rustc_metadata/locator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
//! Finds crate binaries and loads their metadata
//!
//! Might I be the first to welcome you to a world of platform differences,
//! version requirements, dependency graphs, conflicting desires, and fun! This
//! is the major guts (along with metadata::creader) of the compiler for loading
//! crates and resolving dependencies. Let's take a tour!
//!
//! # The problem
//!
//! Each invocation of the compiler is immediately concerned with one primary
//! problem, to connect a set of crates to resolved crates on the filesystem.
//! Concretely speaking, the compiler follows roughly these steps to get here:
//!
//! 1. Discover a set of `extern crate` statements.
//! 2. Transform these directives into crate names. If the directive does not
//! have an explicit name, then the identifier is the name.
//! 3. For each of these crate names, find a corresponding crate on the
//! filesystem.
//!
//! Sounds easy, right? Let's walk into some of the nuances.
//!
//! ## Transitive Dependencies
//!
//! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
//! on C. When we're compiling A, we primarily need to find and locate B, but we
//! also end up needing to find and locate C as well.
//!
//! The reason for this is that any of B's types could be composed of C's types,
//! any function in B could return a type from C, etc. To be able to guarantee
//! that we can always type-check/translate any function, we have to have
//! complete knowledge of the whole ecosystem, not just our immediate
//! dependencies.
//!
//! So now as part of the "find a corresponding crate on the filesystem" step
//! above, this involves also finding all crates for *all upstream
//! dependencies*. This includes all dependencies transitively.
//!
//! ## Rlibs and Dylibs
//!
//! The compiler has two forms of intermediate dependencies. These are dubbed
//! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
//! is a rustc-defined file format (currently just an ar archive) while a dylib
//! is a platform-defined dynamic library. Each library has a metadata somewhere
//! inside of it.
//!
//! A third kind of dependency is an rmeta file. These are metadata files and do
//! not contain any code, etc. To a first approximation, these are treated in the
//! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
//! gets priority (even if the rmeta file is newer). An rmeta file is only
//! useful for checking a downstream crate, attempting to link one will cause an
//! error.
//!
//! When translating a crate name to a crate on the filesystem, we all of a
//! sudden need to take into account both rlibs and dylibs! Linkage later on may
//! use either one of these files, as each has their pros/cons. The job of crate
//! loading is to discover what's possible by finding all candidates.
//!
//! Most parts of this loading systems keep the dylib/rlib as just separate
//! variables.
//!
//! ## Where to look?
//!
//! We can't exactly scan your whole hard drive when looking for dependencies,
//! so we need to places to look. Currently the compiler will implicitly add the
//! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
//! and otherwise all -L flags are added to the search paths.
//!
//! ## What criterion to select on?
//!
//! This is a pretty tricky area of loading crates. Given a file, how do we know
//! whether it's the right crate? Currently, the rules look along these lines:
//!
//! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
//! filename have the right prefix/suffix?
//! 2. Does the filename have the right prefix for the crate name being queried?
//! This is filtering for files like `libfoo*.rlib` and such. If the crate
//! we're looking for was originally compiled with -C extra-filename, the
//! extra filename will be included in this prefix to reduce reading
//! metadata from crates that would otherwise share our prefix.
//! 3. Is the file an actual rust library? This is done by loading the metadata
//! from the library and making sure it's actually there.
//! 4. Does the name in the metadata agree with the name of the library?
//! 5. Does the target in the metadata agree with the current target?
//! 6. Does the SVH match? (more on this later)
//!
//! If the file answers `yes` to all these questions, then the file is
//! considered as being *candidate* for being accepted. It is illegal to have
//! more than two candidates as the compiler has no method by which to resolve
//! this conflict. Additionally, rlib/dylib candidates are considered
//! separately.
//!
//! After all this has happened, we have 1 or two files as candidates. These
//! represent the rlib/dylib file found for a library, and they're returned as
//! being found.
//!
//! ### What about versions?
//!
//! A lot of effort has been put forth to remove versioning from the compiler.
//! There have been forays in the past to have versioning baked in, but it was
//! largely always deemed insufficient to the point that it was recognized that
//! it's probably something the compiler shouldn't do anyway due to its
//! complicated nature and the state of the half-baked solutions.
