rustc_monomorphize/
collector.rs

1//! Mono Item Collection
2//! ====================
3//!
4//! This module is responsible for discovering all items that will contribute
5//! to code generation of the crate. The important part here is that it not only
6//! needs to find syntax-level items (functions, structs, etc) but also all
7//! their monomorphized instantiations. Every non-generic, non-const function
8//! maps to one LLVM artifact. Every generic function can produce
9//! from zero to N artifacts, depending on the sets of type arguments it
10//! is instantiated with.
11//! This also applies to generic items from other crates: A generic definition
12//! in crate X might produce monomorphizations that are compiled into crate Y.
13//! We also have to collect these here.
14//!
15//! The following kinds of "mono items" are handled here:
16//!
17//! - Functions
18//! - Methods
19//! - Closures
20//! - Statics
21//! - Drop glue
22//!
23//! The following things also result in LLVM artifacts, but are not collected
24//! here, since we instantiate them locally on demand when needed in a given
25//! codegen unit:
26//!
27//! - Constants
28//! - VTables
29//! - Object Shims
30//!
31//! The main entry point is `collect_crate_mono_items`, at the bottom of this file.
32//!
33//! General Algorithm
34//! -----------------
35//! Let's define some terms first:
36//!
37//! - A "mono item" is something that results in a function or global in
38//!   the LLVM IR of a codegen unit. Mono items do not stand on their
39//!   own, they can use other mono items. For example, if function
40//!   `foo()` calls function `bar()` then the mono item for `foo()`
41//!   uses the mono item for function `bar()`. In general, the
42//!   definition for mono item A using a mono item B is that
43//!   the LLVM artifact produced for A uses the LLVM artifact produced
44//!   for B.
45//!
46//! - Mono items and the uses between them form a directed graph,
47//!   where the mono items are the nodes and uses form the edges.
48//!   Let's call this graph the "mono item graph".
49//!
50//! - The mono item graph for a program contains all mono items
51//!   that are needed in order to produce the complete LLVM IR of the program.
52//!
53//! The purpose of the algorithm implemented in this module is to build the
54//! mono item graph for the current crate. It runs in two phases:
55//!
56//! 1. Discover the roots of the graph by traversing the HIR of the crate.
57//! 2. Starting from the roots, find uses by inspecting the MIR
58//!    representation of the item corresponding to a given node, until no more
59//!    new nodes are found.
60//!
61//! ### Discovering roots
62//! The roots of the mono item graph correspond to the public non-generic
63//! syntactic items in the source code. We find them by walking the HIR of the
64//! crate, and whenever we hit upon a public function, method, or static item,
65//! we create a mono item consisting of the items DefId and, since we only
66//! consider non-generic items, an empty type-parameters set. (In eager
67//! collection mode, during incremental compilation, all non-generic functions
68//! are considered as roots, as well as when the `-Clink-dead-code` option is
69//! specified. Functions marked `#[no_mangle]` and functions called by inlinable
70//! functions also always act as roots.)
71//!
72//! ### Finding uses
73//! Given a mono item node, we can discover uses by inspecting its MIR. We walk
74//! the MIR to find other mono items used by each mono item. Since the mono
75//! item we are currently at is always monomorphic, we also know the concrete
76//! type arguments of its used mono items. The specific forms a use can take in
77//! MIR are quite diverse. Here is an overview:
78//!
79//! #### Calling Functions/Methods
80//! The most obvious way for one mono item to use another is a
81//! function or method call (represented by a CALL terminator in MIR). But
82//! calls are not the only thing that might introduce a use between two
83//! function mono items, and as we will see below, they are just a
84//! specialization of the form described next, and consequently will not get any
85//! special treatment in the algorithm.
86//!
87//! #### Taking a reference to a function or method
88//! A function does not need to actually be called in order to be used by
89//! another function. It suffices to just take a reference in order to introduce
90//! an edge. Consider the following example:
91//!
92//! ```
93//! # use core::fmt::Display;
94//! fn print_val<T: Display>(x: T) {
95//!     println!("{}", x);
96//! }
97//!
98//! fn call_fn(f: &dyn Fn(i32), x: i32) {
99//!     f(x);
100//! }
101//!
102//! fn main() {
103//!     let print_i32 = print_val::<i32>;
104//!     call_fn(&print_i32, 0);
105//! }
106//! ```
107//! The MIR of none of these functions will contain an explicit call to
108//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
109//! an instance of this function. Thus, whenever we encounter a function or
110//! method in operand position, we treat it as a use of the current
111//! mono item. Calls are just a special case of that.
112//!
113//! #### Drop glue
114//! Drop glue mono items are introduced by MIR drop-statements. The
115//! generated mono item will have additional drop-glue item uses if the
116//! type to be dropped contains nested values that also need to be dropped. It
117//! might also have a function item use for the explicit `Drop::drop`
118//! implementation of its type.
119//!
120//! #### Unsizing Casts
121//! A subtle way of introducing use edges is by casting to a trait object.
122//! Since the resulting wide-pointer contains a reference to a vtable, we need to
123//! instantiate all dyn-compatible methods of the trait, as we need to store
124//! pointers to these functions even if they never get called anywhere. This can
125//! be seen as a special case of taking a function reference.
126//!
127//!
128//! Interaction with Cross-Crate Inlining
129//! -------------------------------------
130//! The binary of a crate will not only contain machine code for the items
131//! defined in the source code of that crate. It will also contain monomorphic
132//! instantiations of any extern generic functions and of functions marked with
133//! `#[inline]`.
134//! The collection algorithm handles this more or less mono. If it is
135//! about to create a mono item for something with an external `DefId`,
136//! it will take a look if the MIR for that item is available, and if so just
137//! proceed normally. If the MIR is not available, it assumes that the item is
138//! just linked to and no node is created; which is exactly what we want, since
139//! no machine code should be generated in the current crate for such an item.
140//!
141//! Eager and Lazy Collection Strategy
142//! ----------------------------------
143//! Mono item collection can be performed with one of two strategies:
144//!
145//! - Lazy strategy means that items will only be instantiated when actually
146//!   used. The goal is to produce the least amount of machine code
147//!   possible.
148//!
149//! - Eager strategy is meant to be used in conjunction with incremental compilation
150//!   where a stable set of mono items is more important than a minimal
151//!   one. Thus, eager strategy will instantiate drop-glue for every drop-able type
152//!   in the crate, even if no drop call for that type exists (yet). It will
153//!   also instantiate default implementations of trait methods, something that
154//!   otherwise is only done on demand.
155//!
156//! Collection-time const evaluation and "mentioned" items
157//! ------------------------------------------------------
158//!
159//! One important role of collection is to evaluate all constants that are used by all the items
160//! which are being collected. Codegen can then rely on only encountering constants that evaluate
161//! successfully, and if a constant fails to evaluate, the collector has much better context to be
162//! able to show where this constant comes up.
163//!
164//! However, the exact set of "used" items (collected as described above), and therefore the exact
165//! set of used constants, can depend on optimizations. Optimizing away dead code may optimize away
166//! a function call that uses a failing constant, so an unoptimized build may fail where an
167//! optimized build succeeds. This is undesirable.
168//!
169//! To avoid this, the collector has the concept of "mentioned" items. Some time during the MIR
170//! pipeline, before any optimization-level-dependent optimizations, we compute a list of all items
171//! that syntactically appear in the code. These are considered "mentioned", and even if they are in
172//! dead code and get optimized away (which makes them no longer "used"), they are still
173//! "mentioned". For every used item, the collector ensures that all mentioned items, recursively,
174//! do not use a failing constant. This is reflected via the [`CollectionMode`], which determines
175//! whether we are visiting a used item or merely a mentioned item.
176//!
177//! The collector and "mentioned items" gathering (which lives in `rustc_mir_transform::mentioned_items`)
178//! need to stay in sync in the following sense:
179//!
180//! - For every item that the collector gather that could eventually lead to build failure (most
181//!   likely due to containing a constant that fails to evaluate), a corresponding mentioned item
182//!   must be added. This should use the exact same strategy as the ecollector to make sure they are
183//!   in sync. However, while the collector works on monomorphized types, mentioned items are
184//!   collected on generic MIR -- so any time the collector checks for a particular type (such as
185//!   `ty::FnDef`), we have to just onconditionally add this as a mentioned item.
186//! - In `visit_mentioned_item`, we then do with that mentioned item exactly what the collector
187//!   would have done during regular MIR visiting. Basically you can think of the collector having
188//!   two stages, a pre-monomorphization stage and a post-monomorphization stage (usually quite
189//!   literally separated by a call to `self.monomorphize`); the pre-monomorphizationn stage is
190//!   duplicated in mentioned items gathering and the post-monomorphization stage is duplicated in
191//!   `visit_mentioned_item`.
192//! - Finally, as a performance optimization, the collector should fill `used_mentioned_item` during
193//!   its MIR traversal with exactly what mentioned item gathering would have added in the same
194//!   situation. This detects mentioned items that have *not* been optimized away and hence don't
195//!   need a dedicated traversal.
196//!
197//! Open Issues
198//! -----------
199//! Some things are not yet fully implemented in the current version of this
200//! module.
201//!
