1//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
2//! fields. This file defines a `Constructor` enum and various operations to manipulate them.
3//!
4//! There are two important bits of core logic in this file: constructor inclusion and constructor
5//! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
6//! is straightforward and defined in [`Constructor::is_covered_by`].
7//!
8//! Constructor splitting is mentioned in [`crate::usefulness`] but not detailed. We describe it
9//! precisely here.
10//!
11//!
12//!
13//! # Constructor grouping and splitting
14//!
15//! As explained in the corresponding section in [`crate::usefulness`], to make usefulness tractable
16//! we need to group together constructors that have the same effect when they are used to
17//! specialize the matrix.
18//!
19//! Example:
20//! ```compile_fail,E0004
21//! match (0, false) {
22//! (0 ..=100, true) => {}
23//! (50..=150, false) => {}
24//! (0 ..=200, _) => {}
25//! }
26//! ```
27//!
28//! In this example we can restrict specialization to 5 cases: `0..50`, `50..=100`, `101..=150`,
29//! `151..=200` and `200..`.
30//!
31//! In [`crate::usefulness`], we had said that `specialize` only takes value-only constructors. We
32//! now relax this restriction: we allow `specialize` to take constructors like `0..50` as long as
33//! we're careful to only do that with constructors that make sense. For example, `specialize(0..50,
34//! (0..=100, true))` is sensible, but `specialize(50..=200, (0..=100, true))` is not.
35//!
36//! Constructor splitting looks at the constructors in the first column of the matrix and constructs
37//! such a sensible set of constructors. Formally, we want to find a smallest disjoint set of
38//! constructors:
39//! - Whose union covers the whole type, and
40//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
41//! each either disjoint with or covered by any given column constructor).
42//!
43//! We compute this in two steps: first [`PatCx::ctors_for_ty`] determines the
44//! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
45//! column of constructors and splits the set into groups accordingly. The precise invariants of
46//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
47//!
48//! Constructor splitting has two interesting special cases: integer range splitting (see
49//! [`IntRange::split`]) and slice splitting (see [`Slice::split`]).
50//!
51//!
52//!
53//! # The `Missing` constructor
54//!
55//! We detail a special case of constructor splitting that is a bit subtle. Take the following:
56//!
57//! ```
58//! enum Direction { North, South, East, West }
59//! # let wind = (Direction::North, 0u8);
60//! match wind {
61//! (Direction::North, 50..) => {}
62//! (_, _) => {}
63//! }
64//! ```
65//!
66//! Here we expect constructor splitting to output two cases: `North`, and "everything else". This
67//! "everything else" is represented by [`Constructor::Missing`]. Unlike other constructors, it's a
68//! bit contextual: to know the exact list of constructors it represents we have to look at the
69//! column. In practice however we don't need to, because by construction it only matches rows that
70//! have wildcards. This is how this constructor is special: the only constructor that covers it is
71//! `Wildcard`.
72//!
73//! The only place where we care about which constructors `Missing` represents is in diagnostics
74//! (see `crate::usefulness::WitnessMatrix::apply_constructor`).
75//!
76//! We choose whether to specialize with `Missing` in
77//! `crate::usefulness::compute_exhaustiveness_and_usefulness`.
78//!
79//!
80//!
81//! ## Empty types, empty constructors, and the `exhaustive_patterns` feature
82//!
83//! An empty type is a type that has no valid value, like `!`, `enum Void {}`, or `Result<!, !>`.
84//! They require careful handling.
85//!
86//! First, for soundness reasons related to the possible existence of invalid values, by default we
87//! don't treat empty types as empty. We force them to be matched with wildcards. Except if the
88//! `exhaustive_patterns` feature is turned on, in which case we do treat them as empty. And also
89//! except if the type has no constructors (like `enum Void {}` but not like `Result<!, !>`), we
90//! specifically allow `match void {}` to be exhaustive. There are additionally considerations of
91//! place validity that are handled in `crate::usefulness`. Yes this is a bit tricky.
92//!
93//! The second thing is that regardless of the above, it is always allowed to use all the
94//! constructors of a type. For example, all the following is ok:
95//!
96//! ```rust,ignore(example)
97//! # #![feature(never_type)]
98//! # #![feature(exhaustive_patterns)]
99//! fn foo(x: Option<!>) {
100//! match x {
101//! None => {}
102//! Some(_) => {}
103//! }
104//! }
105//! fn bar(x: &[!]) -> u32 {
106//! match x {
107//! [] => 1,
108//! [_] => 2,
109//! [_, _] => 3,
110//! }
111//! }
112//! ```
113//!
114//! Moreover, take the following:
115//!
116//! ```rust
117//! # #![feature(never_type)]
118//! # #![feature(exhaustive_patterns)]
119//! # let x = None::<!>;
120//! match x {
121//! None => {}
122//! }
123//! ```
124//!
125//! On a normal type, we would identify `Some` as missing and tell the user. If `x: Option<!>`
126//! however (and `exhaustive_patterns` is on), it's ok to omit `Some`. When listing the constructors
127//! of a type, we must therefore track which can be omitted.
128//!
129//! Let's call "empty" a constructor that matches no valid value for the type, like `Some` for the
130//! type `Option<!>`. What this all means is that `ConstructorSet` must know which constructors are
131//! empty. The difference between empty and nonempty constructors is that empty constructors need
132//! not be present for the match to be exhaustive.
133//!
134//! A final remark: empty constructors of arity 0 break specialization, we must avoid them. The
135//! reason is that if we specialize by them, nothing remains to witness the emptiness; the rest of
136//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
137//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
138//!
139//! This is all handled by [`PatCx::ctors_for_ty`] and
140//! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
141//!
142//!
143//! ## Unions
144//!
145//! Unions allow us to match a value via several overlapping representations at the same time. For
146//! example, the following is exhaustive because when seeing the value as a boolean we handled all
147//! possible cases (other cases such as `n == 3` would trigger UB).
148//!
149//! ```rust
150//! # fn main() {
151//! union U8AsBool {
152//! n: u8,
153//! b: bool,
154//! }
155//! let x = U8AsBool { n: 1 };
156//! unsafe {
157//! match x {
158//! U8AsBool { n: 2 } => {}
159//! U8AsBool { b: true } => {}
160//! U8AsBool { b: false } => {}
161//! }
162//! }
163//! # }
164//! ```
165//!
166//! Pattern-matching has no knowledge that e.g. `false as u8 == 0`, so the values we consider in the
167//! algorithm look like `U8AsBool { b: true, n: 2 }`. In other words, for the most part a union is
168//! treated like a struct with the same fields. The difference lies in how we construct witnesses of
169//! non-exhaustiveness.
170//!
171//!
172//! ## Opaque patterns
173//!
174//! Some patterns, such as constants that are not allowed to be matched structurally, cannot be
175//! inspected, which we handle with `Constructor::Opaque`. Since we know nothing of these patterns,
176//! we assume they never cover each other. In order to respect the invariants of
177//! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.
178179use std::cmp::{self, Ordering, max, min};
180use std::fmt;
181use std::iter::once;
182183use rustc_apfloat::ieee::{DoubleS, HalfS, IeeeFloat, QuadS, SingleS};
184use rustc_index::IndexVec;
185use rustc_index::bit_set::{DenseBitSet, GrowableBitSet};
186use smallvec::SmallVec;
187188use self::Constructor::*;
189use self::MaybeInfiniteInt::*;
190use self::SliceKind::*;
191use crate::PatCx;
192193/// Whether we have seen a constructor in the column or not.