//!
//! With a departure from versioning, the primary criterion for loading crates
//! is just the name of a crate. If we stopped here, it would imply that you
//! could never link two crates of the same name from different sources
//! together, which is clearly a bad state to be in.
//!
//! To resolve this problem, we come to the next section!
//!
//! # Expert Mode
//!
//! A number of flags have been added to the compiler to solve the "version
//! problem" in the previous section, as well as generally enabling more
//! powerful usage of the crate loading system of the compiler. The goal of
//! these flags and options are to enable third-party tools to drive the
//! compiler with prior knowledge about how the world should look.
//!
//! ## The `--extern` flag
//!
//! The compiler accepts a flag of this form a number of times:
//!
//! ```text
//! --extern crate-name=path/to/the/crate.rlib
//! ```
//!
//! This flag is basically the following letter to the compiler:
//!
//! > Dear rustc,
//! >
//! > When you are attempting to load the immediate dependency `crate-name`, I
//! > would like you to assume that the library is located at
//! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
//! > assume that the path I specified has the name `crate-name`.
//!
//! This flag basically overrides most matching logic except for validating that
//! the file is indeed a rust library. The same `crate-name` can be specified
//! twice to specify the rlib/dylib pair.
//!
//! ## Enabling "multiple versions"
//!
//! This basically boils down to the ability to specify arbitrary packages to
//! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
//! would look something like:
//!
//! ```compile_fail,E0463
//! extern crate b1;
//! extern crate b2;
//!
//! fn main() {}
//! ```
//!
//! and the compiler would be invoked as:
//!
//! ```text
//! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
//! ```
//!
//! In this scenario there are two crates named `b` and the compiler must be
//! manually driven to be informed where each crate is.
//!
//! ## Frobbing symbols
//!
//! One of the immediate problems with linking the same library together twice
//! in the same problem is dealing with duplicate symbols. The primary way to
//! deal with this in rustc is to add hashes to the end of each symbol.
//!
//! In order to force hashes to change between versions of a library, if
//! desired, the compiler exposes an option `-C metadata=foo`, which is used to
//! initially seed each symbol hash. The string `foo` is prepended to each
//! string-to-hash to ensure that symbols change over time.
//!
//! ## Loading transitive dependencies
//!
//! Dealing with same-named-but-distinct crates is not just a local problem, but
//! one that also needs to be dealt with for transitive dependencies. Note that
//! in the letter above `--extern` flags only apply to the *local* set of
//! dependencies, not the upstream transitive dependencies. Consider this
//! dependency graph:
//!
//! ```text
//! A.1 A.2
//! | |
//! | |
//! B C
//! \ /
//! \ /
//! D
//! ```
//!
//! In this scenario, when we compile `D`, we need to be able to distinctly
//! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
//! transitive dependencies.
//!
//! Note that the key idea here is that `B` and `C` are both *already compiled*.
//! That is, they have already resolved their dependencies. Due to unrelated
//! technical reasons, when a library is compiled, it is only compatible with
//! the *exact same* version of the upstream libraries it was compiled against.
//! We use the "Strict Version Hash" to identify the exact copy of an upstream
//! library.
//!
//! With this knowledge, we know that `B` and `C` will depend on `A` with
//! different SVH values, so we crawl the normal `-L` paths looking for
//! `liba*.rlib` and filter based on the contained SVH.
//!
//! In the end, this ends up not needing `--extern` to specify upstream
//! transitive dependencies.
//!
//! # Wrapping up
//!
//! That's the general overview of loading crates in the compiler, but it's by
//! no means all of the necessary details. Take a look at the rest of
//! metadata::locator or metadata::creader for all the juicy details!