202//! ### Const Fns
203//! Ideally, no mono item should be generated for const fns unless there
204//! is a call to them that cannot be evaluated at compile time. At the moment
205//! this is not implemented however: a mono item will be produced
206//! regardless of whether it is actually needed or not.
207
208mod autodiff;
209
210use std::cell::OnceCell;
211
212use rustc_data_structures::fx::FxIndexMap;
213use rustc_data_structures::sync::{MTLock, par_for_each_in};
214use rustc_data_structures::unord::{UnordMap, UnordSet};
215use rustc_hir as hir;
216use rustc_hir::attrs::InlineAttr;
217use rustc_hir::def::DefKind;
218use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId};
219use rustc_hir::lang_items::LangItem;
220use rustc_hir::limit::Limit;
221use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
222use rustc_middle::mir::interpret::{AllocId, ErrorHandled, GlobalAlloc, Scalar};
223use rustc_middle::mir::mono::{CollectionMode, InstantiationMode, MonoItem};
224use rustc_middle::mir::visit::Visitor as MirVisitor;
225use rustc_middle::mir::{self, Location, MentionedItem, traversal};
226use rustc_middle::query::TyCtxtAt;
227use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCoercion};
228use rustc_middle::ty::layout::ValidityRequirement;
229use rustc_middle::ty::{
230    self, GenericArgs, GenericParamDefKind, Instance, InstanceKind, Ty, TyCtxt, TypeFoldable,
231    TypeVisitableExt, VtblEntry,
232};
233use rustc_middle::util::Providers;
234use rustc_middle::{bug, span_bug};
235use rustc_session::config::{DebugInfo, EntryFnType};
236use rustc_span::source_map::{Spanned, dummy_spanned, respan};
237use rustc_span::{DUMMY_SP, Span};
238use tracing::{debug, instrument, trace};
239
240use crate::collector::autodiff::collect_autodiff_fn;
241use crate::errors::{
242    self, EncounteredErrorWhileInstantiating, EncounteredErrorWhileInstantiatingGlobalAsm,
243    NoOptimizedMir, RecursionLimit,
244};
245
246#[derive(PartialEq)]
247pub(crate) enum MonoItemCollectionStrategy {
248    Eager,
249    Lazy,
250}
251
252/// The state that is shared across the concurrent threads that are doing collection.
253struct SharedState<'tcx> {
254    /// Items that have been or are currently being recursively collected.
255    visited: MTLock<UnordSet<MonoItem<'tcx>>>,
256    /// Items that have been or are currently being recursively treated as "mentioned", i.e., their
257    /// consts are evaluated but nothing is added to the collection.
258    mentioned: MTLock<UnordSet<MonoItem<'tcx>>>,
259    /// Which items are being used where, for better errors.
260    usage_map: MTLock<UsageMap<'tcx>>,
261}
262
263pub(crate) struct UsageMap<'tcx> {
264    // Maps every mono item to the mono items used by it.
265    pub used_map: UnordMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
266
267    // Maps every mono item to the mono items that use it.
268    user_map: UnordMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
269}
270
271impl<'tcx> UsageMap<'tcx> {
272    fn new() -> UsageMap<'tcx> {
273        UsageMap { used_map: Default::default(), user_map: Default::default() }
274    }
275
276    fn record_used<'a>(&mut self, user_item: MonoItem<'tcx>, used_items: &'a MonoItems<'tcx>)
277    where
278        'tcx: 'a,
279    {
280        for used_item in used_items.items() {
281            self.user_map.entry(used_item).or_default().push(user_item);
282        }
283
284        assert!(self.used_map.insert(user_item, used_items.items().collect()).is_none());
285    }
286
287    pub(crate) fn get_user_items(&self, item: MonoItem<'tcx>) -> &[MonoItem<'tcx>] {
288        self.user_map.get(&item).map(|items| items.as_slice()).unwrap_or(&[])
289    }
290
291    /// Internally iterate over all inlined items used by `item`.
292    pub(crate) fn for_each_inlined_used_item<F>(
293        &self,
294        tcx: TyCtxt<'tcx>,
295        item: MonoItem<'tcx>,
296        mut f: F,
297    ) where
298        F: FnMut(MonoItem<'tcx>),
299    {
300        let used_items = self.used_map.get(&item).unwrap();
301        for used_item in used_items.iter() {
302            let is_inlined = used_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy;
303            if is_inlined {
304                f(*used_item);
305            }
306        }
307    }
308}
309
310struct MonoItems<'tcx> {
311    // We want a set of MonoItem + Span where trying to re-insert a MonoItem with a different Span
312    // is ignored. Map does that, but it looks odd.
313    items: FxIndexMap<MonoItem<'tcx>, Span>,
314}
315
316impl<'tcx> MonoItems<'tcx> {
317    fn new() -> Self {
318        Self { items: FxIndexMap::default() }
319    }
320
321    fn is_empty(&self) -> bool {
322        self.items.is_empty()
323    }
324
325    fn push(&mut self, item: Spanned<MonoItem<'tcx>>) {
326        // Insert only if the entry does not exist. A normal insert would stomp the first span that
327        // got inserted.
328        self.items.entry(item.node).or_insert(item.span);
329    }
330
331    fn items(&self) -> impl Iterator<Item = MonoItem<'tcx>> {
332        self.items.keys().cloned()
333    }
334}
335
336impl<'tcx> IntoIterator for MonoItems<'tcx> {
337    type Item = Spanned<MonoItem<'tcx>>;
338    type IntoIter = impl Iterator<Item = Spanned<MonoItem<'tcx>>>;
339
340    fn into_iter(self) -> Self::IntoIter {
341        self.items.into_iter().map(|(item, span)| respan(span, item))
342    }
343}
344
345impl<'tcx> Extend<Spanned<MonoItem<'tcx>>> for MonoItems<'tcx> {
346    fn extend<I>(&mut self, iter: I)
347    where
348        I: IntoIterator<Item = Spanned<MonoItem<'tcx>>>,
349    {
350        for item in iter {
351            self.push(item)
352        }
353    }
354}
355
356fn collect_items_root<'tcx>(
357    tcx: TyCtxt<'tcx>,
358    starting_item: Spanned<MonoItem<'tcx>>,
359    state: &SharedState<'tcx>,
360    recursion_limit: Limit,
361) {
362    if !state.visited.lock_mut().insert(starting_item.node) {
363        // We've been here already, no need to search again.
364        return;
365    }
366    let mut recursion_depths = DefIdMap::default();
367    collect_items_rec(
368        tcx,
369        starting_item,
370        state,
371        &mut recursion_depths,
372        recursion_limit,
373        CollectionMode::UsedItems,
374    );
375}
376
377/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
378/// post-monomorphization error is encountered during a collection step.
379///
380/// `mode` determined whether we are scanning for [used items][CollectionMode::UsedItems]
381/// or [mentioned items][CollectionMode::MentionedItems].
382#[instrument(skip(tcx, state, recursion_depths, recursion_limit), level = "debug")]
383fn collect_items_rec<'tcx>(
384    tcx: TyCtxt<'tcx>,
385    starting_item: Spanned<MonoItem<'tcx>>,
386    state: &SharedState<'tcx>,
387    recursion_depths: &mut DefIdMap<usize>,
388    recursion_limit: Limit,
389    mode: CollectionMode,
390) {
391    let mut used_items = MonoItems::new();
392    let mut mentioned_items = MonoItems::new();
393    let recursion_depth_reset;
394
395    // Post-monomorphization errors MVP
396    //
397    // We can encounter errors while monomorphizing an item, but we don't have a good way of
398    // showing a complete stack of spans ultimately leading to collecting the erroneous one yet.
399    // (It's also currently unclear exactly which diagnostics and information would be interesting
400    // to report in such cases)
401    //
402    // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be
403    // shown with just a spanned piece of code causing the error, without information on where
404    // it was called from. This is especially obscure if the erroneous mono item is in a
405    // dependency. See for example issue #85155, where, before minimization, a PME happened two
406    // crates downstream from libcore's stdarch, without a way to know which dependency was the
407    // cause.
408    //
409    // If such an error occurs in the current crate, its span will be enough to locate the
410    // source. If the cause is in another crate, the goal here is to quickly locate which mono
411    // item in the current crate is ultimately responsible for causing the error.
412    //
413    // To give at least _some_ context to the user: while collecting mono items, we check the
414    // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the
415    // current step of mono items collection.
416    //
417    // FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do.
418    let error_count = tcx.dcx().err_count();
419
420    // In `mentioned_items` we collect items that were mentioned in this MIR but possibly do not
421    // need to be monomorphized. This is done to ensure that optimizing away function calls does not
422    // hide const-eval errors that those calls would otherwise have triggered.
423    match starting_item.node {
424        MonoItem::Static(def_id) => {
425            recursion_depth_reset = None;
426
427            // Statics always get evaluated (which is possible because they can't be generic), so for
428            // `MentionedItems` collection there's nothing to do here.
429            if mode == CollectionMode::UsedItems {
430                let instance = Instance::mono(tcx, def_id);
431
432                // Sanity check whether this ended up being collected accidentally
433                debug_assert!(tcx.should_codegen_locally(instance));
434
435                let DefKind::Static { nested, .. } = tcx.def_kind(def_id) else { bug!() };
436                // Nested statics have no type.