194#[derive(#[automatically_derived]
impl ::core::fmt::Debug for Presence {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self {
Presence::Unseen => "Unseen",
Presence::Seen => "Seen",
})
}
}Debug, #[automatically_derived]
impl ::core::clone::Clone for Presence {
#[inline]
fn clone(&self) -> Presence { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for Presence { }Copy, #[automatically_derived]
impl ::core::cmp::PartialEq for Presence {
#[inline]
fn eq(&self, other: &Presence) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr
}
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for Presence {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) -> () {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialOrd for Presence {
#[inline]
fn partial_cmp(&self, other: &Presence)
-> ::core::option::Option<::core::cmp::Ordering> {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
::core::cmp::PartialOrd::partial_cmp(&__self_discr, &__arg1_discr)
}
}PartialOrd, #[automatically_derived]
impl ::core::cmp::Ord for Presence {
#[inline]
fn cmp(&self, other: &Presence) -> ::core::cmp::Ordering {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
::core::cmp::Ord::cmp(&__self_discr, &__arg1_discr)
}
}Ord)]
195enum Presence {
196 Unseen,
197 Seen,
198}
199200#[derive(#[automatically_derived]
impl ::core::fmt::Debug for RangeEnd {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self {
RangeEnd::Included => "Included",
RangeEnd::Excluded => "Excluded",
})
}
}Debug, #[automatically_derived]
impl ::core::marker::Copy for RangeEnd { }Copy, #[automatically_derived]
impl ::core::clone::Clone for RangeEnd {
#[inline]
fn clone(&self) -> RangeEnd { *self }
}Clone, #[automatically_derived]
impl ::core::cmp::PartialEq for RangeEnd {
#[inline]
fn eq(&self, other: &RangeEnd) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr
}
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for RangeEnd {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) -> () {}
}Eq)]
201pub enum RangeEnd {
202 Included,
203 Excluded,
204}
205206impl fmt::Displayfor RangeEnd {
207fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
208f.write_str(match self {
209 RangeEnd::Included => "..=",
210 RangeEnd::Excluded => "..",
211 })
212 }
213}
214215/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
216/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
217/// `255`. See `signed_bias` for details.
218#[derive(#[automatically_derived]
impl ::core::fmt::Debug for MaybeInfiniteInt {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
MaybeInfiniteInt::NegInfinity =>
::core::fmt::Formatter::write_str(f, "NegInfinity"),
MaybeInfiniteInt::Finite(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Finite",
&__self_0),
MaybeInfiniteInt::PosInfinity =>
::core::fmt::Formatter::write_str(f, "PosInfinity"),
}
}
}Debug, #[automatically_derived]
impl ::core::clone::Clone for MaybeInfiniteInt {
#[inline]
fn clone(&self) -> MaybeInfiniteInt {
let _: ::core::clone::AssertParamIsClone<u128>;
*self
}
}Clone, #[automatically_derived]
impl ::core::marker::Copy for MaybeInfiniteInt { }Copy, #[automatically_derived]
impl ::core::cmp::PartialEq for MaybeInfiniteInt {
#[inline]
fn eq(&self, other: &MaybeInfiniteInt) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr &&
match (self, other) {
(MaybeInfiniteInt::Finite(__self_0),
MaybeInfiniteInt::Finite(__arg1_0)) => __self_0 == __arg1_0,
_ => true,
}
}
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for MaybeInfiniteInt {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) -> () {
let _: ::core::cmp::AssertParamIsEq<u128>;
}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialOrd for MaybeInfiniteInt {
#[inline]
fn partial_cmp(&self, other: &MaybeInfiniteInt)
-> ::core::option::Option<::core::cmp::Ordering> {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
match (self, other) {
(MaybeInfiniteInt::Finite(__self_0),
MaybeInfiniteInt::Finite(__arg1_0)) =>
::core::cmp::PartialOrd::partial_cmp(__self_0, __arg1_0),
_ =>
::core::cmp::PartialOrd::partial_cmp(&__self_discr,
&__arg1_discr),
}
}
}PartialOrd, #[automatically_derived]
impl ::core::cmp::Ord for MaybeInfiniteInt {
#[inline]
fn cmp(&self, other: &MaybeInfiniteInt) -> ::core::cmp::Ordering {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
match ::core::cmp::Ord::cmp(&__self_discr, &__arg1_discr) {
::core::cmp::Ordering::Equal =>
match (self, other) {
(MaybeInfiniteInt::Finite(__self_0),
MaybeInfiniteInt::Finite(__arg1_0)) =>
::core::cmp::Ord::cmp(__self_0, __arg1_0),
_ => ::core::cmp::Ordering::Equal,
},
cmp => cmp,
}
}
}Ord)]
219pub enum MaybeInfiniteInt {
220 NegInfinity,
221/// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite_{int,uint}`.
222#[non_exhaustive]
223Finite(u128),
224 PosInfinity,
225}
226227impl MaybeInfiniteInt {
228pub fn new_finite_uint(bits: u128) -> Self {
229Finite(bits)
230 }
231pub fn new_finite_int(bits: u128, size: u64) -> Self {
232// Perform a shift if the underlying types are signed, which makes the interval arithmetic
233 // type-independent.
234let bias = 1u128 << (size - 1);
235Finite(bits ^ bias)
236 }
237238pub fn as_finite_uint(self) -> Option<u128> {
239match self {
240Finite(bits) => Some(bits),
241_ => None,
242 }
243 }
244pub fn as_finite_int(self, size: u64) -> Option<u128> {
245// We decode the shift.
246match self {
247Finite(bits) => {
248let bias = 1u128 << (size - 1);
249Some(bits ^ bias)
250 }
251_ => None,
252 }
253 }
254255/// Note: this will not turn a finite value into an infinite one or vice-versa.
256pub fn minus_one(self) -> Option<Self> {
257match self {
258Finite(n) => n.checked_sub(1).map(Finite),
259 x => Some(x),
260 }
261 }
262/// Note: this will turn `u128::MAX` into `PosInfinity`. This means `plus_one` and `minus_one`
263 /// are not strictly inverses, but that poses no problem in our use of them.
264 /// this will not turn a finite value into an infinite one or vice-versa.
265pub fn plus_one(self) -> Option<Self> {
266match self {
267Finite(n) => match n.checked_add(1) {
268Some(m) => Some(Finite(m)),
269None => Some(PosInfinity),
270 },
271 x => Some(x),
272 }
273 }
274}
275276/// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always
277/// store a contiguous range.
278///
279/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
280/// space: i.e., `range.lo < range.hi`.
281#[derive(#[automatically_derived]
impl ::core::clone::Clone for IntRange {
#[inline]
fn clone(&self) -> IntRange {
let _: ::core::clone::AssertParamIsClone<MaybeInfiniteInt>;
*self
}
}Clone, #[automatically_derived]
impl ::core::marker::Copy for IntRange { }Copy, #[automatically_derived]
impl ::core::cmp::PartialEq for IntRange {
#[inline]
fn eq(&self, other: &IntRange) -> bool {
self.lo == other.lo && self.hi == other.hi
}
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for IntRange {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) -> () {
let _: ::core::cmp::AssertParamIsEq<MaybeInfiniteInt>;
}
}Eq)]
282pub struct IntRange {
283pub lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
284pub hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
285}
286287impl IntRange {
288/// Best effort; will not know that e.g. `255u8..` is a singleton.