use std::borrow::Cow;
use std::io::{Read, Result as IoResult, Write};
use std::ops::Deref;
use std::path::{Path, PathBuf};
use std::{cmp, fmt};
use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
use rustc_data_structures::memmap::Mmap;
use rustc_data_structures::owned_slice::slice_owned;
use rustc_data_structures::svh::Svh;
use rustc_errors::{DiagArgValue, IntoDiagArg};
use rustc_fs_util::try_canonicalize;
use rustc_session::Session;
use rustc_session::cstore::CrateSource;
use rustc_session::filesearch::FileSearch;
use rustc_session::search_paths::PathKind;
use rustc_session::utils::CanonicalizedPath;
use rustc_span::Span;
use rustc_span::symbol::Symbol;
use rustc_target::spec::{Target, TargetTriple};
use snap::read::FrameDecoder;
use tracing::{debug, info};
use crate::creader::{Library, MetadataLoader};
use crate::errors;
use crate::rmeta::{METADATA_HEADER, MetadataBlob, rustc_version};
#[derive(Clone)]
pub(crate) struct CrateLocator<'a> {
// Immutable per-session configuration.
only_needs_metadata: bool,
sysroot: &'a Path,
metadata_loader: &'a dyn MetadataLoader,
cfg_version: &'static str,
// Immutable per-search configuration.
crate_name: Symbol,
exact_paths: Vec<CanonicalizedPath>,
pub hash: Option<Svh>,
extra_filename: Option<&'a str>,
pub target: &'a Target,
pub triple: TargetTriple,
pub filesearch: FileSearch<'a>,
pub is_proc_macro: bool,
// Mutable in-progress state or output.
crate_rejections: CrateRejections,
}
#[derive(Clone)]
pub(crate) struct CratePaths {
name: Symbol,
source: CrateSource,
}
impl CratePaths {
pub(crate) fn new(name: Symbol, source: CrateSource) -> CratePaths {
CratePaths { name, source }
}
}
#[derive(Copy, Clone, PartialEq)]
pub(crate) enum CrateFlavor {
Rlib,
Rmeta,
Dylib,
}
impl fmt::Display for CrateFlavor {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match *self {
CrateFlavor::Rlib => "rlib",
CrateFlavor::Rmeta => "rmeta",
CrateFlavor::Dylib => "dylib",
})
}
}
impl IntoDiagArg for CrateFlavor {
fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
match self {
CrateFlavor::Rlib => DiagArgValue::Str(Cow::Borrowed("rlib")),
CrateFlavor::Rmeta => DiagArgValue::Str(Cow::Borrowed("rmeta")),
CrateFlavor::Dylib => DiagArgValue::Str(Cow::Borrowed("dylib")),
}
}
}
impl<'a> CrateLocator<'a> {
pub(crate) fn new(
sess: &'a Session,
metadata_loader: &'a dyn MetadataLoader,
crate_name: Symbol,
is_rlib: bool,
hash: Option<Svh>,
extra_filename: Option<&'a str>,
path_kind: PathKind,
) -> CrateLocator<'a> {
let needs_object_code = sess.opts.output_types.should_codegen();
// If we're producing an rlib, then we don't need object code.
// Or, if we're not producing object code, then we don't need it either
// (e.g., if we're a cdylib but emitting just metadata).
let only_needs_metadata = is_rlib || !needs_object_code;
CrateLocator {
only_needs_metadata,
sysroot: &sess.sysroot,
metadata_loader,
cfg_version: sess.cfg_version,
crate_name,
exact_paths: if hash.is_none() {
sess.opts
.externs
.get(crate_name.as_str())
.into_iter()
.filter_map(|entry| entry.files())
.flatten()
.cloned()
.collect()
} else {
// SVH being specified means this is a transitive dependency,
// so `--extern` options do not apply.