437                if !nested {
438                    let ty = instance.ty(tcx, ty::TypingEnv::fully_monomorphized());
439                    visit_drop_use(tcx, ty, true, starting_item.span, &mut used_items);
440                }
441
442                if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
443                    for &prov in alloc.inner().provenance().ptrs().values() {
444                        collect_alloc(tcx, prov.alloc_id(), &mut used_items);
445                    }
446                }
447
448                if tcx.needs_thread_local_shim(def_id) {
449                    used_items.push(respan(
450                        starting_item.span,
451                        MonoItem::Fn(Instance {
452                            def: InstanceKind::ThreadLocalShim(def_id),
453                            args: GenericArgs::empty(),
454                        }),
455                    ));
456                }
457            }
458
459            // mentioned_items stays empty since there's no codegen for statics. statics don't get
460            // optimized, and if they did then the const-eval interpreter would have to worry about
461            // mentioned_items.
462        }
463        MonoItem::Fn(instance) => {
464            // Sanity check whether this ended up being collected accidentally
465            debug_assert!(tcx.should_codegen_locally(instance));
466
467            // Keep track of the monomorphization recursion depth
468            recursion_depth_reset = Some(check_recursion_limit(
469                tcx,
470                instance,
471                starting_item.span,
472                recursion_depths,
473                recursion_limit,
474            ));
475
476            rustc_data_structures::stack::ensure_sufficient_stack(|| {
477                let (used, mentioned) = tcx.items_of_instance((instance, mode));
478                used_items.extend(used.into_iter().copied());
479                mentioned_items.extend(mentioned.into_iter().copied());
480            });
481        }
482        MonoItem::GlobalAsm(item_id) => {
483            assert!(
484                mode == CollectionMode::UsedItems,
485                "should never encounter global_asm when collecting mentioned items"
486            );
487            recursion_depth_reset = None;
488
489            let item = tcx.hir_item(item_id);
490            if let hir::ItemKind::GlobalAsm { asm, .. } = item.kind {
491                for (op, op_sp) in asm.operands {
492                    match *op {
493                        hir::InlineAsmOperand::Const { .. } => {
494                            // Only constants which resolve to a plain integer
495                            // are supported. Therefore the value should not
496                            // depend on any other items.
497                        }
498                        hir::InlineAsmOperand::SymFn { expr } => {
499                            let fn_ty = tcx.typeck(item_id.owner_id).expr_ty(expr);
500                            visit_fn_use(tcx, fn_ty, false, *op_sp, &mut used_items);
501                        }
502                        hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
503                            let instance = Instance::mono(tcx, def_id);
504                            if tcx.should_codegen_locally(instance) {
505                                trace!("collecting static {:?}", def_id);
506                                used_items.push(dummy_spanned(MonoItem::Static(def_id)));
507                            }
508                        }
509                        hir::InlineAsmOperand::In { .. }
510                        | hir::InlineAsmOperand::Out { .. }
511                        | hir::InlineAsmOperand::InOut { .. }
512                        | hir::InlineAsmOperand::SplitInOut { .. }
513                        | hir::InlineAsmOperand::Label { .. } => {
514                            span_bug!(*op_sp, "invalid operand type for global_asm!")
515                        }
516                    }
517                }
518            } else {
519                span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
520            }
521
522            // mention_items stays empty as nothing gets optimized here.
523        }
524    };
525
526    // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
527    // mono item graph.
528    if tcx.dcx().err_count() > error_count
529        && starting_item.node.is_generic_fn()
530        && starting_item.node.is_user_defined()
531    {
532        match starting_item.node {
533            MonoItem::Fn(instance) => tcx.dcx().emit_note(EncounteredErrorWhileInstantiating {
534                span: starting_item.span,
535                kind: "fn",
536                instance,
537            }),
538            MonoItem::Static(def_id) => tcx.dcx().emit_note(EncounteredErrorWhileInstantiating {
539                span: starting_item.span,
540                kind: "static",
541                instance: Instance::new_raw(def_id, GenericArgs::empty()),
542            }),
543            MonoItem::GlobalAsm(_) => {
544                tcx.dcx().emit_note(EncounteredErrorWhileInstantiatingGlobalAsm {
545                    span: starting_item.span,
546                })
547            }
548        }
549    }
550    // Only updating `usage_map` for used items as otherwise we may be inserting the same item
551    // multiple times (if it is first 'mentioned' and then later actually used), and the usage map
552    // logic does not like that.
553    // This is part of the output of collection and hence only relevant for "used" items.
554    // ("Mentioned" items are only considered internally during collection.)
555    if mode == CollectionMode::UsedItems {
556        state.usage_map.lock_mut().record_used(starting_item.node, &used_items);
557    }
558
559    {
560        let mut visited = OnceCell::default();
561        if mode == CollectionMode::UsedItems {
562            used_items
563                .items
564                .retain(|k, _| visited.get_mut_or_init(|| state.visited.lock_mut()).insert(*k));
565        }
566
567        let mut mentioned = OnceCell::default();
568        mentioned_items.items.retain(|k, _| {
569            !visited.get_or_init(|| state.visited.lock()).contains(k)
570                && mentioned.get_mut_or_init(|| state.mentioned.lock_mut()).insert(*k)
571        });
572    }
573    if mode == CollectionMode::MentionedItems {
574        assert!(used_items.is_empty(), "'mentioned' collection should never encounter used items");
575    } else {
576        for used_item in used_items {
577            collect_items_rec(
578                tcx,
579                used_item,
580                state,
581                recursion_depths,
582                recursion_limit,
583                CollectionMode::UsedItems,
584            );
585        }
586    }
587
588    // Walk over mentioned items *after* used items, so that if an item is both mentioned and used then
589    // the loop above has fully collected it, so this loop will skip it.
590    for mentioned_item in mentioned_items {
591        collect_items_rec(
592            tcx,
593            mentioned_item,
594            state,
595            recursion_depths,
596            recursion_limit,
597            CollectionMode::MentionedItems,
598        );
599    }
600
601    if let Some((def_id, depth)) = recursion_depth_reset {
602        recursion_depths.insert(def_id, depth);
603    }
604}
605
606fn check_recursion_limit<'tcx>(
607    tcx: TyCtxt<'tcx>,
608    instance: Instance<'tcx>,
609    span: Span,
610    recursion_depths: &mut DefIdMap<usize>,
611    recursion_limit: Limit,
612) -> (DefId, usize) {
613    let def_id = instance.def_id();
614    let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
615    debug!(" => recursion depth={}", recursion_depth);
616
617    let adjusted_recursion_depth = if tcx.is_lang_item(def_id, LangItem::DropInPlace) {
618        // HACK: drop_in_place creates tight monomorphization loops. Give
619        // it more margin.
620        recursion_depth / 4
621    } else {
622        recursion_depth
623    };
624
625    // Code that needs to instantiate the same function recursively
626    // more than the recursion limit is assumed to be causing an
627    // infinite expansion.
628    if !recursion_limit.value_within_limit(adjusted_recursion_depth) {
629        let def_span = tcx.def_span(def_id);
630        let def_path_str = tcx.def_path_str(def_id);
631        tcx.dcx().emit_fatal(RecursionLimit { span, instance, def_span, def_path_str });
632    }
633
634    recursion_depths.insert(def_id, recursion_depth + 1);
635
636    (def_id, recursion_depth)
637}
638
639struct MirUsedCollector<'a, 'tcx> {
640    tcx: TyCtxt<'tcx>,
641    body: &'a mir::Body<'tcx>,
642    used_items: &'a mut MonoItems<'tcx>,
643    /// See the comment in `collect_items_of_instance` for the purpose of this set.
644    /// Note that this contains *not-monomorphized* items!
645    used_mentioned_items: &'a mut UnordSet<MentionedItem<'tcx>>,
646    instance: Instance<'tcx>,
647}
648
649impl<'a, 'tcx> MirUsedCollector<'a, 'tcx> {
650    fn monomorphize<T>(&self, value: T) -> T
651    where
652        T: TypeFoldable<TyCtxt<'tcx>>,
653    {
654        trace!("monomorphize: self.instance={:?}", self.instance);
655        self.instance.instantiate_mir_and_normalize_erasing_regions(
656            self.tcx,
657            ty::TypingEnv::fully_monomorphized(),
658            ty::EarlyBinder::bind(value),
659        )
660    }
661
662    /// Evaluates a *not yet monomorphized* constant.
663    fn eval_constant(&mut self, constant: &mir::ConstOperand<'tcx>) -> Option<mir::ConstValue> {
664        let const_ = self.monomorphize(constant.const_);
665        // Evaluate the constant. This makes const eval failure a collection-time error (rather than
666        // a codegen-time error). rustc stops after collection if there was an error, so this
667        // ensures codegen never has to worry about failing consts.
668        // (codegen relies on this and ICEs will happen if this is violated.)