289pub fn is_singleton(&self) -> bool {
290// Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
291 // to infinite, this correctly only detects ranges that contain exactly one `Finite(x)`.
292self.lo.plus_one() == Some(self.hi)
293 }
294295/// Construct a singleton range.
296 /// `x` must be a `Finite(_)` value.
297#[inline]
298pub fn from_singleton(x: MaybeInfiniteInt) -> IntRange {
299// `unwrap()` is ok on a finite value
300IntRange { lo: x, hi: x.plus_one().unwrap() }
301 }
302303/// Construct a range with these boundaries.
304 /// `lo` must not be `PosInfinity`. `hi` must not be `NegInfinity`.
305#[inline]
306pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
307if end == RangeEnd::Included {
308hi = hi.plus_one().unwrap();
309 }
310if lo >= hi {
311// This should have been caught earlier by E0030.
312{
::core::panicking::panic_fmt(format_args!("malformed range pattern: {0:?}..{1:?}",
lo, hi));
};panic!("malformed range pattern: {lo:?}..{hi:?}");
313 }
314IntRange { lo, hi }
315 }
316317#[inline]
318pub fn is_subrange(&self, other: &Self) -> bool {
319other.lo <= self.lo && self.hi <= other.hi
320 }
321322fn intersection(&self, other: &Self) -> Option<Self> {
323if self.lo < other.hi && other.lo < self.hi {
324Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) })
325 } else {
326None327 }
328 }
329330/// Partition a range of integers into disjoint subranges. This does constructor splitting for
331 /// integer ranges as explained at the top of the file.
332 ///
333 /// This returns an output that covers `self`. The output is split so that the only
334 /// intersections between an output range and a column range are inclusions. No output range
335 /// straddles the boundary of one of the inputs.
336 ///
337 /// Additionally, we track for each output range whether it is covered by one of the column ranges or not.
338 ///
339 /// The following input:
340 /// ```text
341 /// (--------------------------) // `self`
342 /// (------) (----------) (-)
343 /// (------) (--------)
344 /// ```
345 /// is first intersected with `self`:
346 /// ```text
347 /// (--------------------------) // `self`
348 /// (----) (----------) (-)
349 /// (------) (--------)
350 /// ```
351 /// and then iterated over as follows:
352 /// ```text
353 /// (-(--)-(-)-(------)-)--(-)-
354 /// ```
355 /// where each sequence of dashes is an output range, and dashes outside parentheses are marked
356 /// as `Presence::Missing`.
357 ///
358 /// ## `isize`/`usize`
359 ///
360 /// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize`
361 /// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for
362 /// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are
363 /// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`.
364 /// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and
365 /// not others. This was decided in <https://github.com/rust-lang/rfcs/pull/2591>.
366 ///
367 /// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and
368 /// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these
369 /// fictitious ranges sensibly.
370fn split(
371&self,
372 column_ranges: impl Iterator<Item = IntRange>,
373 ) -> impl Iterator<Item = (Presence, IntRange)> {
374// The boundaries of ranges in `column_ranges` intersected with `self`.
375 // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts
376 // a range and -1 if it ends it. When the count is > 0 between two boundaries, we
377 // are within an input range.
378let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges379 .filter_map(|r| self.intersection(&r))
380 .flat_map(|r| [(r.lo, 1), (r.hi, -1)])
381 .collect();
382// We sort by boundary, and for each boundary we sort the "closing parentheses" first. The
383 // order of +1/-1 for a same boundary value is actually irrelevant, because we only look at
384 // the accumulated count between distinct boundary values.
385boundaries.sort_unstable();
386387// Accumulate parenthesis counts.
388let mut paren_counter = 0isize;
389// Gather pairs of adjacent boundaries.
390let mut prev_bdy = self.lo;
391boundaries392 .into_iter()
393// End with the end of the range. The count is ignored.
394.chain(once((self.hi, 0)))
395// List pairs of adjacent boundaries and the count between them.
396.map(move |(bdy, delta)| {
397// `delta` affects the count as we cross `bdy`, so the relevant count between
398 // `prev_bdy` and `bdy` is untouched by `delta`.
399let ret = (prev_bdy, paren_counter, bdy);
400prev_bdy = bdy;
401paren_counter += delta;
402ret403 })
404// Skip empty ranges.
405.filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy)
406// Convert back to ranges.
407.map(move |(prev_bdy, paren_count, bdy)| {
408use Presence::*;
409let presence = if paren_count > 0 { Seen } else { Unseen };
410let range = IntRange { lo: prev_bdy, hi: bdy };
411 (presence, range)
412 })
413 }
414}
415416/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern
417/// first.
418impl fmt::Debugfor IntRange {
419fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
420if self.is_singleton() {
421// Only finite ranges can be singletons.
422let Finite(lo) = self.lo else { ::core::panicking::panic("internal error: entered unreachable code")unreachable!() };
423f.write_fmt(format_args!("{0}", lo))write!(f, "{lo}")?;
424 } else {
425if let Finite(lo) = self.lo {
426f.write_fmt(format_args!("{0}", lo))write!(f, "{lo}")?;
427 }
428f.write_fmt(format_args!("{0}", RangeEnd::Excluded))write!(f, "{}", RangeEnd::Excluded)?;
429if let Finite(hi) = self.hi {
430f.write_fmt(format_args!("{0}", hi))write!(f, "{hi}")?;
431 }
432 }
433Ok(())
434 }
435}
436437#[derive(#[automatically_derived]
impl ::core::marker::Copy for SliceKind { }Copy, #[automatically_derived]
impl ::core::clone::Clone for SliceKind {
#[inline]
fn clone(&self) -> SliceKind {
let _: ::core::clone::AssertParamIsClone<usize>;
*self
}
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for SliceKind {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
SliceKind::FixedLen(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f,
"FixedLen", &__self_0),
SliceKind::VarLen(__self_0, __self_1) =>
::core::fmt::Formatter::debug_tuple_field2_finish(f, "VarLen",
__self_0, &__self_1),
}
}
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for SliceKind {
#[inline]
fn eq(&self, other: &SliceKind) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr &&
match (self, other) {
(SliceKind::FixedLen(__self_0), SliceKind::FixedLen(__arg1_0))
=> __self_0 == __arg1_0,
(SliceKind::VarLen(__self_0, __self_1),
SliceKind::VarLen(__arg1_0, __arg1_1)) =>
__self_0 == __arg1_0 && __self_1 == __arg1_1,
_ => unsafe { ::core::intrinsics::unreachable() }
}
}
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for SliceKind {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) -> () {
let _: ::core::cmp::AssertParamIsEq<usize>;
}
}Eq)]
438pub enum SliceKind {
439/// Patterns of length `n` (`[x, y]`).
440FixedLen(usize),
441/// Patterns using the `..` notation (`[x, .., y]`).
442 /// Captures any array constructor of `length >= i + j`.
443 /// In the case where `array_len` is `Some(_)`,
444 /// this indicates that we only care about the first `i` and the last `j` values of the array,
445 /// and everything in between is a wildcard `_`.
446VarLen(usize, usize),
447}
448449impl SliceKind {
450pub fn arity(self) -> usize {
451match self {
452FixedLen(length) => length,
453VarLen(prefix, suffix) => prefix + suffix,
454 }
455 }
456457/// Whether this pattern includes patterns of length `other_len`.