Vec::new()
},
hash,
extra_filename,
target: &sess.target,
triple: sess.opts.target_triple.clone(),
filesearch: sess.target_filesearch(path_kind),
is_proc_macro: false,
crate_rejections: CrateRejections::default(),
}
}
pub(crate) fn reset(&mut self) {
self.crate_rejections.via_hash.clear();
self.crate_rejections.via_triple.clear();
self.crate_rejections.via_kind.clear();
self.crate_rejections.via_version.clear();
self.crate_rejections.via_filename.clear();
self.crate_rejections.via_invalid.clear();
}
pub(crate) fn maybe_load_library_crate(&mut self) -> Result<Option<Library>, CrateError> {
if !self.exact_paths.is_empty() {
return self.find_commandline_library();
}
let mut seen_paths = FxHashSet::default();
if let Some(extra_filename) = self.extra_filename {
if let library @ Some(_) = self.find_library_crate(extra_filename, &mut seen_paths)? {
return Ok(library);
}
}
self.find_library_crate("", &mut seen_paths)
}
fn find_library_crate(
&mut self,
extra_prefix: &str,
seen_paths: &mut FxHashSet<PathBuf>,
) -> Result<Option<Library>, CrateError> {
let rmeta_prefix = &format!("lib{}{}", self.crate_name, extra_prefix);
let rlib_prefix = rmeta_prefix;
let dylib_prefix =
&format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix);
let staticlib_prefix =
&format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix);
let rmeta_suffix = ".rmeta";
let rlib_suffix = ".rlib";
let dylib_suffix = &self.target.dll_suffix;
let staticlib_suffix = &self.target.staticlib_suffix;
let mut candidates: FxIndexMap<_, (FxIndexMap<_, _>, FxIndexMap<_, _>, FxIndexMap<_, _>)> =
Default::default();
// First, find all possible candidate rlibs and dylibs purely based on
// the name of the files themselves. We're trying to match against an
// exact crate name and a possibly an exact hash.
//
// During this step, we can filter all found libraries based on the
// name and id found in the crate id (we ignore the path portion for
// filename matching), as well as the exact hash (if specified). If we
// end up having many candidates, we must look at the metadata to
// perform exact matches against hashes/crate ids. Note that opening up
// the metadata is where we do an exact match against the full contents
// of the crate id (path/name/id).
//
// The goal of this step is to look at as little metadata as possible.
// Unfortunately, the prefix-based matching sometimes is over-eager.
// E.g. if `rlib_suffix` is `libstd` it'll match the file
// `libstd_detect-8d6701fb958915ad.rlib` (incorrect) as well as
// `libstd-f3ab5b1dea981f17.rlib` (correct). But this is hard to avoid
// given that `extra_filename` comes from the `-C extra-filename`
// option and thus can be anything, and the incorrect match will be
// handled safely in `extract_one`.
for search_path in self.filesearch.search_paths() {
debug!("searching {}", search_path.dir.display());
for spf in search_path.files.iter() {
debug!("testing {}", spf.path.display());
let f = &spf.file_name_str;
let (hash, kind) = if let Some(f) = f.strip_prefix(rlib_prefix)
&& let Some(f) = f.strip_suffix(rlib_suffix)
{
(f, CrateFlavor::Rlib)
} else if let Some(f) = f.strip_prefix(rmeta_prefix)
&& let Some(f) = f.strip_suffix(rmeta_suffix)
{
(f, CrateFlavor::Rmeta)
} else if let Some(f) = f.strip_prefix(dylib_prefix)
&& let Some(f) = f.strip_suffix(dylib_suffix.as_ref())
{
(f, CrateFlavor::Dylib)
} else {
if f.starts_with(staticlib_prefix) && f.ends_with(staticlib_suffix.as_ref()) {
self.crate_rejections.via_kind.push(CrateMismatch {
path: spf.path.clone(),
got: "static".to_string(),
});
}
continue;
};
info!("lib candidate: {}", spf.path.display());
let (rlibs, rmetas, dylibs) = candidates.entry(hash.to_string()).or_default();
let path = try_canonicalize(&spf.path).unwrap_or_else(|_| spf.path.clone());
if seen_paths.contains(&path) {
continue;
};
seen_paths.insert(path.clone());
match kind {
CrateFlavor::Rlib => rlibs.insert(path, search_path.kind),
CrateFlavor::Rmeta => rmetas.insert(path, search_path.kind),
CrateFlavor::Dylib => dylibs.insert(path, search_path.kind),
};
}
}
// We have now collected all known libraries into a set of candidates
// keyed of the filename hash listed. For each filename, we also have a
// list of rlibs/dylibs that apply. Here, we map each of these lists
// (per hash), to a Library candidate for returning.