669        match const_.eval(self.tcx, ty::TypingEnv::fully_monomorphized(), constant.span) {
670            Ok(v) => Some(v),
671            Err(ErrorHandled::TooGeneric(..)) => span_bug!(
672                constant.span,
673                "collection encountered polymorphic constant: {:?}",
674                const_
675            ),
676            Err(err @ ErrorHandled::Reported(..)) => {
677                err.emit_note(self.tcx);
678                return None;
679            }
680        }
681    }
682}
683
684impl<'a, 'tcx> MirVisitor<'tcx> for MirUsedCollector<'a, 'tcx> {
685    fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
686        debug!("visiting rvalue {:?}", *rvalue);
687
688        let span = self.body.source_info(location).span;
689
690        match *rvalue {
691            // When doing an cast from a regular pointer to a wide pointer, we
692            // have to instantiate all methods of the trait being cast to, so we
693            // can build the appropriate vtable.
694            mir::Rvalue::Cast(
695                mir::CastKind::PointerCoercion(PointerCoercion::Unsize, _),
696                ref operand,
697                target_ty,
698            ) => {
699                let source_ty = operand.ty(self.body, self.tcx);
700                // *Before* monomorphizing, record that we already handled this mention.
701                self.used_mentioned_items
702                    .insert(MentionedItem::UnsizeCast { source_ty, target_ty });
703                let target_ty = self.monomorphize(target_ty);
704                let source_ty = self.monomorphize(source_ty);
705                let (source_ty, target_ty) =
706                    find_tails_for_unsizing(self.tcx.at(span), source_ty, target_ty);
707                // This could also be a different Unsize instruction, like
708                // from a fixed sized array to a slice. But we are only
709                // interested in things that produce a vtable.
710                if target_ty.is_trait() && !source_ty.is_trait() {
711                    create_mono_items_for_vtable_methods(
712                        self.tcx,
713                        target_ty,
714                        source_ty,
715                        span,
716                        self.used_items,
717                    );
718                }
719            }
720            mir::Rvalue::Cast(
721                mir::CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer, _),
722                ref operand,
723                _,
724            ) => {
725                let fn_ty = operand.ty(self.body, self.tcx);
726                // *Before* monomorphizing, record that we already handled this mention.
727                self.used_mentioned_items.insert(MentionedItem::Fn(fn_ty));
728                let fn_ty = self.monomorphize(fn_ty);
729                visit_fn_use(self.tcx, fn_ty, false, span, self.used_items);
730            }
731            mir::Rvalue::Cast(
732                mir::CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(_), _),
733                ref operand,
734                _,
735            ) => {
736                let source_ty = operand.ty(self.body, self.tcx);
737                // *Before* monomorphizing, record that we already handled this mention.
738                self.used_mentioned_items.insert(MentionedItem::Closure(source_ty));
739                let source_ty = self.monomorphize(source_ty);
740                if let ty::Closure(def_id, args) = *source_ty.kind() {
741                    let instance =
742                        Instance::resolve_closure(self.tcx, def_id, args, ty::ClosureKind::FnOnce);
743                    if self.tcx.should_codegen_locally(instance) {
744                        self.used_items.push(create_fn_mono_item(self.tcx, instance, span));
745                    }
746                } else {
747                    bug!()
748                }
749            }
750            mir::Rvalue::ThreadLocalRef(def_id) => {
751                assert!(self.tcx.is_thread_local_static(def_id));
752                let instance = Instance::mono(self.tcx, def_id);
753                if self.tcx.should_codegen_locally(instance) {
754                    trace!("collecting thread-local static {:?}", def_id);
755                    self.used_items.push(respan(span, MonoItem::Static(def_id)));
756                }
757            }
758            _ => { /* not interesting */ }
759        }
760
761        self.super_rvalue(rvalue, location);
762    }
763
764    /// This does not walk the MIR of the constant as that is not needed for codegen, all we need is
765    /// to ensure that the constant evaluates successfully and walk the result.
766    #[instrument(skip(self), level = "debug")]
767    fn visit_const_operand(&mut self, constant: &mir::ConstOperand<'tcx>, _location: Location) {
768        // No `super_constant` as we don't care about `visit_ty`/`visit_ty_const`.
769        let Some(val) = self.eval_constant(constant) else { return };
770        collect_const_value(self.tcx, val, self.used_items);
771    }
772
773    fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
774        debug!("visiting terminator {:?} @ {:?}", terminator, location);
775        let source = self.body.source_info(location).span;
776
777        let tcx = self.tcx;
778        let push_mono_lang_item = |this: &mut Self, lang_item: LangItem| {
779            let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, source));
780            if tcx.should_codegen_locally(instance) {
781                this.used_items.push(create_fn_mono_item(tcx, instance, source));
782            }
783        };
784
785        match terminator.kind {
786            mir::TerminatorKind::Call { ref func, .. }
787            | mir::TerminatorKind::TailCall { ref func, .. } => {
788                let callee_ty = func.ty(self.body, tcx);
789                // *Before* monomorphizing, record that we already handled this mention.
790                self.used_mentioned_items.insert(MentionedItem::Fn(callee_ty));
791                let callee_ty = self.monomorphize(callee_ty);
792
793                // HACK(explicit_tail_calls): collect tail calls to `#[track_caller]` functions as indirect,
794                // because we later call them as such, to prevent issues with ABI incompatibility.
795                // Ideally we'd replace such tail calls with normal call + return, but this requires
796                // post-mono MIR optimizations, which we don't yet have.
797                let force_indirect_call =
798                    if matches!(terminator.kind, mir::TerminatorKind::TailCall { .. })
799                        && let &ty::FnDef(def_id, args) = callee_ty.kind()
800                        && let instance = ty::Instance::expect_resolve(
801                            self.tcx,
802                            ty::TypingEnv::fully_monomorphized(),
803                            def_id,
804                            args,
805                            source,
806                        )
807                        && instance.def.requires_caller_location(self.tcx)
808                    {
809                        true
810                    } else {
811                        false
812                    };
813
814                visit_fn_use(
815                    self.tcx,
816                    callee_ty,
817                    !force_indirect_call,
818                    source,
819                    &mut self.used_items,
820                )
821            }
822            mir::TerminatorKind::Drop { ref place, .. } => {
823                let ty = place.ty(self.body, self.tcx).ty;
824                // *Before* monomorphizing, record that we already handled this mention.
825                self.used_mentioned_items.insert(MentionedItem::Drop(ty));
826                let ty = self.monomorphize(ty);
827                visit_drop_use(self.tcx, ty, true, source, self.used_items);
828            }
829            mir::TerminatorKind::InlineAsm { ref operands, .. } => {
830                for op in operands {
831                    match *op {
832                        mir::InlineAsmOperand::SymFn { ref value } => {
833                            let fn_ty = value.const_.ty();
834                            // *Before* monomorphizing, record that we already handled this mention.
835                            self.used_mentioned_items.insert(MentionedItem::Fn(fn_ty));
836                            let fn_ty = self.monomorphize(fn_ty);
837                            visit_fn_use(self.tcx, fn_ty, false, source, self.used_items);
838                        }
839                        mir::InlineAsmOperand::SymStatic { def_id } => {
840                            let instance = Instance::mono(self.tcx, def_id);
841                            if self.tcx.should_codegen_locally(instance) {
842                                trace!("collecting asm sym static {:?}", def_id);
843                                self.used_items.push(respan(source, MonoItem::Static(def_id)));
844                            }
845                        }
846                        _ => {}
847                    }
848                }
849            }
850            mir::TerminatorKind::Assert { ref msg, .. } => match &**msg {
851                mir::AssertKind::BoundsCheck { .. } => {
852                    push_mono_lang_item(self, LangItem::PanicBoundsCheck);
853                }
854                mir::AssertKind::MisalignedPointerDereference { .. } => {
855                    push_mono_lang_item(self, LangItem::PanicMisalignedPointerDereference);
856                }
857                mir::AssertKind::NullPointerDereference => {
858                    push_mono_lang_item(self, LangItem::PanicNullPointerDereference);
859                }
860                mir::AssertKind::InvalidEnumConstruction(_) => {
861                    push_mono_lang_item(self, LangItem::PanicInvalidEnumConstruction);
862                }
863                _ => {
864                    push_mono_lang_item(self, msg.panic_function());
865                }
866            },
867            mir::TerminatorKind::UnwindTerminate(reason) => {
868                push_mono_lang_item(self, reason.lang_item());
869            }
870            mir::TerminatorKind::Goto { .. }
871            | mir::TerminatorKind::SwitchInt { .. }
872            | mir::TerminatorKind::UnwindResume
873            | mir::TerminatorKind::Return
874            | mir::TerminatorKind::Unreachable => {}
875            mir::TerminatorKind::CoroutineDrop
876            | mir::TerminatorKind::Yield { .. }
877            | mir::TerminatorKind::FalseEdge { .. }
878            | mir::TerminatorKind::FalseUnwind { .. } => bug!(),
879        }
880
881        if let Some(mir::UnwindAction::Terminate(reason)) = terminator.unwind() {
882            push_mono_lang_item(self, reason.lang_item());
883        }
884
885        self.super_terminator(terminator, location);
886    }
887}
888
889fn visit_drop_use<'tcx>(
890    tcx: TyCtxt<'tcx>,
891    ty: Ty<'tcx>,
892    is_direct_call: bool,
893    source: Span,
894    output: &mut MonoItems<'tcx>,
895) {
896    let instance = Instance::resolve_drop_in_place(tcx, ty);
897    visit_instance_use(tcx, instance, is_direct_call, source, output);
898}
899
900/// For every call of this function in the visitor, make sure there is a matching call in the
901/// `mentioned_items` pass!