458fn covers_length(self, other_len: usize) -> bool {
459match self {
460FixedLen(len) => len == other_len,
461VarLen(prefix, suffix) => prefix + suffix <= other_len,
462 }
463 }
464}
465466/// A constructor for array and slice patterns.
467#[derive(#[automatically_derived]
impl ::core::marker::Copy for Slice { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Slice {
#[inline]
fn clone(&self) -> Slice {
let _: ::core::clone::AssertParamIsClone<Option<usize>>;
let _: ::core::clone::AssertParamIsClone<SliceKind>;
*self
}
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Slice {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::debug_struct_field2_finish(f, "Slice",
"array_len", &self.array_len, "kind", &&self.kind)
}
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for Slice {
#[inline]
fn eq(&self, other: &Slice) -> bool {
self.array_len == other.array_len && self.kind == other.kind
}
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for Slice {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) -> () {
let _: ::core::cmp::AssertParamIsEq<Option<usize>>;
let _: ::core::cmp::AssertParamIsEq<SliceKind>;
}
}Eq)]
468pub struct Slice {
469/// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
470pub(crate) array_len: Option<usize>,
471/// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
472pub(crate) kind: SliceKind,
473}
474475impl Slice {
476pub fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
477let kind = match (array_len, kind) {
478// If the middle `..` has length 0, we effectively have a fixed-length pattern.
479(Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
480 (Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => {
::core::panicking::panic_fmt(format_args!("Slice pattern of length {0} longer than its array length {1}",
prefix + suffix, len));
}panic!(
481"Slice pattern of length {} longer than its array length {len}",
482 prefix + suffix
483 ),
484_ => kind,
485 };
486Slice { array_len, kind }
487 }
488489pub fn arity(self) -> usize {
490self.kind.arity()
491 }
492493/// See `Constructor::is_covered_by`
494fn is_covered_by(self, other: Self) -> bool {
495other.kind.covers_length(self.arity())
496 }
497498/// This computes constructor splitting for variable-length slices, as explained at the top of
499 /// the file.
500 ///
501 /// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x,
502 /// _, _, y] | etc`. The corresponding value constructors are fixed-length array constructors of
503 /// corresponding lengths. We obviously can't list this infinitude of constructors.
504 /// Thankfully, it turns out that for each finite set of slice patterns, all sufficiently large
505 /// array lengths are equivalent.
506 ///
507 /// Let's look at an example, where we are trying to split the last pattern:
508 /// ```
509 /// # fn foo(x: &[bool]) {
510 /// match x {
511 /// [true, true, ..] => {}
512 /// [.., false, false] => {}
513 /// [..] => {}
514 /// }
515 /// # }
516 /// ```
517 /// Here are the results of specialization for the first few lengths:
518 /// ```
519 /// # fn foo(x: &[bool]) { match x {
520 /// // length 0
521 /// [] => {}
522 /// // length 1
523 /// [_] => {}
524 /// // length 2
525 /// [true, true] => {}
526 /// [false, false] => {}
527 /// [_, _] => {}
528 /// // length 3
529 /// [true, true, _ ] => {}
530 /// [_, false, false] => {}
531 /// [_, _, _ ] => {}
532 /// // length 4
533 /// [true, true, _, _ ] => {}
534 /// [_, _, false, false] => {}
535 /// [_, _, _, _ ] => {}
536 /// // length 5
537 /// [true, true, _, _, _ ] => {}
538 /// [_, _, _, false, false] => {}
539 /// [_, _, _, _, _ ] => {}
540 /// # _ => {}
541 /// # }}
542 /// ```
543 ///
544 /// We see that above length 4, we are simply inserting columns full of wildcards in the middle.
545 /// This means that specialization and witness computation with slices of length `l >= 4` will
546 /// give equivalent results regardless of `l`. This applies to any set of slice patterns: there
547 /// will be a length `L` above which all lengths behave the same. This is exactly what we need
548 /// for constructor splitting.
549 ///
550 /// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just
551 /// saw, we can split this in two: lengths below `L` are treated individually with a
552 /// fixed-length slice each; lengths above `L` are grouped into a single variable-length slice
553 /// constructor.
554 ///
555 /// For each variable-length slice pattern `p` with a prefix of length `plₚ` and suffix of
556 /// length `slₚ`, only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as
557 /// long as `L` is positive (to avoid concerns about empty types), all elements after the
558 /// maximum prefix length and before the maximum suffix length are not examined by any
559 /// variable-length pattern, and therefore can be ignored. This gives us a way to compute `L`.
560 ///
561 /// Additionally, if fixed-length patterns exist, we must pick an `L` large enough to miss them,
562 /// so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`.
563 /// `max_slice` below will be made to have this arity `L`.
564 ///
565 /// If `self` is fixed-length, it is returned as-is.
566 ///
567 /// Additionally, we track for each output slice whether it is covered by one of the column slices or not.
568fn split(
569self,
570 column_slices: impl Iterator<Item = Slice>,
571 ) -> impl Iterator<Item = (Presence, Slice)> {
572// Range of lengths below `L`.
573let smaller_lengths;
574let arity = self.arity();
575let mut max_slice = self.kind;
576// Tracks the smallest variable-length slice we've seen. Any slice arity above it is
577 // therefore `Presence::Seen` in the column.
578let mut min_var_len = usize::MAX;
579// Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
580let mut seen_fixed_lens = GrowableBitSet::new_empty();
581match &mut max_slice {
582VarLen(max_prefix_len, max_suffix_len) => {
583// A length larger than any fixed-length slice encountered.
584 // We start at 1 in case the subtype is empty because in that case the zero-length
585 // slice must be treated separately from the rest.
586let mut fixed_len_upper_bound = 1;
587// We grow `max_slice` to be larger than all slices encountered, as described above.
588 // `L` is `max_slice.arity()`. For diagnostics, we keep the prefix and suffix
589 // lengths separate.
590for slice in column_slices {
591match slice.kind {
592 FixedLen(len) => {
593 fixed_len_upper_bound = cmp::max(fixed_len_upper_bound, len + 1);
594 seen_fixed_lens.insert(len);
595 }
596 VarLen(prefix, suffix) => {
597*max_prefix_len = cmp::max(*max_prefix_len, prefix);
598*max_suffix_len = cmp::max(*max_suffix_len, suffix);
599 min_var_len = cmp::min(min_var_len, prefix + suffix);
600 }
601 }
602 }
603// If `fixed_len_upper_bound >= L`, we set `L` to `fixed_len_upper_bound`.
604if let Some(delta) =
605fixed_len_upper_bound.checked_sub(*max_prefix_len + *max_suffix_len)
606 {
607*max_prefix_len += delta608 }
609610// We cap the arity of `max_slice` at the array size.
611match self.array_len {
612Some(len) if max_slice.arity() >= len => max_slice = FixedLen(len),
613_ => {}
614 }
615616smaller_lengths = match self.array_len {
617// The only admissible fixed-length slice is one of the array size. Whether `max_slice`
618 // is fixed-length or variable-length, it will be the only relevant slice to output
619 // here.
620Some(_) => 0..0, // empty range
621 // We need to cover all arities in the range `(arity..infinity)`. We split that
622 // range into two: lengths smaller than `max_slice.arity()` are treated
623 // independently as fixed-lengths slices, and lengths above are captured by
624 // `max_slice`.
