rustc_middle/mir/interpret/queries.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_session::lint;
use rustc_span::{DUMMY_SP, Span};
use tracing::{debug, instrument};
use super::{
ErrorHandled, EvalToAllocationRawResult, EvalToConstValueResult, EvalToValTreeResult, GlobalId,
};
use crate::mir;
use crate::query::TyCtxtEnsure;
use crate::ty::visit::TypeVisitableExt;
use crate::ty::{self, GenericArgs, TyCtxt};
impl<'tcx> TyCtxt<'tcx> {
/// Evaluates a constant without providing any generic parameters. This is useful to evaluate consts
/// that can't take any generic arguments like const items or enum discriminants. If a
/// generic parameter is used within the constant `ErrorHandled::ToGeneric` will be returned.
#[instrument(skip(self), level = "debug")]
pub fn const_eval_poly(self, def_id: DefId) -> EvalToConstValueResult<'tcx> {
// In some situations def_id will have generic parameters within scope, but they aren't allowed
// to be used. So we can't use `Instance::mono`, instead we feed unresolved generic parameters
// into `const_eval` which will return `ErrorHandled::ToGeneric` if any of them are
// encountered.
let args = GenericArgs::identity_for_item(self, def_id);
let instance = ty::Instance::new(def_id, args);
let cid = GlobalId { instance, promoted: None };
let param_env = self.param_env(def_id).with_reveal_all_normalized(self);
self.const_eval_global_id(param_env, cid, DUMMY_SP)
}
/// Evaluates a constant without providing any generic parameters. This is useful to evaluate consts
/// that can't take any generic arguments like const items or enum discriminants. If a
/// generic parameter is used within the constant `ErrorHandled::ToGeneric` will be returned.
#[instrument(skip(self), level = "debug")]
pub fn const_eval_poly_to_alloc(self, def_id: DefId) -> EvalToAllocationRawResult<'tcx> {
// In some situations def_id will have generic parameters within scope, but they aren't allowed
// to be used. So we can't use `Instance::mono`, instead we feed unresolved generic parameters
// into `const_eval` which will return `ErrorHandled::ToGeneric` if any of them are
// encountered.
let args = GenericArgs::identity_for_item(self, def_id);
let instance = ty::Instance::new(def_id, args);
let cid = GlobalId { instance, promoted: None };
let param_env = self.param_env(def_id).with_reveal_all_normalized(self);
let inputs = self.erase_regions(param_env.and(cid));
self.eval_to_allocation_raw(inputs)
}
/// Resolves and evaluates a constant.
///
/// The constant can be located on a trait like `<A as B>::C`, in which case the given
/// generic parameters and environment are used to resolve the constant. Alternatively if the
/// constant has generic parameters in scope the generic parameters are used to evaluate the value of
/// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
/// constant `bar::<T>()` requires a instantiation for `T`, if the instantiation for `T` is still
/// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
/// returned.
#[instrument(level = "debug", skip(self))]
pub fn const_eval_resolve(
self,
param_env: ty::ParamEnv<'tcx>,
ct: mir::UnevaluatedConst<'tcx>,
span: Span,
) -> EvalToConstValueResult<'tcx> {
// Cannot resolve `Unevaluated` constants that contain inference
// variables. We reject those here since `resolve`
// would fail otherwise.
//
// When trying to evaluate constants containing inference variables,
// use `Infcx::const_eval_resolve` instead.
if ct.args.has_non_region_infer() {
bug!("did not expect inference variables here");
}
match ty::Instance::try_resolve(
self, param_env,
// FIXME: maybe have a separate version for resolving mir::UnevaluatedConst?
ct.def, ct.args,
) {
Ok(Some(instance)) => {
let cid = GlobalId { instance, promoted: ct.promoted };
self.const_eval_global_id(param_env, cid, span)
}
// For errors during resolution, we deliberately do not point at the usage site of the constant,
// since for these errors the place the constant is used shouldn't matter.
Ok(None) => Err(ErrorHandled::TooGeneric(DUMMY_SP)),
Err(err) => Err(ErrorHandled::Reported(err.into(), DUMMY_SP)),
}
}
#[instrument(level = "debug", skip(self))]
pub fn const_eval_resolve_for_typeck(
self,
param_env: ty::ParamEnv<'tcx>,
ct: ty::UnevaluatedConst<'tcx>,
span: Span,
) -> EvalToValTreeResult<'tcx> {
// Cannot resolve `Unevaluated` constants that contain inference
// variables. We reject those here since `resolve`
// would fail otherwise.