902fn visit_fn_use<'tcx>(
903    tcx: TyCtxt<'tcx>,
904    ty: Ty<'tcx>,
905    is_direct_call: bool,
906    source: Span,
907    output: &mut MonoItems<'tcx>,
908) {
909    if let ty::FnDef(def_id, args) = *ty.kind() {
910        let instance = if is_direct_call {
911            ty::Instance::expect_resolve(
912                tcx,
913                ty::TypingEnv::fully_monomorphized(),
914                def_id,
915                args,
916                source,
917            )
918        } else {
919            match ty::Instance::resolve_for_fn_ptr(
920                tcx,
921                ty::TypingEnv::fully_monomorphized(),
922                def_id,
923                args,
924            ) {
925                Some(instance) => instance,
926                _ => bug!("failed to resolve instance for {ty}"),
927            }
928        };
929        visit_instance_use(tcx, instance, is_direct_call, source, output);
930    }
931}
932
933fn visit_instance_use<'tcx>(
934    tcx: TyCtxt<'tcx>,
935    instance: ty::Instance<'tcx>,
936    is_direct_call: bool,
937    source: Span,
938    output: &mut MonoItems<'tcx>,
939) {
940    debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
941    if !tcx.should_codegen_locally(instance) {
942        return;
943    }
944    if let Some(intrinsic) = tcx.intrinsic(instance.def_id()) {
945        collect_autodiff_fn(tcx, instance, intrinsic, output);
946
947        if let Some(_requirement) = ValidityRequirement::from_intrinsic(intrinsic.name) {
948            // The intrinsics assert_inhabited, assert_zero_valid, and assert_mem_uninitialized_valid will
949            // be lowered in codegen to nothing or a call to panic_nounwind. So if we encounter any
950            // of those intrinsics, we need to include a mono item for panic_nounwind, else we may try to
951            // codegen a call to that function without generating code for the function itself.
952            let def_id = tcx.require_lang_item(LangItem::PanicNounwind, source);
953            let panic_instance = Instance::mono(tcx, def_id);
954            if tcx.should_codegen_locally(panic_instance) {
955                output.push(create_fn_mono_item(tcx, panic_instance, source));
956            }
957        } else if !intrinsic.must_be_overridden {
958            // Codegen the fallback body of intrinsics with fallback bodies.
959            // We explicitly skip this otherwise to ensure we get a linker error
960            // if anyone tries to call this intrinsic and the codegen backend did not
961            // override the implementation.
962            let instance = ty::Instance::new_raw(instance.def_id(), instance.args);
963            if tcx.should_codegen_locally(instance) {
964                output.push(create_fn_mono_item(tcx, instance, source));
965            }
966        }
967    }
968
969    match instance.def {
970        ty::InstanceKind::Virtual(..) | ty::InstanceKind::Intrinsic(_) => {
971            if !is_direct_call {
972                bug!("{:?} being reified", instance);
973            }
974        }
975        ty::InstanceKind::ThreadLocalShim(..) => {
976            bug!("{:?} being reified", instance);
977        }
978        ty::InstanceKind::DropGlue(_, None) => {
979            // Don't need to emit noop drop glue if we are calling directly.
980            //
981            // Note that we also optimize away the call to visit_instance_use in vtable construction
982            // (see create_mono_items_for_vtable_methods).
983            if !is_direct_call {
984                output.push(create_fn_mono_item(tcx, instance, source));
985            }
986        }
987        ty::InstanceKind::DropGlue(_, Some(_))
988        | ty::InstanceKind::FutureDropPollShim(..)
989        | ty::InstanceKind::AsyncDropGlue(_, _)
990        | ty::InstanceKind::AsyncDropGlueCtorShim(_, _)
991        | ty::InstanceKind::VTableShim(..)
992        | ty::InstanceKind::ReifyShim(..)
993        | ty::InstanceKind::ClosureOnceShim { .. }
994        | ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
995        | ty::InstanceKind::Item(..)
996        | ty::InstanceKind::FnPtrShim(..)
997        | ty::InstanceKind::CloneShim(..)
998        | ty::InstanceKind::FnPtrAddrShim(..) => {
999            output.push(create_fn_mono_item(tcx, instance, source));
1000        }
1001    }
1002}
1003
1004/// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we
1005/// can just link to the upstream crate and therefore don't need a mono item.
1006fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> bool {
1007    let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else {
1008        return true;
1009    };
1010
1011    if tcx.is_foreign_item(def_id) {
1012        // Foreign items are always linked against, there's no way of instantiating them.
1013        return false;
1014    }
1015
1016    if tcx.def_kind(def_id).has_codegen_attrs()
1017        && matches!(tcx.codegen_fn_attrs(def_id).inline, InlineAttr::Force { .. })
1018    {
1019        // `#[rustc_force_inline]` items should never be codegened. This should be caught by
1020        // the MIR validator.
1021        tcx.dcx().delayed_bug("attempt to codegen `#[rustc_force_inline]` item");
1022    }
1023
1024    if def_id.is_local() {
1025        // Local items cannot be referred to locally without monomorphizing them locally.
1026        return true;
1027    }
1028
1029    if tcx.is_reachable_non_generic(def_id) || instance.upstream_monomorphization(tcx).is_some() {
1030        // We can link to the item in question, no instance needed in this crate.
1031        return false;
1032    }
1033
1034    if let DefKind::Static { .. } = tcx.def_kind(def_id) {
1035        // We cannot monomorphize statics from upstream crates.
1036        return false;
1037    }
1038
1039    if !tcx.is_mir_available(def_id) {
1040        tcx.dcx().emit_fatal(NoOptimizedMir {
1041            span: tcx.def_span(def_id),
1042            crate_name: tcx.crate_name(def_id.krate),
1043            instance: instance.to_string(),
1044        });
1045    }
1046
1047    true
1048}
1049
1050/// For a given pair of source and target type that occur in an unsizing coercion,
1051/// this function finds the pair of types that determines the vtable linking
1052/// them.
1053///
1054/// For example, the source type might be `&SomeStruct` and the target type
1055/// might be `&dyn SomeTrait` in a cast like:
1056///
1057/// ```rust,ignore (not real code)
1058/// let src: &SomeStruct = ...;
1059/// let target = src as &dyn SomeTrait;
1060/// ```
1061///
1062/// Then the output of this function would be (SomeStruct, SomeTrait) since for
1063/// constructing the `target` wide-pointer we need the vtable for that pair.
1064///
1065/// Things can get more complicated though because there's also the case where
1066/// the unsized type occurs as a field:
1067///
1068/// ```rust
1069/// struct ComplexStruct<T: ?Sized> {
1070///    a: u32,
1071///    b: f64,
1072///    c: T
1073/// }
1074/// ```
1075///
1076/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
1077/// is unsized, `&SomeStruct` is a wide pointer, and the vtable it points to is
1078/// for the pair of `T` (which is a trait) and the concrete type that `T` was
1079/// originally coerced from:
1080///
1081/// ```rust,ignore (not real code)
1082/// let src: &ComplexStruct<SomeStruct> = ...;
1083/// let target = src as &ComplexStruct<dyn SomeTrait>;
1084/// ```
1085///
1086/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
1087/// `(SomeStruct, SomeTrait)`.
1088///
1089/// Finally, there is also the case of custom unsizing coercions, e.g., for
1090/// smart pointers such as `Rc` and `Arc`.
1091fn find_tails_for_unsizing<'tcx>(
1092    tcx: TyCtxtAt<'tcx>,
1093    source_ty: Ty<'tcx>,
1094    target_ty: Ty<'tcx>,
1095) -> (Ty<'tcx>, Ty<'tcx>) {
1096    let typing_env = ty::TypingEnv::fully_monomorphized();
1097    debug_assert!(!source_ty.has_param(), "{source_ty} should be fully monomorphic");
1098    debug_assert!(!target_ty.has_param(), "{target_ty} should be fully monomorphic");
1099
1100    match (source_ty.kind(), target_ty.kind()) {
1101        (
1102            &ty::Ref(_, source_pointee, _),
1103            &ty::Ref(_, target_pointee, _) | &ty::RawPtr(target_pointee, _),
1104        )
1105        | (&ty::RawPtr(source_pointee, _), &ty::RawPtr(target_pointee, _)) => {
1106            tcx.struct_lockstep_tails_for_codegen(source_pointee, target_pointee, typing_env)
1107        }
1108
1109        // `Box<T>` could go through the ADT code below, b/c it'll unpeel to `Unique<T>`,
1110        // and eventually bottom out in a raw ref, but we can micro-optimize it here.
1111        (_, _)
1112            if let Some(source_boxed) = source_ty.boxed_ty()
1113                && let Some(target_boxed) = target_ty.boxed_ty() =>
1114        {
1115            tcx.struct_lockstep_tails_for_codegen(source_boxed, target_boxed, typing_env)
1116        }
1117
1118        (&ty::Adt(source_adt_def, source_args), &ty::Adt(target_adt_def, target_args)) => {
1119            assert_eq!(source_adt_def, target_adt_def);
1120            let CustomCoerceUnsized::Struct(coerce_index) =
1121                match crate::custom_coerce_unsize_info(tcx, source_ty, target_ty) {
1122                    Ok(ccu) => ccu,
1123                    Err(e) => {
1124                        let e = Ty::new_error(tcx.tcx, e);
1125                        return (e, e);
1126                    }
1127                };
1128            let coerce_field = &source_adt_def.non_enum_variant().fields[coerce_index];
1129            // We're getting a possibly unnormalized type, so normalize it.