625None => self.arity()..max_slice.arity(),
626 };
627 }
628FixedLen(_) => {
629// No need to split here. We only track presence.
630for slice in column_slices {
631match slice.kind {
632 FixedLen(len) => {
633if len == arity {
634 seen_fixed_lens.insert(len);
635 }
636 }
637 VarLen(prefix, suffix) => {
638 min_var_len = cmp::min(min_var_len, prefix + suffix);
639 }
640 }
641 }
642smaller_lengths = 0..0;
643 }
644 };
645646smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
647let arity = kind.arity();
648let seen = if min_var_len <= arity || seen_fixed_lens.contains(arity) {
649 Presence::Seen650 } else {
651 Presence::Unseen652 };
653 (seen, Slice::new(self.array_len, kind))
654 })
655 }
656}
657658/// A globally unique id to distinguish `Opaque` patterns.
659#[derive(#[automatically_derived]
impl ::core::clone::Clone for OpaqueId {
#[inline]
fn clone(&self) -> OpaqueId {
OpaqueId(::core::clone::Clone::clone(&self.0))
}
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for OpaqueId {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::debug_tuple_field1_finish(f, "OpaqueId",
&&self.0)
}
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for OpaqueId {
#[inline]
fn eq(&self, other: &OpaqueId) -> bool { self.0 == other.0 }
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for OpaqueId {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) -> () {
let _: ::core::cmp::AssertParamIsEq<u32>;
}
}Eq)]
660pub struct OpaqueId(u32);
661662impl OpaqueId {
663pub fn new() -> Self {
664use std::sync::atomic::{AtomicU32, Ordering};
665static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
666OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
667 }
668}
669670/// A value can be decomposed into a constructor applied to some fields. This struct represents
671/// the constructor. See also `Fields`.
672///
673/// `pat_constructor` retrieves the constructor corresponding to a pattern.
674/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
675/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
676/// `Fields`.
677#[derive(#[automatically_derived]
impl<Cx: ::core::fmt::Debug + PatCx> ::core::fmt::Debug for Constructor<Cx>
where Cx::VariantIdx: ::core::fmt::Debug, Cx::StrLit: ::core::fmt::Debug,
Cx::Ty: ::core::fmt::Debug {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
Constructor::Struct =>
::core::fmt::Formatter::write_str(f, "Struct"),
Constructor::Variant(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f,
"Variant", &__self_0),
Constructor::Ref => ::core::fmt::Formatter::write_str(f, "Ref"),
Constructor::Slice(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Slice",
&__self_0),
Constructor::UnionField =>
::core::fmt::Formatter::write_str(f, "UnionField"),
Constructor::Bool(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Bool",
&__self_0),
Constructor::IntRange(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f,
"IntRange", &__self_0),
Constructor::F16Range(__self_0, __self_1, __self_2) =>
::core::fmt::Formatter::debug_tuple_field3_finish(f,
"F16Range", __self_0, __self_1, &__self_2),
Constructor::F32Range(__self_0, __self_1, __self_2) =>
::core::fmt::Formatter::debug_tuple_field3_finish(f,
"F32Range", __self_0, __self_1, &__self_2),
Constructor::F64Range(__self_0, __self_1, __self_2) =>
::core::fmt::Formatter::debug_tuple_field3_finish(f,
"F64Range", __self_0, __self_1, &__self_2),
Constructor::F128Range(__self_0, __self_1, __self_2) =>
::core::fmt::Formatter::debug_tuple_field3_finish(f,
"F128Range", __self_0, __self_1, &__self_2),
Constructor::Str(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Str",
&__self_0),
Constructor::DerefPattern(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f,
"DerefPattern", &__self_0),
Constructor::Opaque(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Opaque",
&__self_0),
Constructor::Or => ::core::fmt::Formatter::write_str(f, "Or"),
Constructor::Wildcard =>
::core::fmt::Formatter::write_str(f, "Wildcard"),
Constructor::Never =>
::core::fmt::Formatter::write_str(f, "Never"),
Constructor::NonExhaustive =>
::core::fmt::Formatter::write_str(f, "NonExhaustive"),
Constructor::Hidden =>
::core::fmt::Formatter::write_str(f, "Hidden"),
Constructor::Missing =>
::core::fmt::Formatter::write_str(f, "Missing"),
Constructor::PrivateUninhabited =>
::core::fmt::Formatter::write_str(f, "PrivateUninhabited"),
}
}
}Debug)]
678pub enum Constructor<Cx: PatCx> {
679/// Tuples and structs.
680Struct,
681/// Enum variants.
682Variant(Cx::VariantIdx),
683/// References
684Ref,
685/// Array and slice patterns.
686Slice(Slice),
687/// Union field accesses.
688UnionField,
689/// Booleans
690Bool(bool),
691/// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
692IntRange(IntRange),
693/// Ranges of floating-point literal values (`2.0..=5.2`).
694F16Range(IeeeFloat<HalfS>, IeeeFloat<HalfS>, RangeEnd),
695 F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
696 F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
697 F128Range(IeeeFloat<QuadS>, IeeeFloat<QuadS>, RangeEnd),
698/// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
699Str(Cx::StrLit),
700/// Deref patterns (enabled by the `deref_patterns` feature) provide a way of matching on a
701 /// smart pointer ADT through its pointee. They don't directly correspond to ADT constructors,
702 /// and currently are not supported alongside them. Carries the type of the pointee.
703DerefPattern(Cx::Ty),
704/// Constants that must not be matched structurally. They are treated as black boxes for the
705 /// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
706 /// match exhaustive.
707 /// Carries an id that must be unique within a match. We need this to ensure the invariants of
708 /// [`SplitConstructorSet`].
709Opaque(OpaqueId),
710/// Or-pattern.
711Or,
712/// Wildcard pattern.
713Wildcard,
714/// Never pattern. Only used in `WitnessPat`. An actual never pattern should be lowered as
715 /// `Wildcard`.
716Never,
717/// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
718 /// for those types for which we cannot list constructors explicitly, like `f64` and `str`. Only
719 /// used in `WitnessPat`.
720NonExhaustive,
721/// Fake extra constructor for variants that should not be mentioned in diagnostics. We use this
722 /// for variants behind an unstable gate as well as `#[doc(hidden)]` ones. Only used in
723 /// `WitnessPat`.
724Hidden,
725/// Fake extra constructor for constructors that are not seen in the matrix, as explained at the
726 /// top of the file. Only used for specialization.
727Missing,
728/// Fake extra constructor that indicates and empty field that is private. When we encounter one
729 /// we skip the column entirely so we don't observe its emptiness. Only used for specialization.