//
// A Library candidate is created if the metadata for the set of
// libraries corresponds to the crate id and hash criteria that this
// search is being performed for.
let mut libraries = FxIndexMap::default();
for (_hash, (rlibs, rmetas, dylibs)) in candidates {
if let Some((svh, lib)) = self.extract_lib(rlibs, rmetas, dylibs)? {
libraries.insert(svh, lib);
}
}
// Having now translated all relevant found hashes into libraries, see
// what we've got and figure out if we found multiple candidates for
// libraries or not.
match libraries.len() {
0 => Ok(None),
1 => Ok(Some(libraries.into_iter().next().unwrap().1)),
_ => {
let mut libraries: Vec<_> = libraries.into_values().collect();
libraries.sort_by_cached_key(|lib| lib.source.paths().next().unwrap().clone());
let candidates = libraries
.iter()
.map(|lib| lib.source.paths().next().unwrap().clone())
.collect::<Vec<_>>();
Err(CrateError::MultipleCandidates(
self.crate_name,
// these are the same for all candidates
get_flavor_from_path(candidates.first().unwrap()),
candidates,
))
}
}
}
fn extract_lib(
&mut self,
rlibs: FxIndexMap<PathBuf, PathKind>,
rmetas: FxIndexMap<PathBuf, PathKind>,
dylibs: FxIndexMap<PathBuf, PathKind>,
) -> Result<Option<(Svh, Library)>, CrateError> {
let mut slot = None;
// Order here matters, rmeta should come first. See comment in
// `extract_one` below.
let source = CrateSource {
rmeta: self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot)?,
rlib: self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot)?,
dylib: self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot)?,
};
Ok(slot.map(|(svh, metadata, _)| (svh, Library { source, metadata })))
}
fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool {
if flavor == CrateFlavor::Dylib && self.is_proc_macro {
return true;
}
if self.only_needs_metadata {
flavor == CrateFlavor::Rmeta
} else {
// we need all flavors (perhaps not true, but what we do for now)
true
}
}
// Attempts to extract *one* library from the set `m`. If the set has no
// elements, `None` is returned. If the set has more than one element, then
// the errors and notes are emitted about the set of libraries.
//
// With only one library in the set, this function will extract it, and then
// read the metadata from it if `*slot` is `None`. If the metadata couldn't
// be read, it is assumed that the file isn't a valid rust library (no
// errors are emitted).
//
// The `PathBuf` in `slot` will only be used for diagnostic purposes.
fn extract_one(
&mut self,
m: FxIndexMap<PathBuf, PathKind>,
flavor: CrateFlavor,
slot: &mut Option<(Svh, MetadataBlob, PathBuf)>,
) -> Result<Option<(PathBuf, PathKind)>, CrateError> {
// If we are producing an rlib, and we've already loaded metadata, then
// we should not attempt to discover further crate sources (unless we're
// locating a proc macro; exact logic is in needs_crate_flavor). This means
// that under -Zbinary-dep-depinfo we will not emit a dependency edge on
// the *unused* rlib, and by returning `None` here immediately we
// guarantee that we do indeed not use it.
//
// See also #68149 which provides more detail on why emitting the
// dependency on the rlib is a bad thing.
if slot.is_some() {
if m.is_empty() || !self.needs_crate_flavor(flavor) {
return Ok(None);
}
}
let mut ret: Option<(PathBuf, PathKind)> = None;
let mut err_data: Option<Vec<PathBuf>> = None;
for (lib, kind) in m {
info!("{} reading metadata from: {}", flavor, lib.display());
if flavor == CrateFlavor::Rmeta && lib.metadata().is_ok_and(|m| m.len() == 0) {
// Empty files will cause get_metadata_section to fail. Rmeta
// files can be empty, for example with binaries (which can
// often appear with `cargo check` when checking a library as
// a unittest). We don't want to emit a user-visible warning
// in this case as it is not a real problem.
debug!("skipping empty file");
continue;
}
let (hash, metadata) = match get_metadata_section(
self.target,
flavor,
&lib,
self.metadata_loader,
self.cfg_version,
) {
Ok(blob) => {
if let Some(h) = self.crate_matches(&blob, &lib) {
(h, blob)
} else {
info!("metadata mismatch");
continue;
}
}
Err(MetadataError::VersionMismatch { expected_version, found_version }) => {
// The file was present and created by the same compiler version, but we
// couldn't load it for some reason. Give a hard error instead of silently
// ignoring it, but only if we would have given an error anyway.
