rustc_session/filesearch.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
//! A module for searching for libraries
use std::path::{Path, PathBuf};
use std::{env, fs};
use rustc_fs_util::{fix_windows_verbatim_for_gcc, try_canonicalize};
use smallvec::{SmallVec, smallvec};
use crate::search_paths::{PathKind, SearchPath};
#[derive(Clone)]
pub struct FileSearch<'a> {
cli_search_paths: &'a [SearchPath],
tlib_path: &'a SearchPath,
kind: PathKind,
}
impl<'a> FileSearch<'a> {
pub fn cli_search_paths(&self) -> impl Iterator<Item = &'a SearchPath> {
let kind = self.kind;
self.cli_search_paths.iter().filter(move |sp| sp.kind.matches(kind))
}
pub fn search_paths(&self) -> impl Iterator<Item = &'a SearchPath> {
let kind = self.kind;
self.cli_search_paths
.iter()
.filter(move |sp| sp.kind.matches(kind))
.chain(std::iter::once(self.tlib_path))
}
pub fn new(
cli_search_paths: &'a [SearchPath],
tlib_path: &'a SearchPath,
kind: PathKind,
) -> FileSearch<'a> {
FileSearch { cli_search_paths, tlib_path, kind }
}
}
pub fn make_target_lib_path(sysroot: &Path, target_triple: &str) -> PathBuf {
let rustlib_path = rustc_target::relative_target_rustlib_path(sysroot, target_triple);
sysroot.join(rustlib_path).join("lib")
}
/// Returns a path to the target's `bin` folder within its `rustlib` path in the sysroot. This is
/// where binaries are usually installed, e.g. the self-contained linkers, lld-wrappers, LLVM tools,
/// etc.
pub fn make_target_bin_path(sysroot: &Path, target_triple: &str) -> PathBuf {
let rustlib_path = rustc_target::relative_target_rustlib_path(sysroot, target_triple);
sysroot.join(rustlib_path).join("bin")
}
#[cfg(unix)]
fn current_dll_path() -> Result<PathBuf, String> {
use std::ffi::{CStr, OsStr};
use std::os::unix::prelude::*;
#[cfg(not(target_os = "aix"))]
unsafe {
let addr = current_dll_path as usize as *mut _;
let mut info = std::mem::zeroed();
if libc::dladdr(addr, &mut info) == 0 {
return Err("dladdr failed".into());
}
if info.dli_fname.is_null() {
return Err("dladdr returned null pointer".into());
}
let bytes = CStr::from_ptr(info.dli_fname).to_bytes();
let os = OsStr::from_bytes(bytes);
Ok(PathBuf::from(os))
}
#[cfg(target_os = "aix")]
unsafe {
// On AIX, the symbol `current_dll_path` references a function descriptor.
// A function descriptor is consisted of (See https://reviews.llvm.org/D62532)
// * The address of the entry point of the function.
// * The TOC base address for the function.
// * The environment pointer.
// The function descriptor is in the data section.
let addr = current_dll_path as u64;
let mut buffer = vec![std::mem::zeroed::<libc::ld_info>(); 64];
loop {
if libc::loadquery(
libc::L_GETINFO,
buffer.as_mut_ptr() as *mut i8,
(std::mem::size_of::<libc::ld_info>() * buffer.len()) as u32,
) >= 0
{
break;
} else {
if std::io::Error::last_os_error().raw_os_error().unwrap() != libc::ENOMEM {
return Err("loadquery failed".into());
}
buffer.resize(buffer.len() * 2, std::mem::zeroed::<libc::ld_info>());
}
}
let mut current = buffer.as_mut_ptr() as *mut libc::ld_info;
loop {
let data_base = (*current).ldinfo_dataorg as u64;
let data_end = data_base + (*current).ldinfo_datasize;
if (data_base..data_end).contains(&addr) {
let bytes = CStr::from_ptr(&(*current).ldinfo_filename[0]).to_bytes();
let os = OsStr::from_bytes(bytes);
return Ok(PathBuf::from(os));
}
if (*current).ldinfo_next == 0 {
break;
}
current =
(current as *mut i8).offset((*current).ldinfo_next as isize) as *mut libc::ld_info;
}
return Err(format!("current dll's address {} is not in the load map", addr));
}
}
#[cfg(windows)]
fn current_dll_path() -> Result<PathBuf, String> {
use std::ffi::OsString;
use std::io;
use std::os::windows::prelude::*;
use windows::Win32::Foundation::HMODULE;
use windows::Win32::System::LibraryLoader::{
GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, GetModuleFileNameW, GetModuleHandleExW,
};
use windows::core::PCWSTR;
let mut module = HMODULE::default();
unsafe {
GetModuleHandleExW(
GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
PCWSTR(current_dll_path as *mut u16),
&mut module,
)
}
.map_err(|e| e.to_string())?;
let mut filename = vec![0; 1024];
let n = unsafe { GetModuleFileNameW(module, &mut filename) } as usize;
if n == 0 {
return Err(format!("GetModuleFileNameW failed: {}", io::Error::last_os_error()));
}
if n >= filename.capacity() {
return Err(format!("our buffer was too small? {}", io::Error::last_os_error()));
}
filename.truncate(n);
Ok(OsString::from_wide(&filename).into())
}
pub fn sysroot_candidates() -> SmallVec<[PathBuf; 2]> {
let target = crate::config::host_triple();
let mut sysroot_candidates: SmallVec<[PathBuf; 2]> =
smallvec![get_or_default_sysroot().expect("Failed finding sysroot")];
let path = current_dll_path().and_then(|s| try_canonicalize(s).map_err(|e| e.to_string()));
if let Ok(dll) = path {
// use `parent` twice to chop off the file name and then also the
// directory containing the dll which should be either `lib` or `bin`.
if let Some(path) = dll.parent().and_then(|p| p.parent()) {
// The original `path` pointed at the `rustc_driver` crate's dll.