730PrivateUninhabited,
731}
732733impl<Cx: PatCx> Clonefor Constructor<Cx> {
734fn clone(&self) -> Self {
735match self {
736 Constructor::Struct => Constructor::Struct,
737 Constructor::Variant(idx) => Constructor::Variant(*idx),
738 Constructor::Ref => Constructor::Ref,
739 Constructor::Slice(slice) => Constructor::Slice(*slice),
740 Constructor::UnionField => Constructor::UnionField,
741 Constructor::Bool(b) => Constructor::Bool(*b),
742 Constructor::IntRange(range) => Constructor::IntRange(*range),
743 Constructor::F16Range(lo, hi, end) => Constructor::F16Range(*lo, *hi, *end),
744 Constructor::F32Range(lo, hi, end) => Constructor::F32Range(*lo, *hi, *end),
745 Constructor::F64Range(lo, hi, end) => Constructor::F64Range(*lo, *hi, *end),
746 Constructor::F128Range(lo, hi, end) => Constructor::F128Range(*lo, *hi, *end),
747 Constructor::Str(value) => Constructor::Str(value.clone()),
748 Constructor::DerefPattern(ty) => Constructor::DerefPattern(ty.clone()),
749 Constructor::Opaque(inner) => Constructor::Opaque(inner.clone()),
750 Constructor::Or => Constructor::Or,
751 Constructor::Never => Constructor::Never,
752 Constructor::Wildcard => Constructor::Wildcard,
753 Constructor::NonExhaustive => Constructor::NonExhaustive,
754 Constructor::Hidden => Constructor::Hidden,
755 Constructor::Missing => Constructor::Missing,
756 Constructor::PrivateUninhabited => Constructor::PrivateUninhabited,
757 }
758 }
759}
760761impl<Cx: PatCx> Constructor<Cx> {
762pub(crate) fn is_non_exhaustive(&self) -> bool {
763#[allow(non_exhaustive_omitted_patterns)] match self {
NonExhaustive => true,
_ => false,
}matches!(self, NonExhaustive)764 }
765766pub(crate) fn as_variant(&self) -> Option<Cx::VariantIdx> {
767match self {
768Variant(i) => Some(*i),
769_ => None,
770 }
771 }
772fn as_bool(&self) -> Option<bool> {
773match self {
774Bool(b) => Some(*b),
775_ => None,
776 }
777 }
778pub(crate) fn as_int_range(&self) -> Option<&IntRange> {
779match self {
780IntRange(range) => Some(range),
781_ => None,
782 }
783 }
784fn as_slice(&self) -> Option<Slice> {
785match self {
786Slice(slice) => Some(*slice),
787_ => None,
788 }
789 }
790791/// The number of fields for this constructor. This must be kept in sync with
792 /// `Fields::wildcards`.
793pub(crate) fn arity(&self, cx: &Cx, ty: &Cx::Ty) -> usize {
794cx.ctor_arity(self, ty)
795 }
796797/// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
798 /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
799 /// this checks for inclusion.
800// We inline because this has a single call site in `Matrix::specialize_constructor`.
801#[inline]
802pub(crate) fn is_covered_by(&self, cx: &Cx, other: &Self) -> Result<bool, Cx::Error> {
803Ok(match (self, other) {
804 (Wildcard, _) => {
805return Err(cx.bug(format_args!("Constructor splitting should not have returned `Wildcard`")format_args!(
806"Constructor splitting should not have returned `Wildcard`"
807)));
808 }
809// Wildcards cover anything
810(_, Wildcard) => true,
811// `PrivateUninhabited` skips everything.
812(PrivateUninhabited, _) => true,
813// Only a wildcard pattern can match these special constructors.
814(Missing { .. } | NonExhaustive | Hidden, _) => false,
815816 (Struct, Struct) => true,
817 (Ref, Ref) => true,
818 (UnionField, UnionField) => true,
819 (Variant(self_id), Variant(other_id)) => self_id == other_id,
820 (Bool(self_b), Bool(other_b)) => self_b == other_b,
821822 (IntRange(self_range), IntRange(other_range)) => self_range.is_subrange(other_range),
823 (F16Range(self_from, self_to, self_end), F16Range(other_from, other_to, other_end)) => {
824self_from.ge(other_from)
825 && match self_to.partial_cmp(other_to) {
826Some(Ordering::Less) => true,
827Some(Ordering::Equal) => other_end == self_end,
828_ => false,
829 }
830 }
831 (F32Range(self_from, self_to, self_end), F32Range(other_from, other_to, other_end)) => {
832self_from.ge(other_from)
833 && match self_to.partial_cmp(other_to) {
834Some(Ordering::Less) => true,
835Some(Ordering::Equal) => other_end == self_end,
836_ => false,
837 }
838 }
839 (F64Range(self_from, self_to, self_end), F64Range(other_from, other_to, other_end)) => {
840self_from.ge(other_from)
841 && match self_to.partial_cmp(other_to) {
842Some(Ordering::Less) => true,
843Some(Ordering::Equal) => other_end == self_end,
844_ => false,
845 }
846 }
847 (
848F128Range(self_from, self_to, self_end),
849F128Range(other_from, other_to, other_end),
850 ) => {
851self_from.ge(other_from)
852 && match self_to.partial_cmp(other_to) {
853Some(Ordering::Less) => true,
854Some(Ordering::Equal) => other_end == self_end,
855_ => false,
856 }
857 }
858 (Str(self_val), Str(other_val)) => {
859// FIXME Once valtrees are available we can directly use the bytes
860 // in the `Str` variant of the valtree for the comparison here.
861self_val == other_val862 }
863 (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
864865// Deref patterns only interact with other deref patterns. Prior to usefulness analysis,
866 // we ensure they don't appear alongside any other non-wild non-opaque constructors.
867(DerefPattern(_), DerefPattern(_)) => true,
868869// Opaque constructors don't interact with anything unless they come from the
870 // syntactically identical pattern.
871(Opaque(self_id), Opaque(other_id)) => self_id == other_id,
872 (Opaque(..), _) | (_, Opaque(..)) => false,
873874_ => {
875return Err(cx.bug(format_args!("trying to compare incompatible constructors {0:?} and {1:?}",
self, other)format_args!(
876"trying to compare incompatible constructors {self:?} and {other:?}"
877)));
878 }
879 })
880 }
881882pub(crate) fn fmt_fields(
883&self,
884 f: &mut fmt::Formatter<'_>,
885 ty: &Cx::Ty,
886mut fields: impl Iterator<Item = impl fmt::Debug>,
887 ) -> fmt::Result {
888let mut first = true;
889let mut start_or_continue = |s| {
890if first {
891first = false;
892""
893} else {
894s895 }
896 };
897let mut start_or_comma = || start_or_continue(", ");
898899match self {
900Struct | Variant(_) | UnionField => {
901 Cx::write_variant_name(f, self, ty)?;
902// Without `cx`, we can't know which field corresponds to which, so we can't
903 // get the names of the fields. Instead we just display everything as a tuple
904 // struct, which should be good enough.
905f.write_fmt(format_args!("("))write!(f, "(")?;
906for p in fields {
907f.write_fmt(format_args!("{0}{1:?}", start_or_comma(), p))write!(f, "{}{:?}", start_or_comma(), p)?;
908 }
909f.write_fmt(format_args!(")"))write!(f, ")")?;
910 }
911// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
912 // be careful to detect strings here. However a string literal pattern will never
913 // be reported as a non-exhaustiveness witness, so we can ignore this issue.