info!(
"Rejecting via version: expected {} got {}",
expected_version, found_version
);
self.crate_rejections
.via_version
.push(CrateMismatch { path: lib, got: found_version });
continue;
}
Err(MetadataError::LoadFailure(err)) => {
info!("no metadata found: {}", err);
// The file was present and created by the same compiler version, but we
// couldn't load it for some reason. Give a hard error instead of silently
// ignoring it, but only if we would have given an error anyway.
self.crate_rejections.via_invalid.push(CrateMismatch { path: lib, got: err });
continue;
}
Err(err @ MetadataError::NotPresent(_)) => {
info!("no metadata found: {}", err);
continue;
}
};
// If we see multiple hashes, emit an error about duplicate candidates.
if slot.as_ref().is_some_and(|s| s.0 != hash) {
if let Some(candidates) = err_data {
return Err(CrateError::MultipleCandidates(
self.crate_name,
flavor,
candidates,
));
}
err_data = Some(vec![slot.take().unwrap().2]);
}
if let Some(candidates) = &mut err_data {
candidates.push(lib);
continue;
}
// Ok so at this point we've determined that `(lib, kind)` above is
// a candidate crate to load, and that `slot` is either none (this
// is the first crate of its kind) or if some the previous path has
// the exact same hash (e.g., it's the exact same crate).
//
// In principle these two candidate crates are exactly the same so
// we can choose either of them to link. As a stupidly gross hack,
// however, we favor crate in the sysroot.
//
// You can find more info in rust-lang/rust#39518 and various linked
// issues, but the general gist is that during testing libstd the
// compilers has two candidates to choose from: one in the sysroot
// and one in the deps folder. These two crates are the exact same
// crate but if the compiler chooses the one in the deps folder
// it'll cause spurious errors on Windows.
//
// As a result, we favor the sysroot crate here. Note that the
// candidates are all canonicalized, so we canonicalize the sysroot
// as well.
if let Some((prev, _)) = &ret {
let sysroot = self.sysroot;
let sysroot = try_canonicalize(sysroot).unwrap_or_else(|_| sysroot.to_path_buf());
if prev.starts_with(&sysroot) {
continue;
}
}
*slot = Some((hash, metadata, lib.clone()));
ret = Some((lib, kind));
}
if let Some(candidates) = err_data {
Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates))
} else {
Ok(ret)
}
}
fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh> {
let header = metadata.get_header();
if header.is_proc_macro_crate != self.is_proc_macro {
info!(
"Rejecting via proc macro: expected {} got {}",
self.is_proc_macro, header.is_proc_macro_crate,
);
return None;
}
if self.exact_paths.is_empty() && self.crate_name != header.name {
info!("Rejecting via crate name");
return None;
}
if header.triple != self.triple {
info!("Rejecting via crate triple: expected {} got {}", self.triple, header.triple);
self.crate_rejections.via_triple.push(CrateMismatch {
path: libpath.to_path_buf(),
got: header.triple.to_string(),
});
return None;
}
let hash = header.hash;
if let Some(expected_hash) = self.hash {
if hash != expected_hash {
info!("Rejecting via hash: expected {} got {}", expected_hash, hash);
self.crate_rejections
.via_hash
.push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() });
return None;
}
}
Some(hash)
}
fn find_commandline_library(&mut self) -> Result<Option<Library>, CrateError> {
// First, filter out all libraries that look suspicious. We only accept
// files which actually exist that have the correct naming scheme for
// rlibs/dylibs.
let mut rlibs = FxIndexMap::default();
let mut rmetas = FxIndexMap::default();
let mut dylibs = FxIndexMap::default();
for loc in &self.exact_paths {
if !loc.canonicalized().exists() {
return Err(CrateError::ExternLocationNotExist(
self.crate_name,
loc.original().clone(),
));
}
if !loc.original().is_file() {
return Err(CrateError::ExternLocationNotFile(
self.crate_name,
loc.original().clone(),
));
}
let Some(file) = loc.original().file_name().and_then(|s| s.to_str()) else {
return Err(CrateError::ExternLocationNotFile(
self.crate_name,
loc.original().clone(),
));
};
if file.starts_with("lib") && (file.ends_with(".rlib") || file.ends_with(".rmeta"))
|| file.starts_with(self.target.dll_prefix.as_ref())
&& file.ends_with(self.target.dll_suffix.as_ref())
{
// Make sure there's at most one rlib and at most one dylib.