1130            let source_field =
1131                tcx.normalize_erasing_regions(typing_env, coerce_field.ty(*tcx, source_args));
1132            let target_field =
1133                tcx.normalize_erasing_regions(typing_env, coerce_field.ty(*tcx, target_args));
1134            find_tails_for_unsizing(tcx, source_field, target_field)
1135        }
1136
1137        _ => bug!(
1138            "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
1139            source_ty,
1140            target_ty
1141        ),
1142    }
1143}
1144
1145#[instrument(skip(tcx), level = "debug", ret)]
1146fn create_fn_mono_item<'tcx>(
1147    tcx: TyCtxt<'tcx>,
1148    instance: Instance<'tcx>,
1149    source: Span,
1150) -> Spanned<MonoItem<'tcx>> {
1151    let def_id = instance.def_id();
1152    if tcx.sess.opts.unstable_opts.profile_closures
1153        && def_id.is_local()
1154        && tcx.is_closure_like(def_id)
1155    {
1156        crate::util::dump_closure_profile(tcx, instance);
1157    }
1158
1159    respan(source, MonoItem::Fn(instance))
1160}
1161
1162/// Creates a `MonoItem` for each method that is referenced by the vtable for
1163/// the given trait/impl pair.
1164fn create_mono_items_for_vtable_methods<'tcx>(
1165    tcx: TyCtxt<'tcx>,
1166    trait_ty: Ty<'tcx>,
1167    impl_ty: Ty<'tcx>,
1168    source: Span,
1169    output: &mut MonoItems<'tcx>,
1170) {
1171    assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
1172
1173    let ty::Dynamic(trait_ty, ..) = trait_ty.kind() else {
1174        bug!("create_mono_items_for_vtable_methods: {trait_ty:?} not a trait type");
1175    };
1176    if let Some(principal) = trait_ty.principal() {
1177        let trait_ref =
1178            tcx.instantiate_bound_regions_with_erased(principal.with_self_ty(tcx, impl_ty));
1179        assert!(!trait_ref.has_escaping_bound_vars());
1180
1181        // Walk all methods of the trait, including those of its supertraits
1182        let entries = tcx.vtable_entries(trait_ref);
1183        debug!(?entries);
1184        let methods = entries
1185            .iter()
1186            .filter_map(|entry| match entry {
1187                VtblEntry::MetadataDropInPlace
1188                | VtblEntry::MetadataSize
1189                | VtblEntry::MetadataAlign
1190                | VtblEntry::Vacant => None,
1191                VtblEntry::TraitVPtr(_) => {
1192                    // all super trait items already covered, so skip them.
1193                    None
1194                }
1195                VtblEntry::Method(instance) => {
1196                    Some(*instance).filter(|instance| tcx.should_codegen_locally(*instance))
1197                }
1198            })
1199            .map(|item| create_fn_mono_item(tcx, item, source));
1200        output.extend(methods);
1201    }
1202
1203    // Also add the destructor, if it's necessary.
1204    //
1205    // This matches the check in vtable_allocation_provider in middle/ty/vtable.rs,
1206    // if we don't need drop we're not adding an actual pointer to the vtable.
1207    if impl_ty.needs_drop(tcx, ty::TypingEnv::fully_monomorphized()) {
1208        visit_drop_use(tcx, impl_ty, false, source, output);
1209    }
1210}
1211
1212/// Scans the CTFE alloc in order to find function pointers and statics that must be monomorphized.
1213fn collect_alloc<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) {
1214    match tcx.global_alloc(alloc_id) {
1215        GlobalAlloc::Static(def_id) => {
1216            assert!(!tcx.is_thread_local_static(def_id));
1217            let instance = Instance::mono(tcx, def_id);
1218            if tcx.should_codegen_locally(instance) {
1219                trace!("collecting static {:?}", def_id);
1220                output.push(dummy_spanned(MonoItem::Static(def_id)));
1221            }
1222        }
1223        GlobalAlloc::Memory(alloc) => {
1224            trace!("collecting {:?} with {:#?}", alloc_id, alloc);
1225            let ptrs = alloc.inner().provenance().ptrs();
1226            // avoid `ensure_sufficient_stack` in the common case of "no pointers"
1227            if !ptrs.is_empty() {
1228                rustc_data_structures::stack::ensure_sufficient_stack(move || {
1229                    for &prov in ptrs.values() {
1230                        collect_alloc(tcx, prov.alloc_id(), output);
1231                    }
1232                });
1233            }
1234        }
1235        GlobalAlloc::Function { instance, .. } => {
1236            if tcx.should_codegen_locally(instance) {
1237                trace!("collecting {:?} with {:#?}", alloc_id, instance);
1238                output.push(create_fn_mono_item(tcx, instance, DUMMY_SP));
1239            }
1240        }
1241        GlobalAlloc::VTable(ty, dyn_ty) => {
1242            let alloc_id = tcx.vtable_allocation((
1243                ty,
1244                dyn_ty
1245                    .principal()
1246                    .map(|principal| tcx.instantiate_bound_regions_with_erased(principal)),
1247            ));
1248            collect_alloc(tcx, alloc_id, output)
1249        }
1250        GlobalAlloc::TypeId { .. } => {}
1251    }
1252}
1253
1254/// Scans the MIR in order to find function calls, closures, and drop-glue.
1255///
1256/// Anything that's found is added to `output`. Furthermore the "mentioned items" of the MIR are returned.
1257#[instrument(skip(tcx), level = "debug")]
1258fn collect_items_of_instance<'tcx>(
1259    tcx: TyCtxt<'tcx>,
1260    instance: Instance<'tcx>,
1261    mode: CollectionMode,
1262) -> (MonoItems<'tcx>, MonoItems<'tcx>) {
1263    // This item is getting monomorphized, do mono-time checks.
1264    tcx.ensure_ok().check_mono_item(instance);
1265
1266    let body = tcx.instance_mir(instance.def);
1267    // Naively, in "used" collection mode, all functions get added to *both* `used_items` and
1268    // `mentioned_items`. Mentioned items processing will then notice that they have already been
1269    // visited, but at that point each mentioned item has been monomorphized, added to the
1270    // `mentioned_items` worklist, and checked in the global set of visited items. To remove that
1271    // overhead, we have a special optimization that avoids adding items to `mentioned_items` when
1272    // they are already added in `used_items`. We could just scan `used_items`, but that's a linear
1273    // scan and not very efficient. Furthermore we can only do that *after* monomorphizing the
1274    // mentioned item. So instead we collect all pre-monomorphized `MentionedItem` that were already
1275    // added to `used_items` in a hash set, which can efficiently query in the
1276    // `body.mentioned_items` loop below without even having to monomorphize the item.
1277    let mut used_items = MonoItems::new();
1278    let mut mentioned_items = MonoItems::new();
1279    let mut used_mentioned_items = Default::default();
1280    let mut collector = MirUsedCollector {
1281        tcx,
1282        body,
1283        used_items: &mut used_items,
1284        used_mentioned_items: &mut used_mentioned_items,
1285        instance,
1286    };
1287
1288    if mode == CollectionMode::UsedItems {
1289        if tcx.sess.opts.debuginfo == DebugInfo::Full {
1290            for var_debug_info in &body.var_debug_info {
1291                collector.visit_var_debug_info(var_debug_info);
1292            }
1293        }
1294        for (bb, data) in traversal::mono_reachable(body, tcx, instance) {
1295            collector.visit_basic_block_data(bb, data)
1296        }
1297    }
1298
1299    // Always visit all `required_consts`, so that we evaluate them and abort compilation if any of
1300    // them errors.
1301    for const_op in body.required_consts() {
1302        if let Some(val) = collector.eval_constant(const_op) {
1303            collect_const_value(tcx, val, &mut mentioned_items);
1304        }
1305    }
1306
1307    // Always gather mentioned items. We try to avoid processing items that we have already added to
1308    // `used_items` above.
1309    for item in body.mentioned_items() {
1310        if !collector.used_mentioned_items.contains(&item.node) {
1311            let item_mono = collector.monomorphize(item.node);
1312            visit_mentioned_item(tcx, &item_mono, item.span, &mut mentioned_items);
1313        }
1314    }
1315
1316    (used_items, mentioned_items)
1317}
1318
1319fn items_of_instance<'tcx>(
1320    tcx: TyCtxt<'tcx>,
1321    (instance, mode): (Instance<'tcx>, CollectionMode),
1322) -> (&'tcx [Spanned<MonoItem<'tcx>>], &'tcx [Spanned<MonoItem<'tcx>>]) {
1323    let (used_items, mentioned_items) = collect_items_of_instance(tcx, instance, mode);
1324
1325    let used_items = tcx.arena.alloc_from_iter(used_items);
1326    let mentioned_items = tcx.arena.alloc_from_iter(mentioned_items);
1327
1328    (used_items, mentioned_items)
1329}
1330
1331/// `item` must be already monomorphized.