//
// When trying to evaluate constants containing inference variables,
// use `Infcx::const_eval_resolve` instead.
if ct.args.has_non_region_infer() {
bug!("did not expect inference variables here");
}
match ty::Instance::try_resolve(self, param_env, ct.def, ct.args) {
Ok(Some(instance)) => {
let cid = GlobalId { instance, promoted: None };
self.const_eval_global_id_for_typeck(param_env, cid, span).inspect(|_| {
// We are emitting the lint here instead of in `is_const_evaluatable`
// as we normalize obligations before checking them, and normalization
// uses this function to evaluate this constant.
//
// @lcnr believes that successfully evaluating even though there are
// used generic parameters is a bug of evaluation, so checking for it
// here does feel somewhat sensible.
if !self.features().generic_const_exprs && ct.args.has_non_region_param() {
let def_kind = self.def_kind(instance.def_id());
assert!(
matches!(
def_kind,
DefKind::InlineConst | DefKind::AnonConst | DefKind::AssocConst
),
"{cid:?} is {def_kind:?}",
);
let mir_body = self.mir_for_ctfe(instance.def_id());
if mir_body.is_polymorphic {
let Some(local_def_id) = ct.def.as_local() else { return };
self.node_span_lint(
lint::builtin::CONST_EVALUATABLE_UNCHECKED,
self.local_def_id_to_hir_id(local_def_id),
self.def_span(ct.def),
|lint| { lint.primary_message("cannot use constants which depend on generic parameters in types"); },
)
}
}
})
}
// For errors during resolution, we deliberately do not point at the usage site of the constant,
// since for these errors the place the constant is used shouldn't matter.
Ok(None) => Err(ErrorHandled::TooGeneric(DUMMY_SP)),
Err(err) => Err(ErrorHandled::Reported(err.into(), DUMMY_SP)),
}
}
pub fn const_eval_instance(
self,
param_env: ty::ParamEnv<'tcx>,
instance: ty::Instance<'tcx>,
span: Span,
) -> EvalToConstValueResult<'tcx> {
self.const_eval_global_id(param_env, GlobalId { instance, promoted: None }, span)
}
/// Evaluate a constant to a `ConstValue`.
#[instrument(skip(self), level = "debug")]
pub fn const_eval_global_id(
self,
param_env: ty::ParamEnv<'tcx>,
cid: GlobalId<'tcx>,
span: Span,
) -> EvalToConstValueResult<'tcx> {
// Const-eval shouldn't depend on lifetimes at all, so we can erase them, which should
// improve caching of queries.
let inputs = self.erase_regions(param_env.with_reveal_all_normalized(self).and(cid));
if !span.is_dummy() {
// The query doesn't know where it is being invoked, so we need to fix the span.
self.at(span).eval_to_const_value_raw(inputs).map_err(|e| e.with_span(span))
} else {
self.eval_to_const_value_raw(inputs)
}
}
/// Evaluate a constant to a type-level constant.
#[instrument(skip(self), level = "debug")]
pub fn const_eval_global_id_for_typeck(
self,
param_env: ty::ParamEnv<'tcx>,
cid: GlobalId<'tcx>,
span: Span,
) -> EvalToValTreeResult<'tcx> {
// Const-eval shouldn't depend on lifetimes at all, so we can erase them, which should
// improve caching of queries.
let inputs = self.erase_regions(param_env.with_reveal_all_normalized(self).and(cid));
debug!(?inputs);
if !span.is_dummy() {
// The query doesn't know where it is being invoked, so we need to fix the span.
self.at(span).eval_to_valtree(inputs).map_err(|e| e.with_span(span))
} else {
self.eval_to_valtree(inputs)
}
}
}
impl<'tcx> TyCtxtEnsure<'tcx> {
/// Evaluates a constant without providing any generic parameters. This is useful to evaluate consts
/// that can't take any generic arguments like const items or enum discriminants. If a
/// generic parameter is used within the constant `ErrorHandled::ToGeneric` will be returned.
#[instrument(skip(self), level = "debug")]
pub fn const_eval_poly(self, def_id: DefId) {
// In some situations def_id will have generic parameters within scope, but they aren't allowed
// to be used. So we can't use `Instance::mono`, instead we feed unresolved generic parameters
// into `const_eval` which will return `ErrorHandled::ToGeneric` if any of them are
// encountered.
let args = GenericArgs::identity_for_item(self.tcx, def_id);
let instance = ty::Instance::new(def_id, args);
let cid = GlobalId { instance, promoted: None };
let param_env = self.tcx.param_env(def_id).with_reveal_all_normalized(self.tcx);
// Const-eval shouldn't depend on lifetimes at all, so we can erase them, which should
// improve caching of queries.
let inputs = self.tcx.erase_regions(param_env.and(cid));
self.eval_to_const_value_raw(inputs)
}
}