprKind::Block(_, _)
823            | ast::ExprKind::Lit(_)
824            | ast::ExprKind::IncludedBytes(..) => true,
825            ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
826                matches!(expr.kind, ast::ExprKind::Lit(_))
827            }
828            // We can only resolve single-segment paths at the moment, because multi-segment paths
829            // require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
830            ast::ExprKind::Path(None, path)
831                if let [segment] = path.segments.as_slice()
832                    && segment.args.is_none() =>
833            {
834                true
835            }
836            _ => false,
837        }
838    }
839
840    /// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
841    /// the caller.
842    pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
843        // Parse const argument.
844        let value = if let token::OpenDelim(Delimiter::Brace) = self.token.kind {
845            self.parse_expr_block(None, self.token.span, BlockCheckMode::Default)?
846        } else {
847            self.handle_unambiguous_unbraced_const_arg()?
848        };
849        Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
850    }
851
852    /// Parse a generic argument in a path segment.
853    /// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
854    pub(super) fn parse_generic_arg(
855        &mut self,
856        ty_generics: Option<&Generics>,
857    ) -> PResult<'a, Option<GenericArg>> {
858        let start = self.token.span;
859        let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
860            // Parse lifetime argument.
861            GenericArg::Lifetime(self.expect_lifetime())
862        } else if self.check_const_arg() {
863            // Parse const argument.
864            GenericArg::Const(self.parse_const_arg()?)
865        } else if self.check_type() {
866            // Parse type argument.
867
868            // Proactively create a parser snapshot enabling us to rewind and try to reparse the
869            // input as a const expression in case we fail to parse a type. If we successfully
870            // do so, we will report an error that it needs to be wrapped in braces.
871            let mut snapshot = None;
872            if self.may_recover() && self.token.can_begin_expr() {
873                snapshot = Some(self.create_snapshot_for_diagnostic());
874            }
875
876            match self.parse_ty() {
877                Ok(ty) => {
878                    // Since the type parser recovers from some malformed slice and array types and
879                    // successfully returns a type, we need to look for `TyKind::Err`s in the
880                    // type to determine if error recovery has occurred and if the input is not a
881                    // syntactically valid type after all.
882                    if let ast::TyKind::Slice(inner_ty) | ast::TyKind::Array(inner_ty, _) = &ty.kind
883                        && let ast::TyKind::Err(_) = inner_ty.kind
884                        && let Some(snapshot) = snapshot
885                        && let Some(expr) =
886                            self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
887                    {
888                        return Ok(Some(
889                            self.dummy_const_arg_needs_braces(
890                                self.dcx()
891                                    .struct_span_err(expr.span, "invalid const generic expression"),
892                                expr.span,
893                            ),
894                        ));
895                    }
896
897                    GenericArg::Type(ty)
898                }
899                Err(err) => {
900                    if let Some(snapshot) = snapshot
901                        && let Some(expr) =
902                            self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
903                    {
904                        return Ok(Some(self.dummy_const_arg_needs_braces(err, expr.span)));
905                    }
906                    // Try to recover from possible `const` arg without braces.
907                    return self.recover_const_arg(start, err).map(Some);
908                }
909            }
910        } else if self.token.is_keyword(kw::Const) {
911            return self.recover_const_param_declaration(ty_generics);
912        } else {
913            // Fall back by trying to parse a const-expr expression. If we successfully do so,
914            // then we should report an error that it needs to be wrapped in braces.
915            let snapshot = self.create_snapshot_for_diagnostic();
916            let attrs = self.parse_outer_attributes()?;
917            match self.parse_expr_res(Restrictions::CONST_EXPR, attrs) {
918                Ok((expr, _)) => {
919                    return Ok(Some(self.dummy_const_arg_needs_braces(
920                        self.dcx().struct_span_err(expr.span, "invalid const generic expression"),
921                        expr.span,
922                    )));
923                }
924                Err(err) => {
925                    self.restore_snapshot(snapshot);
926                    err.cancel();
927                    return Ok(None);
928                }
929            }
930        };
931        Ok(Some(arg))
932    }
933
934    /// Given a arg inside of generics, we try to destructure it as if it were the LHS in
935    /// `LHS = ...`, i.e. an associated item binding.
936    /// This returns a bool indicating if there are any `for<'a, 'b>` binder args, the
937    /// identifier, and any GAT arguments.
938    fn get_ident_from_generic_arg(
939        &self,
940        gen_arg: &GenericArg,
941    ) -> Result<(bool, Ident, Option<GenericArgs>), ()> {
942        if let GenericArg::Type(ty) = gen_arg {
943            if let ast::TyKind::Path(qself, path) = &ty.kind
944                && qself.is_none()
945                && let [seg] = path.segments.as_slice()
946            {
947                return Ok((false, seg.ident, seg.args.as_deref().cloned()));
948            } else if let ast::TyKind::TraitObject(bounds, ast::TraitObjectSyntax::None) = &ty.kind
949                && let [ast::GenericBound::Trait(trait_ref)] = bounds.as_slice()
950                && trait_ref.modifiers == ast::TraitBoundModifiers::NONE
951                && let [seg] = trait_ref.trait_ref.path.segments.as_slice()
952            {
953                return Ok((true, seg.ident, seg.args.as_deref().cloned()));
954            }
955        }
956        Err(())
957    }
958}