1332#[instrument(skip(tcx, span, output), level = "debug")]
1333fn visit_mentioned_item<'tcx>(
1334    tcx: TyCtxt<'tcx>,
1335    item: &MentionedItem<'tcx>,
1336    span: Span,
1337    output: &mut MonoItems<'tcx>,
1338) {
1339    match *item {
1340        MentionedItem::Fn(ty) => {
1341            if let ty::FnDef(def_id, args) = *ty.kind() {
1342                let instance = Instance::expect_resolve(
1343                    tcx,
1344                    ty::TypingEnv::fully_monomorphized(),
1345                    def_id,
1346                    args,
1347                    span,
1348                );
1349                // `visit_instance_use` was written for "used" item collection but works just as well
1350                // for "mentioned" item collection.
1351                // We can set `is_direct_call`; that just means we'll skip a bunch of shims that anyway
1352                // can't have their own failing constants.
1353                visit_instance_use(tcx, instance, /*is_direct_call*/ true, span, output);
1354            }
1355        }
1356        MentionedItem::Drop(ty) => {
1357            visit_drop_use(tcx, ty, /*is_direct_call*/ true, span, output);
1358        }
1359        MentionedItem::UnsizeCast { source_ty, target_ty } => {
1360            let (source_ty, target_ty) =
1361                find_tails_for_unsizing(tcx.at(span), source_ty, target_ty);
1362            // This could also be a different Unsize instruction, like
1363            // from a fixed sized array to a slice. But we are only
1364            // interested in things that produce a vtable.
1365            if target_ty.is_trait() && !source_ty.is_trait() {
1366                create_mono_items_for_vtable_methods(tcx, target_ty, source_ty, span, output);
1367            }
1368        }
1369        MentionedItem::Closure(source_ty) => {
1370            if let ty::Closure(def_id, args) = *source_ty.kind() {
1371                let instance =
1372                    Instance::resolve_closure(tcx, def_id, args, ty::ClosureKind::FnOnce);
1373                if tcx.should_codegen_locally(instance) {
1374                    output.push(create_fn_mono_item(tcx, instance, span));
1375                }
1376            } else {
1377                bug!()
1378            }
1379        }
1380    }
1381}
1382
1383#[instrument(skip(tcx, output), level = "debug")]
1384fn collect_const_value<'tcx>(
1385    tcx: TyCtxt<'tcx>,
1386    value: mir::ConstValue,
1387    output: &mut MonoItems<'tcx>,
1388) {
1389    match value {
1390        mir::ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => {
1391            collect_alloc(tcx, ptr.provenance.alloc_id(), output)
1392        }
1393        mir::ConstValue::Indirect { alloc_id, .. }
1394        | mir::ConstValue::Slice { alloc_id, meta: _ } => collect_alloc(tcx, alloc_id, output),
1395        _ => {}
1396    }
1397}
1398
1399//=-----------------------------------------------------------------------------
1400// Root Collection
1401//=-----------------------------------------------------------------------------
1402
1403// Find all non-generic items by walking the HIR. These items serve as roots to
1404// start monomorphizing from.
1405#[instrument(skip(tcx, mode), level = "debug")]
1406fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionStrategy) -> Vec<MonoItem<'_>> {
1407    debug!("collecting roots");
1408    let mut roots = MonoItems::new();
1409
1410    {
1411        let entry_fn = tcx.entry_fn(());
1412
1413        debug!("collect_roots: entry_fn = {:?}", entry_fn);
1414
1415        let mut collector = RootCollector { tcx, strategy: mode, entry_fn, output: &mut roots };
1416
1417        let crate_items = tcx.hir_crate_items(());
1418
1419        for id in crate_items.free_items() {
1420            collector.process_item(id);
1421        }
1422
1423        for id in crate_items.impl_items() {
1424            collector.process_impl_item(id);
1425        }
1426
1427        for id in crate_items.nested_bodies() {
1428            collector.process_nested_body(id);
1429        }
1430
1431        collector.push_extra_entry_roots();
1432    }
1433
1434    // We can only codegen items that are instantiable - items all of
1435    // whose predicates hold. Luckily, items that aren't instantiable
1436    // can't actually be used, so we can just skip codegenning them.
1437    roots
1438        .into_iter()
1439        .filter_map(|Spanned { node: mono_item, .. }| {
1440            mono_item.is_instantiable(tcx).then_some(mono_item)
1441        })
1442        .collect()
1443}
1444
1445struct RootCollector<'a, 'tcx> {
1446    tcx: TyCtxt<'tcx>,
1447    strategy: MonoItemCollectionStrategy,
1448    output: &'a mut MonoItems<'tcx>,
1449    entry_fn: Option<(DefId, EntryFnType)>,
1450}
1451
1452impl<'v> RootCollector<'_, 'v> {
1453    fn process_item(&mut self, id: hir::ItemId) {
1454        match self.tcx.def_kind(id.owner_id) {
1455            DefKind::Enum | DefKind::Struct | DefKind::Union => {
1456                if self.strategy == MonoItemCollectionStrategy::Eager
1457                    && !self.tcx.generics_of(id.owner_id).requires_monomorphization(self.tcx)
1458                {
1459                    debug!("RootCollector: ADT drop-glue for `{id:?}`",);
1460                    let id_args =
1461                        ty::GenericArgs::for_item(self.tcx, id.owner_id.to_def_id(), |param, _| {
1462                            match param.kind {
1463                                GenericParamDefKind::Lifetime => {
1464                                    self.tcx.lifetimes.re_erased.into()
1465                                }
1466                                GenericParamDefKind::Type { .. }
1467                                | GenericParamDefKind::Const { .. } => {
1468                                    unreachable!(
1469                                        "`own_requires_monomorphization` check means that \
1470                                we should have no type/const params"
1471                                    )
1472                                }
1473                            }
1474                        });
1475
1476                    // This type is impossible to instantiate, so we should not try to
1477                    // generate a `drop_in_place` instance for it.
1478                    if self.tcx.instantiate_and_check_impossible_predicates((
1479                        id.owner_id.to_def_id(),
1480                        id_args,
1481                    )) {
1482                        return;
1483                    }
1484
1485                    let ty =
1486                        self.tcx.type_of(id.owner_id.to_def_id()).instantiate(self.tcx, id_args);
1487                    assert!(!ty.has_non_region_param());
1488                    visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
1489                }
1490            }
1491            DefKind::GlobalAsm => {
1492                debug!(
1493                    "RootCollector: ItemKind::GlobalAsm({})",
1494                    self.tcx.def_path_str(id.owner_id)
1495                );
1496                self.output.push(dummy_spanned(MonoItem::GlobalAsm(id)));
1497            }
1498            DefKind::Static { .. } => {
1499                let def_id = id.owner_id.to_def_id();
1500                debug!("RootCollector: ItemKind::Static({})", self.tcx.def_path_str(def_id));
1501                self.output.push(dummy_spanned(MonoItem::Static(def_id)));
1502            }
1503            DefKind::Const => {
1504                // Const items only generate mono items if they are actually used somewhere.
1505                // Just declaring them is insufficient.
1506
1507                // If we're collecting items eagerly, then recurse into all constants.
1508                // Otherwise the value is only collected when explicitly mentioned in other items.
1509                if self.strategy == MonoItemCollectionStrategy::Eager {
1510                    if !self.tcx.generics_of(id.owner_id).own_requires_monomorphization()
1511                        && let Ok(val) = self.tcx.const_eval_poly(id.owner_id.to_def_id())
1512                    {
1513                        collect_const_value(self.tcx, val, self.output);
1514                    }
1515                }
1516            }
1517            DefKind::Impl { .. } => {
1518                if self.strategy == MonoItemCollectionStrategy::Eager {
1519                    create_mono_items_for_default_impls(self.tcx, id, self.output);
1520                }
1521            }
1522            DefKind::Fn => {
1523                self.push_if_root(id.owner_id.def_id);
1524            }
1525            _ => {}
1526        }
1527    }
1528
1529    fn process_impl_item(&mut self, id: hir::ImplItemId) {
1530        if matches!(self.tcx.def_kind(id.owner_id), DefKind::AssocFn) {
1531            self.push_if_root(id.owner_id.def_id);
1532        }
1533    }
1534
1535    fn process_nested_body(&mut self, def_id: LocalDefId) {
1536        match self.tcx.def_kind(def_id) {
1537            DefKind::Closure => {
1538                // for 'pub async fn foo(..)' also trying to monomorphize foo::{closure}
1539                let is_pub_fn_coroutine =
1540                    match *self.tcx.type_of(def_id).instantiate_identity().kind() {
1541                        ty::Coroutine(cor_id, _args) => {
1542                            let tcx = self.tcx;
1543                            let parent_id = tcx.parent(cor_id);
1544                            tcx.def_kind(parent_id) == DefKind::Fn
1545                                && tcx.asyncness(parent_id).is_async()
1546                                && tcx.visibility(parent_id).is_public()
1547                        }
1548                        ty::Closure(..) | ty::CoroutineClosure(..) => false,
1549                        _ => unreachable!(),
1550                    };
1551                if (self.strategy == MonoItemCollectionStrategy::Eager || is_pub_fn_coroutine)
1552                    && !self
1553                        .tcx
1554                        .generics_of(self.tcx.typeck_root_def_id(def_id.to_def_id()))
1555                        .requires_monomorphization(self.tcx)
1556                {
1557                    let instance = match *self.tcx.type_of(def_id).instantiate_identity().kind() {
1558                        ty::Closure(def_id, args)
1559                        | ty::Coroutine(def_id, args)
1560                        | ty::CoroutineClosure(def_id, args) => {
1561                            Instance::new_raw(def_id, self.tcx.erase_and_anonymize_regions(args))
1562                        }
1563                        _ => unreachable!(),
1564                    };
1565                    let Ok(instance) = self.tcx.try_normalize_erasing_regions(
1566                        ty::TypingEnv::fully_monomorphized(),
1567                        instance,
1568                    ) else {
1569                        // Don't ICE on an impossible-to-normalize closure.
