rustc_session/
filesearch.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//! A module for searching for libraries

use std::path::{Path, PathBuf};
use std::{env, fs};

use rustc_fs_util::{fix_windows_verbatim_for_gcc, try_canonicalize};
use smallvec::{SmallVec, smallvec};

use crate::search_paths::{PathKind, SearchPath};

#[derive(Clone)]
pub struct FileSearch<'a> {
    cli_search_paths: &'a [SearchPath],
    tlib_path: &'a SearchPath,
    kind: PathKind,
}

impl<'a> FileSearch<'a> {
    pub fn cli_search_paths(&self) -> impl Iterator<Item = &'a SearchPath> {
        let kind = self.kind;
        self.cli_search_paths.iter().filter(move |sp| sp.kind.matches(kind))
    }

    pub fn search_paths(&self) -> impl Iterator<Item = &'a SearchPath> {
        let kind = self.kind;
        self.cli_search_paths
            .iter()
            .filter(move |sp| sp.kind.matches(kind))
            .chain(std::iter::once(self.tlib_path))
    }

    pub fn new(
        cli_search_paths: &'a [SearchPath],
        tlib_path: &'a SearchPath,
        kind: PathKind,
    ) -> FileSearch<'a> {
        FileSearch { cli_search_paths, tlib_path, kind }
    }
}

pub fn make_target_lib_path(sysroot: &Path, target_triple: &str) -> PathBuf {
    let rustlib_path = rustc_target::relative_target_rustlib_path(sysroot, target_triple);
    sysroot.join(rustlib_path).join("lib")
}

/// Returns a path to the target's `bin` folder within its `rustlib` path in the sysroot. This is
/// where binaries are usually installed, e.g. the self-contained linkers, lld-wrappers, LLVM tools,
/// etc.
pub fn make_target_bin_path(sysroot: &Path, target_triple: &str) -> PathBuf {
    let rustlib_path = rustc_target::relative_target_rustlib_path(sysroot, target_triple);
    sysroot.join(rustlib_path).join("bin")
}

#[cfg(unix)]
fn current_dll_path() -> Result<PathBuf, String> {
    use std::ffi::{CStr, OsStr};
    use std::os::unix::prelude::*;

    #[cfg(not(target_os = "aix"))]
    unsafe {
        let addr = current_dll_path as usize as *mut _;
        let mut info = std::mem::zeroed();
        if libc::dladdr(addr, &mut info) == 0 {
            return Err("dladdr failed".into());
        }
        if info.dli_fname.is_null() {
            return Err("dladdr returned null pointer".into());
        }
        let bytes = CStr::from_ptr(info.dli_fname).to_bytes();
        let os = OsStr::from_bytes(bytes);
        Ok(PathBuf::from(os))
    }

    #[cfg(target_os = "aix")]
    unsafe {
        // On AIX, the symbol `current_dll_path` references a function descriptor.
        // A function descriptor is consisted of (See https://reviews.llvm.org/D62532)
        // * The address of the entry point of the function.
        // * The TOC base address for the function.
        // * The environment pointer.
        // The function descriptor is in the data section.
        let addr = current_dll_path as u64;
        let mut buffer = vec![std::mem::zeroed::<libc::ld_info>(); 64];
        loop {
            if libc::loadquery(
                libc::L_GETINFO,
                buffer.as_mut_ptr() as *mut i8,
                (std::mem::size_of::<libc::ld_info>() * buffer.len()) as u32,
            ) >= 0
            {
                break;
            } else {
                if std::io::Error::last_os_error().raw_os_error().unwrap() != libc::ENOMEM {
                    return Err("loadquery failed".into());
                }
                buffer.resize(buffer.len() * 2, std::mem::zeroed::<libc::ld_info>());
            }
        }
        let mut current = buffer.as_mut_ptr() as *mut libc::ld_info;
        loop {
            let data_base = (*current).ldinfo_dataorg as u64;
            let data_end = data_base + (*current).ldinfo_datasize;
            if (data_base..data_end).contains(&addr) {
                let bytes = CStr::from_ptr(&(*current).ldinfo_filename[0]).to_bytes();
                let os = OsStr::from_bytes(bytes);
                return Ok(PathBuf::from(os));
            }
            if (*current).ldinfo_next == 0 {
                break;
            }
            current =
                (current as *mut i8).offset((*current).ldinfo_next as isize) as *mut libc::ld_info;
        }
        return Err(format!("current dll's address {} is not in the load map", addr));
    }
}

#[cfg(windows)]
fn current_dll_path() -> Result<PathBuf, String> {
    use std::ffi::OsString;
    use std::io;
    use std::os::windows::prelude::*;

    use windows::Win32::Foundation::HMODULE;
    use windows::Win32::System::LibraryLoader::{
        GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, GetModuleFileNameW, GetModuleHandleExW,
    };
    use windows::core::PCWSTR;

    let mut module = HMODULE::default();
    unsafe {
        GetModuleHandleExW(
            GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
            PCWSTR(current_dll_path as *mut u16),
            &mut module,
        )
    }
    .map_err(|e| e.to_string())?;

    let mut filename = vec![0; 1024];
    let n = unsafe { GetModuleFileNameW(module, &mut filename) } as usize;
    if n == 0 {
        return Err(format!("GetModuleFileNameW failed: {}", io::Error::last_os_error()));
    }
    if n >= filename.capacity() {
        return Err(format!("our buffer was too small? {}", io::Error::last_os_error()));
    }

    filename.truncate(n);