914Ref => {
915f.write_fmt(format_args!("&{0:?}", fields.next().unwrap()))write!(f, "&{:?}", fields.next().unwrap())?;
916 }
917Slice(slice) => {
918f.write_fmt(format_args!("["))write!(f, "[")?;
919match slice.kind {
920 SliceKind::FixedLen(_) => {
921for p in fields {
922f.write_fmt(format_args!("{0}{1:?}", start_or_comma(), p))write!(f, "{}{:?}", start_or_comma(), p)?;
923 }
924 }
925 SliceKind::VarLen(prefix_len, _) => {
926for p in fields.by_ref().take(prefix_len) {
927f.write_fmt(format_args!("{0}{1:?}", start_or_comma(), p))write!(f, "{}{:?}", start_or_comma(), p)?;
928 }
929f.write_fmt(format_args!("{0}..", start_or_comma()))write!(f, "{}..", start_or_comma())?;
930for p in fields {
931f.write_fmt(format_args!("{0}{1:?}", start_or_comma(), p))write!(f, "{}{:?}", start_or_comma(), p)?;
932 }
933 }
934 }
935f.write_fmt(format_args!("]"))write!(f, "]")?;
936 }
937Bool(b) => f.write_fmt(format_args!("{0}", b))write!(f, "{b}")?,
938// Best-effort, will render signed ranges incorrectly
939IntRange(range) => f.write_fmt(format_args!("{0:?}", range))write!(f, "{range:?}")?,
940F16Range(lo, hi, end) => f.write_fmt(format_args!("{0}{1}{2}", lo, end, hi))write!(f, "{lo}{end}{hi}")?,
941F32Range(lo, hi, end) => f.write_fmt(format_args!("{0}{1}{2}", lo, end, hi))write!(f, "{lo}{end}{hi}")?,
942F64Range(lo, hi, end) => f.write_fmt(format_args!("{0}{1}{2}", lo, end, hi))write!(f, "{lo}{end}{hi}")?,
943F128Range(lo, hi, end) => f.write_fmt(format_args!("{0}{1}{2}", lo, end, hi))write!(f, "{lo}{end}{hi}")?,
944Str(value) => f.write_fmt(format_args!("{0:?}", value))write!(f, "{value:?}")?,
945DerefPattern(_) => f.write_fmt(format_args!("deref!({0:?})", fields.next().unwrap()))write!(f, "deref!({:?})", fields.next().unwrap())?,
946Opaque(..) => f.write_fmt(format_args!("<constant pattern>"))write!(f, "<constant pattern>")?,
947Or => {
948for pat in fields {
949f.write_fmt(format_args!("{0}{1:?}", start_or_continue(" | "), pat))write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
950 }
951 }
952Never => f.write_fmt(format_args!("!"))write!(f, "!")?,
953Wildcard | Missing | NonExhaustive | Hidden | PrivateUninhabited => f.write_fmt(format_args!("_"))write!(f, "_")?,
954 }
955Ok(())
956 }
957}
958959#[derive(#[automatically_derived]
impl ::core::fmt::Debug for VariantVisibility {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self {
VariantVisibility::Visible => "Visible",
VariantVisibility::Hidden => "Hidden",
VariantVisibility::Empty => "Empty",
})
}
}Debug, #[automatically_derived]
impl ::core::clone::Clone for VariantVisibility {
#[inline]
fn clone(&self) -> VariantVisibility { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for VariantVisibility { }Copy)]
960pub enum VariantVisibility {
961/// Variant that doesn't fit the other cases, i.e. most variants.
962Visible,
963/// Variant behind an unstable gate or with the `#[doc(hidden)]` attribute. It will not be
964 /// mentioned in diagnostics unless the user mentioned it first.
965Hidden,
966/// Variant that matches no value. E.g. `Some::<Option<!>>` if the `exhaustive_patterns` feature
967 /// is enabled. Like `Hidden`, it will not be mentioned in diagnostics unless the user mentioned
968 /// it first.
969Empty,
970}
971972/// Describes the set of all constructors for a type. For details, in particular about the emptiness
973/// of constructors, see the top of the file.
974///
975/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
976/// `exhaustive_patterns` feature.
977#[derive(#[automatically_derived]
impl<Cx: ::core::fmt::Debug + PatCx> ::core::fmt::Debug for ConstructorSet<Cx>
where Cx::VariantIdx: ::core::fmt::Debug {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
ConstructorSet::Struct { empty: __self_0 } =>
::core::fmt::Formatter::debug_struct_field1_finish(f,
"Struct", "empty", &__self_0),
ConstructorSet::Variants {
variants: __self_0, non_exhaustive: __self_1 } =>
::core::fmt::Formatter::debug_struct_field2_finish(f,
"Variants", "variants", __self_0, "non_exhaustive",
&__self_1),
ConstructorSet::Ref =>
::core::fmt::Formatter::write_str(f, "Ref"),
ConstructorSet::Union =>
::core::fmt::Formatter::write_str(f, "Union"),
ConstructorSet::Bool =>
::core::fmt::Formatter::write_str(f, "Bool"),
ConstructorSet::Integers { range_1: __self_0, range_2: __self_1 }
=>
::core::fmt::Formatter::debug_struct_field2_finish(f,
"Integers", "range_1", __self_0, "range_2", &__self_1),
ConstructorSet::Slice {
array_len: __self_0, subtype_is_empty: __self_1 } =>
::core::fmt::Formatter::debug_struct_field2_finish(f, "Slice",
"array_len", __self_0, "subtype_is_empty", &__self_1),
ConstructorSet::Unlistable =>
::core::fmt::Formatter::write_str(f, "Unlistable"),
ConstructorSet::NoConstructors =>
::core::fmt::Formatter::write_str(f, "NoConstructors"),
}
}
}Debug)]
978pub enum ConstructorSet<Cx: PatCx> {
979/// The type is a tuple or struct. `empty` tracks whether the type is empty.
980Struct { empty: bool },
981/// This type has the following list of constructors. If `variants` is empty and
982 /// `non_exhaustive` is false, don't use this; use `NoConstructors` instead.
983Variants { variants: IndexVec<Cx::VariantIdx, VariantVisibility>, non_exhaustive: bool },
984/// The type is `&T`.
985Ref,
986/// The type is a union.
987Union,
988/// Booleans.
989Bool,
990/// The type is spanned by integer values. The range or ranges give the set of allowed values.
991 /// The second range is only useful for `char`.
992Integers { range_1: IntRange, range_2: Option<IntRange> },
993/// The type is matched by slices. `array_len` is the compile-time length of the array, if
994 /// known. If `subtype_is_empty`, all constructors are empty except possibly the zero-length
995 /// slice `[]`.
996Slice { array_len: Option<usize>, subtype_is_empty: bool },
997/// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`,
998 /// floats.
999Unlistable,
1000/// The type has no constructors (not even empty ones). This is `!` and empty enums.
1001NoConstructors,
1002}
10031004/// Describes the result of analyzing the constructors in a column of a match.
1005///
1006/// `present` is morally the set of constructors present in the column, and `missing` is the set of
1007/// constructors that exist in the type but are not present in the column.
1008///
1009/// More formally, if we discard wildcards from the column, this respects the following constraints:
1010/// 1. the union of `present`, `missing` and `missing_empty` covers all the constructors of the type
1011/// 2. each constructor in `present` is covered by something in the column
1012/// 3. no constructor in `missing` or `missing_empty` is covered by anything in the column
1013/// 4. each constructor in the column is equal to the union of one or more constructors in `present`
1014/// 5. `missing` does not contain empty constructors (see discussion about emptiness at the top of
1015/// the file);
1016/// 6. `missing_empty` contains only empty constructors
1017/// 7. constructors in `present`, `missing` and `missing_empty` are split for the column; in other
1018/// words, they are either fully included in or fully disjoint from each constructor in the
1019/// column. In yet other words, there are no non-trivial intersections like between `0..10` and
1020/// `5..15`.