1570                        return;
1571                    };
1572                    let mono_item = create_fn_mono_item(self.tcx, instance, DUMMY_SP);
1573                    if mono_item.node.is_instantiable(self.tcx) {
1574                        self.output.push(mono_item);
1575                    }
1576                }
1577            }
1578            _ => {}
1579        }
1580    }
1581
1582    fn is_root(&self, def_id: LocalDefId) -> bool {
1583        !self.tcx.generics_of(def_id).requires_monomorphization(self.tcx)
1584            && match self.strategy {
1585                MonoItemCollectionStrategy::Eager => {
1586                    !matches!(self.tcx.codegen_fn_attrs(def_id).inline, InlineAttr::Force { .. })
1587                }
1588                MonoItemCollectionStrategy::Lazy => {
1589                    self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id)
1590                        || self.tcx.is_reachable_non_generic(def_id)
1591                        || self
1592                            .tcx
1593                            .codegen_fn_attrs(def_id)
1594                            .flags
1595                            .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
1596                }
1597            }
1598    }
1599
1600    /// If `def_id` represents a root, pushes it onto the list of
1601    /// outputs. (Note that all roots must be monomorphic.)
1602    #[instrument(skip(self), level = "debug")]
1603    fn push_if_root(&mut self, def_id: LocalDefId) {
1604        if self.is_root(def_id) {
1605            debug!("found root");
1606
1607            let instance = Instance::mono(self.tcx, def_id.to_def_id());
1608            self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
1609        }
1610    }
1611
1612    /// As a special case, when/if we encounter the
1613    /// `main()` function, we also have to generate a
1614    /// monomorphized copy of the start lang item based on
1615    /// the return type of `main`. This is not needed when
1616    /// the user writes their own `start` manually.
1617    fn push_extra_entry_roots(&mut self) {
1618        let Some((main_def_id, EntryFnType::Main { .. })) = self.entry_fn else {
1619            return;
1620        };
1621
1622        let main_instance = Instance::mono(self.tcx, main_def_id);
1623        if self.tcx.should_codegen_locally(main_instance) {
1624            self.output.push(create_fn_mono_item(
1625                self.tcx,
1626                main_instance,
1627                self.tcx.def_span(main_def_id),
1628            ));
1629        }
1630
1631        let Some(start_def_id) = self.tcx.lang_items().start_fn() else {
1632            self.tcx.dcx().emit_fatal(errors::StartNotFound);
1633        };
1634        let main_ret_ty = self.tcx.fn_sig(main_def_id).no_bound_vars().unwrap().output();
1635
1636        // Given that `main()` has no arguments,
1637        // then its return type cannot have
1638        // late-bound regions, since late-bound
1639        // regions must appear in the argument
1640        // listing.
1641        let main_ret_ty = self.tcx.normalize_erasing_regions(
1642            ty::TypingEnv::fully_monomorphized(),
1643            main_ret_ty.no_bound_vars().unwrap(),
1644        );
1645
1646        let start_instance = Instance::expect_resolve(
1647            self.tcx,
1648            ty::TypingEnv::fully_monomorphized(),
1649            start_def_id,
1650            self.tcx.mk_args(&[main_ret_ty.into()]),
1651            DUMMY_SP,
1652        );
1653
1654        self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
1655    }
1656}
1657
1658#[instrument(level = "debug", skip(tcx, output))]
1659fn create_mono_items_for_default_impls<'tcx>(
1660    tcx: TyCtxt<'tcx>,
1661    item: hir::ItemId,
1662    output: &mut MonoItems<'tcx>,
1663) {
1664    let Some(impl_) = tcx.impl_trait_header(item.owner_id) else {
1665        return;
1666    };
1667
1668    if matches!(impl_.polarity, ty::ImplPolarity::Negative) {
1669        return;
1670    }
1671
1672    if tcx.generics_of(item.owner_id).own_requires_monomorphization() {
1673        return;
1674    }
1675
1676    // Lifetimes never affect trait selection, so we are allowed to eagerly
1677    // instantiate an instance of an impl method if the impl (and method,
1678    // which we check below) is only parameterized over lifetime. In that case,
1679    // we use the ReErased, which has no lifetime information associated with
1680    // it, to validate whether or not the impl is legal to instantiate at all.
1681    let only_region_params = |param: &ty::GenericParamDef, _: &_| match param.kind {
1682        GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
1683        GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1684            unreachable!(
1685                "`own_requires_monomorphization` check means that \
1686                we should have no type/const params"
1687            )
1688        }
1689    };
1690    let impl_args = GenericArgs::for_item(tcx, item.owner_id.to_def_id(), only_region_params);
1691    let trait_ref = impl_.trait_ref.instantiate(tcx, impl_args);
1692
1693    // Unlike 'lazy' monomorphization that begins by collecting items transitively
1694    // called by `main` or other global items, when eagerly monomorphizing impl
1695    // items, we never actually check that the predicates of this impl are satisfied
1696    // in a empty param env (i.e. with no assumptions).
1697    //
1698    // Even though this impl has no type or const generic parameters, because we don't
1699    // consider higher-ranked predicates such as `for<'a> &'a mut [u8]: Copy` to
1700    // be trivially false. We must now check that the impl has no impossible-to-satisfy
1701    // predicates.
1702    if tcx.instantiate_and_check_impossible_predicates((item.owner_id.to_def_id(), impl_args)) {
1703        return;
1704    }
1705
1706    let typing_env = ty::TypingEnv::fully_monomorphized();
1707    let trait_ref = tcx.normalize_erasing_regions(typing_env, trait_ref);
1708    let overridden_methods = tcx.impl_item_implementor_ids(item.owner_id);
1709    for method in tcx.provided_trait_methods(trait_ref.def_id) {
1710        if overridden_methods.contains_key(&method.def_id) {
1711            continue;
1712        }
1713
1714        if tcx.generics_of(method.def_id).own_requires_monomorphization() {
1715            continue;
1716        }
1717
1718        // As mentioned above, the method is legal to eagerly instantiate if it
1719        // only has lifetime generic parameters. This is validated by calling
1720        // `own_requires_monomorphization` on both the impl and method.
1721        let args = trait_ref.args.extend_to(tcx, method.def_id, only_region_params);
1722        let instance = ty::Instance::expect_resolve(tcx, typing_env, method.def_id, args, DUMMY_SP);
1723
1724        let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
1725        if mono_item.node.is_instantiable(tcx) && tcx.should_codegen_locally(instance) {
1726            output.push(mono_item);
1727        }
1728    }
1729}
1730
1731//=-----------------------------------------------------------------------------
1732// Top-level entry point, tying it all together
1733//=-----------------------------------------------------------------------------
1734
1735#[instrument(skip(tcx, strategy), level = "debug")]
1736pub(crate) fn collect_crate_mono_items<'tcx>(
1737    tcx: TyCtxt<'tcx>,
1738    strategy: MonoItemCollectionStrategy,
1739) -> (Vec<MonoItem<'tcx>>, UsageMap<'tcx>) {
1740    let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
1741
1742    let roots = tcx
1743        .sess
1744        .time("monomorphization_collector_root_collections", || collect_roots(tcx, strategy));
1745
1746    debug!("building mono item graph, beginning at roots");
1747
1748    let state = SharedState {
1749        visited: MTLock::new(UnordSet::default()),
1750        mentioned: MTLock::new(UnordSet::default()),
1751        usage_map: MTLock::new(UsageMap::new()),
1752    };
1753    let recursion_limit = tcx.recursion_limit();
1754
1755    tcx.sess.time("monomorphization_collector_graph_walk", || {
1756        par_for_each_in(roots, |root| {
1757            collect_items_root(tcx, dummy_spanned(*root), &state, recursion_limit);
1758        });
1759    });
1760
1761    // The set of MonoItems was created in an inherently indeterministic order because
1762    // of parallelism. We sort it here to ensure that the output is deterministic.
1763    let mono_items = tcx.with_stable_hashing_context(move |ref hcx| {
1764        state.visited.into_inner().into_sorted(hcx, true)
1765    });
1766
1767    (mono_items, state.usage_map.into_inner())
1768}
1769
1770pub(crate) fn provide(providers: &mut Providers) {
1771    providers.hooks.should_codegen_locally = should_codegen_locally;
1772    providers.items_of_instance = items_of_instance;
1773}