// Now that dll should only be in one of two locations. The first is
// in the compiler's libdir, for example `$sysroot/lib/*.dll`. The
// other is the target's libdir, for example
// `$sysroot/lib/rustlib/$target/lib/*.dll`.
//
// We don't know which, so let's assume that if our `path` above
// ends in `$target` we *could* be in the target libdir, and always
// assume that we may be in the main libdir.
sysroot_candidates.push(path.to_owned());
if path.ends_with(target) {
sysroot_candidates.extend(
path.parent() // chop off `$target`
.and_then(|p| p.parent()) // chop off `rustlib`
.and_then(|p| p.parent()) // chop off `lib`
.map(|s| s.to_owned()),
);
}
}
}
sysroot_candidates
}
/// Returns the provided sysroot or calls [`get_or_default_sysroot`] if it's none.
/// Panics if [`get_or_default_sysroot`] returns an error.
pub fn materialize_sysroot(maybe_sysroot: Option<PathBuf>) -> PathBuf {
maybe_sysroot.unwrap_or_else(|| get_or_default_sysroot().expect("Failed finding sysroot"))
}
/// This function checks if sysroot is found using env::args().next(), and if it
/// is not found, finds sysroot from current rustc_driver dll.
pub fn get_or_default_sysroot() -> Result<PathBuf, String> {
// Follow symlinks. If the resolved path is relative, make it absolute.
fn canonicalize(path: PathBuf) -> PathBuf {
let path = try_canonicalize(&path).unwrap_or(path);
// See comments on this target function, but the gist is that
// gcc chokes on verbatim paths which fs::canonicalize generates
// so we try to avoid those kinds of paths.
fix_windows_verbatim_for_gcc(&path)
}
fn default_from_rustc_driver_dll() -> Result<PathBuf, String> {
let dll = current_dll_path().map(|s| canonicalize(s))?;
// `dll` will be in one of the following two:
// - compiler's libdir: $sysroot/lib/*.dll
// - target's libdir: $sysroot/lib/rustlib/$target/lib/*.dll
//
// use `parent` twice to chop off the file name and then also the
// directory containing the dll
let dir = dll.parent().and_then(|p| p.parent()).ok_or(format!(
"Could not move 2 levels upper using `parent()` on {}",
dll.display()
))?;
// if `dir` points target's dir, move up to the sysroot
let mut sysroot_dir = if dir.ends_with(crate::config::host_triple()) {
dir.parent() // chop off `$target`
.and_then(|p| p.parent()) // chop off `rustlib`
.and_then(|p| p.parent()) // chop off `lib`
.map(|s| s.to_owned())
.ok_or_else(|| {
format!("Could not move 3 levels upper using `parent()` on {}", dir.display())
})?
} else {
dir.to_owned()
};
// On multiarch linux systems, there will be multiarch directory named
// with the architecture(e.g `x86_64-linux-gnu`) under the `lib` directory.
// Which cause us to mistakenly end up in the lib directory instead of the sysroot directory.
if sysroot_dir.ends_with("lib") {
sysroot_dir =
sysroot_dir.parent().map(|real_sysroot| real_sysroot.to_owned()).ok_or_else(
|| format!("Could not move to parent path of {}", sysroot_dir.display()),
)?
}
Ok(sysroot_dir)
}
// Use env::args().next() to get the path of the executable without
// following symlinks/canonicalizing any component. This makes the rustc
// binary able to locate Rust libraries in systems using content-addressable
// storage (CAS).
fn from_env_args_next() -> Option<PathBuf> {
match env::args_os().next() {
Some(first_arg) => {
let mut p = PathBuf::from(first_arg);
// Check if sysroot is found using env::args().next() only if the rustc in argv[0]
// is a symlink (see #79253). We might want to change/remove it to conform with
// https://www.gnu.org/prep/standards/standards.html#Finding-Program-Files in the
// future.
if fs::read_link(&p).is_err() {
// Path is not a symbolic link or does not exist.
return None;
}
// Pop off `bin/rustc`, obtaining the suspected sysroot.
p.pop();
p.pop();
// Look for the target rustlib directory in the suspected sysroot.
let mut rustlib_path = rustc_target::relative_target_rustlib_path(&p, "dummy");
rustlib_path.pop(); // pop off the dummy target.
rustlib_path.exists().then_some(p)
}
None => None,
}
}
Ok(from_env_args_next().unwrap_or(default_from_rustc_driver_dll()?))
}