1021///
1022/// We must be particularly careful with weird constructors like `Opaque`: they're not formally part
1023/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
1024/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
1025#[derive(#[automatically_derived]
impl<Cx: ::core::fmt::Debug + PatCx> ::core::fmt::Debug for
SplitConstructorSet<Cx> {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::debug_struct_field3_finish(f,
"SplitConstructorSet", "present", &self.present, "missing",
&self.missing, "missing_empty", &&self.missing_empty)
}
}Debug)]
1026pub struct SplitConstructorSet<Cx: PatCx> {
1027pub present: SmallVec<[Constructor<Cx>; 1]>,
1028pub missing: Vec<Constructor<Cx>>,
1029pub missing_empty: Vec<Constructor<Cx>>,
1030}
10311032impl<Cx: PatCx> ConstructorSet<Cx> {
1033/// This analyzes a column of constructors to 1/ determine which constructors of the type (if
1034 /// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
1035 /// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
1036 /// and its invariants.
1037pub fn split<'a>(
1038&self,
1039 ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
1040 ) -> SplitConstructorSet<Cx>
1041where
1042Cx: 'a,
1043 {
1044let mut present: SmallVec<[_; 1]> = SmallVec::new();
1045// Empty constructors found missing.
1046let mut missing_empty = Vec::new();
1047// Nonempty constructors found missing.
1048let mut missing = Vec::new();
1049// Constructors in `ctors`, except wildcards and opaques.
1050let mut seen = Vec::new();
1051// If we see a deref pattern, it must be the only non-wildcard non-opaque constructor; we
1052 // ensure this prior to analysis.
1053let mut deref_pat_present = false;
1054for ctor in ctors.cloned() {
1055match ctor {
1056 DerefPattern(..) => {
1057if !deref_pat_present {
1058 deref_pat_present = true;
1059 present.push(ctor);
1060 }
1061 }
1062 Opaque(..) => present.push(ctor),
1063 Wildcard => {} // discard wildcards
1064_ => seen.push(ctor),
1065 }
1066 }
10671068match self {
1069_ if deref_pat_present => {
1070// Deref patterns are the only constructor; nothing is missing.
1071}
1072 ConstructorSet::Struct { empty } => {
1073if !seen.is_empty() {
1074present.push(Struct);
1075 } else if *empty {
1076missing_empty.push(Struct);
1077 } else {
1078missing.push(Struct);
1079 }
1080 }
1081 ConstructorSet::Ref => {
1082if !seen.is_empty() {
1083present.push(Ref);
1084 } else {
1085missing.push(Ref);
1086 }
1087 }
1088 ConstructorSet::Union => {
1089if !seen.is_empty() {
1090present.push(UnionField);
1091 } else {
1092missing.push(UnionField);
1093 }
1094 }
1095 ConstructorSet::Variants { variants, non_exhaustive } => {
1096let mut seen_set = DenseBitSet::new_empty(variants.len());
1097for idx in seen.iter().filter_map(|c| c.as_variant()) {
1098 seen_set.insert(idx);
1099 }
1100let mut skipped_a_hidden_variant = false;
11011102for (idx, visibility) in variants.iter_enumerated() {
1103let ctor = Variant(idx);
1104if seen_set.contains(idx) {
1105 present.push(ctor);
1106 } else {
1107// We only put visible variants directly into `missing`.
1108match visibility {
1109 VariantVisibility::Visible => missing.push(ctor),
1110 VariantVisibility::Hidden => skipped_a_hidden_variant = true,
1111 VariantVisibility::Empty => missing_empty.push(ctor),
1112 }
1113 }
1114 }
11151116if skipped_a_hidden_variant {
1117missing.push(Hidden);
1118 }
1119if *non_exhaustive {
1120missing.push(NonExhaustive);
1121 }
1122 }
1123 ConstructorSet::Bool => {
1124let mut seen_false = false;
1125let mut seen_true = false;
1126for b in seen.iter().filter_map(|ctor| ctor.as_bool()) {
1127if b {
1128 seen_true = true;
1129 } else {
1130 seen_false = true;
1131 }
1132 }
1133if seen_true {
1134present.push(Bool(true));
1135 } else {
1136missing.push(Bool(true));
1137 }
1138if seen_false {
1139present.push(Bool(false));
1140 } else {
1141missing.push(Bool(false));
1142 }
1143 }
1144 ConstructorSet::Integers { range_1, range_2 } => {
1145let seen_ranges: Vec<_> =
1146seen.iter().filter_map(|ctor| ctor.as_int_range()).copied().collect();
1147for (seen, splitted_range) in range_1.split(seen_ranges.iter().cloned()) {
1148match seen {
1149 Presence::Unseen => missing.push(IntRange(splitted_range)),
1150 Presence::Seen => present.push(IntRange(splitted_range)),
1151 }
1152 }
1153if let Some(range_2) = range_2 {
1154for (seen, splitted_range) in range_2.split(seen_ranges.into_iter()) {
1155match seen {
1156 Presence::Unseen => missing.push(IntRange(splitted_range)),
1157 Presence::Seen => present.push(IntRange(splitted_range)),
1158 }
1159 }
1160 }
1161 }
1162 ConstructorSet::Slice { array_len, subtype_is_empty } => {
1163let seen_slices = seen.iter().filter_map(|c| c.as_slice());
1164let base_slice = Slice::new(*array_len, VarLen(0, 0));
1165for (seen, splitted_slice) in base_slice.split(seen_slices) {
1166let ctor = Slice(splitted_slice);
1167match seen {
1168 Presence::Seen => present.push(ctor),
1169 Presence::Unseen => {
1170if *subtype_is_empty && splitted_slice.arity() != 0 {
1171// We have subpatterns of an empty type, so the constructor is
1172 // empty.
1173missing_empty.push(ctor);
1174 } else {
1175 missing.push(ctor);
1176 }
1177 }
1178 }
1179 }
1180 }
1181 ConstructorSet::Unlistable => {
1182// Since we can't list constructors, we take the ones in the column. This might list
1183 // some constructors several times but there's not much we can do.
1184present.extend(seen);
1185missing.push(NonExhaustive);
1186 }
1187 ConstructorSet::NoConstructors => {
1188// In a `MaybeInvalid` place even an empty pattern may be reachable. We therefore
1189 // add a dummy empty constructor here, which will be ignored if the place is
1190 // `ValidOnly`.
1191missing_empty.push(Never);
1192 }
1193 }
11941195SplitConstructorSet { present, missing, missing_empty }
1196 }
11971198/// Whether this set only contains empty constructors.
1199pub(crate) fn all_empty(&self) -> bool {
1200match self {
1201 ConstructorSet::Bool1202 | ConstructorSet::Integers { .. }
1203 | ConstructorSet::Ref1204 | ConstructorSet::Union1205 | ConstructorSet::Unlistable => false,
1206 ConstructorSet::NoConstructors => true,
1207 ConstructorSet::Struct { empty } => *empty,
1208 ConstructorSet::Variants { variants, non_exhaustive } => {
1209 !*non_exhaustive1210 && variants1211 .iter()
1212 .all(|visibility| #[allow(non_exhaustive_omitted_patterns)] match visibility {
VariantVisibility::Empty => true,
_ => false,
}matches!(visibility, VariantVisibility::Empty))
1213 }
1214 ConstructorSet::Slice { array_len, subtype_is_empty } => {
1215*subtype_is_empty && #[allow(non_exhaustive_omitted_patterns)] match array_len {
Some(1..) => true,
_ => false,
}matches!(array_len, Some(1..))1216 }
1217 }
1218 }
1219}