    Ok(OsString::from_wide(&filename).into())
}

pub fn sysroot_candidates() -> SmallVec<[PathBuf; 2]> {
    let target = crate::config::host_triple();
    let mut sysroot_candidates: SmallVec<[PathBuf; 2]> =
        smallvec![get_or_default_sysroot().expect("Failed finding sysroot")];
    let path = current_dll_path().and_then(|s| try_canonicalize(s).map_err(|e| e.to_string()));
    if let Ok(dll) = path {
        // use `parent` twice to chop off the file name and then also the
        // directory containing the dll which should be either `lib` or `bin`.
        if let Some(path) = dll.parent().and_then(|p| p.parent()) {
            // The original `path` pointed at the `rustc_driver` crate's dll.
            // Now that dll should only be in one of two locations. The first is
            // in the compiler's libdir, for example `$sysroot/lib/*.dll`. The
            // other is the target's libdir, for example
            // `$sysroot/lib/rustlib/$target/lib/*.dll`.
            //
            // We don't know which, so let's assume that if our `path` above
            // ends in `$target` we *could* be in the target libdir, and always
            // assume that we may be in the main libdir.
            sysroot_candidates.push(path.to_owned());

            if path.ends_with(target) {
                sysroot_candidates.extend(
                    path.parent() // chop off `$target`
                        .and_then(|p| p.parent()) // chop off `rustlib`
                        .and_then(|p| p.parent()) // chop off `lib`
                        .map(|s| s.to_owned()),
                );
            }
        }
    }

    sysroot_candidates
}

/// Returns the provided sysroot or calls [`get_or_default_sysroot`] if it's none.
/// Panics if [`get_or_default_sysroot`]  returns an error.
pub fn materialize_sysroot(maybe_sysroot: Option<PathBuf>) -> PathBuf {
    maybe_sysroot.unwrap_or_else(|| get_or_default_sysroot().expect("Failed finding sysroot"))
}

/// This function checks if sysroot is found using env::args().next(), and if it
/// is not found, finds sysroot from current rustc_driver dll.
pub fn get_or_default_sysroot() -> Result<PathBuf, String> {
    // Follow symlinks. If the resolved path is relative, make it absolute.
    fn canonicalize(path: PathBuf) -> PathBuf {
        let path = try_canonicalize(&path).unwrap_or(path);
        // See comments on this target function, but the gist is that
        // gcc chokes on verbatim paths which fs::canonicalize generates
        // so we try to avoid those kinds of paths.
        fix_windows_verbatim_for_gcc(&path)
    }

    fn default_from_rustc_driver_dll() -> Result<PathBuf, String> {
        let dll = current_dll_path().map(|s| canonicalize(s))?;

        // `dll` will be in one of the following two:
        // - compiler's libdir: $sysroot/lib/*.dll
        // - target's libdir: $sysroot/lib/rustlib/$target/lib/*.dll
        //
        // use `parent` twice to chop off the file name and then also the
        // directory containing the dll
        let dir = dll.parent().and_then(|p| p.parent()).ok_or(format!(
            "Could not move 2 levels upper using `parent()` on {}",
            dll.display()
        ))?;

        // if `dir` points target's dir, move up to the sysroot
        let mut sysroot_dir = if dir.ends_with(crate::config::host_triple()) {
            dir.parent() // chop off `$target`
                .and_then(|p| p.parent()) // chop off `rustlib`
                .and_then(|p| p.parent()) // chop off `lib`
                .map(|s| s.to_owned())
                .ok_or_else(|| {
                    format!("Could not move 3 levels upper using `parent()` on {}", dir.display())
                })?
        } else {
            dir.to_owned()
        };

        // On multiarch linux systems, there will be multiarch directory named
        // with the architecture(e.g `x86_64-linux-gnu`) under the `lib` directory.
        // Which cause us to mistakenly end up in the lib directory instead of the sysroot directory.
        if sysroot_dir.ends_with("lib") {
            sysroot_dir =
                sysroot_dir.parent().map(|real_sysroot| real_sysroot.to_owned()).ok_or_else(
                    || format!("Could not move to parent path of {}", sysroot_dir.display()),
                )?
        }

        Ok(sysroot_dir)
    }

    // Use env::args().next() to get the path of the executable without
    // following symlinks/canonicalizing any component. This makes the rustc
    // binary able to locate Rust libraries in systems using content-addressable
    // storage (CAS).
    fn from_env_args_next() -> Option<PathBuf> {
        match env::args_os().next() {
            Some(first_arg) => {
                let mut p = PathBuf::from(first_arg);

                // Check if sysroot is found using env::args().next() only if the rustc in argv[0]
                // is a symlink (see #79253). We might want to change/remove it to conform with
                // https://www.gnu.org/prep/standards/standards.html#Finding-Program-Files in the
                // future.
                if fs::read_link(&p).is_err() {
                    // Path is not a symbolic link or does not exist.
                    return None;
                }

                // Pop off `bin/rustc`, obtaining the suspected sysroot.
                p.pop();
                p.pop();
                // Look for the target rustlib directory in the suspected sysroot.
                let mut rustlib_path = rustc_target::relative_target_rustlib_path(&p, "dummy");
                rustlib_path.pop(); // pop off the dummy target.
                rustlib_path.exists().then_some(p)
            }
            None => None,
        }
    }

    Ok(from_env_args_next().unwrap_or(default_from_rustc_driver_dll()?))
}