// Note to take care and match against the non-canonicalized name:
// some systems save build artifacts into content-addressed stores
// that do not preserve extensions, and then link to them using
// e.g. symbolic links. If we canonicalize too early, we resolve
// the symlink, the file type is lost and we might treat rlibs and
// rmetas as dylibs.
let loc_canon = loc.canonicalized().clone();
let loc = loc.original();
if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
rlibs.insert(loc_canon, PathKind::ExternFlag);
} else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") {
rmetas.insert(loc_canon, PathKind::ExternFlag);
} else {
dylibs.insert(loc_canon, PathKind::ExternFlag);
}
} else {
self.crate_rejections
.via_filename
.push(CrateMismatch { path: loc.original().clone(), got: String::new() });
}
}
// Extract the dylib/rlib/rmeta triple.
Ok(self.extract_lib(rlibs, rmetas, dylibs)?.map(|(_, lib)| lib))
}
pub(crate) fn into_error(self, root: Option<CratePaths>) -> CrateError {
CrateError::LocatorCombined(Box::new(CombinedLocatorError {
crate_name: self.crate_name,
root,
triple: self.triple,
dll_prefix: self.target.dll_prefix.to_string(),
dll_suffix: self.target.dll_suffix.to_string(),
crate_rejections: self.crate_rejections,
}))
}
}
fn get_metadata_section<'p>(
target: &Target,
flavor: CrateFlavor,
filename: &'p Path,
loader: &dyn MetadataLoader,
cfg_version: &'static str,
) -> Result<MetadataBlob, MetadataError<'p>> {
if !filename.exists() {
return Err(MetadataError::NotPresent(filename));
}
let raw_bytes = match flavor {
CrateFlavor::Rlib => {
loader.get_rlib_metadata(target, filename).map_err(MetadataError::LoadFailure)?
}
CrateFlavor::Dylib => {
let buf =
loader.get_dylib_metadata(target, filename).map_err(MetadataError::LoadFailure)?;
// The header is uncompressed
let header_len = METADATA_HEADER.len();
// header + u64 length of data
let data_start = header_len + 8;
debug!("checking {} bytes of metadata-version stamp", header_len);
let header = &buf[..cmp::min(header_len, buf.len())];
if header != METADATA_HEADER {
return Err(MetadataError::LoadFailure(format!(
"invalid metadata version found: {}",
filename.display()
)));
}
// Length of the compressed stream - this allows linkers to pad the section if they want
let Ok(len_bytes) =
<[u8; 8]>::try_from(&buf[header_len..cmp::min(data_start, buf.len())])
else {
return Err(MetadataError::LoadFailure(
"invalid metadata length found".to_string(),
));
};
let compressed_len = u64::from_le_bytes(len_bytes) as usize;
// Header is okay -> inflate the actual metadata
let compressed_bytes = buf.slice(|buf| &buf[data_start..(data_start + compressed_len)]);
if &compressed_bytes[..cmp::min(METADATA_HEADER.len(), compressed_bytes.len())]
== METADATA_HEADER
{
// The metadata was not actually compressed.
compressed_bytes
} else {
debug!("inflating {} bytes of compressed metadata", compressed_bytes.len());
// Assume the decompressed data will be at least the size of the compressed data, so we
// don't have to grow the buffer as much.
let mut inflated = Vec::with_capacity(compressed_bytes.len());
FrameDecoder::new(&*compressed_bytes).read_to_end(&mut inflated).map_err(|_| {
MetadataError::LoadFailure(format!(
"failed to decompress metadata: {}",
filename.display()
))
})?;
slice_owned(inflated, Deref::deref)
}
}
CrateFlavor::Rmeta => {
// mmap the file, because only a small fraction of it is read.
let file = std::fs::File::open(filename).map_err(|_| {
MetadataError::LoadFailure(format!(
"failed to open rmeta metadata: '{}'",
filename.display()
))
})?;
let mmap = unsafe { Mmap::map(file) };
let mmap = mmap.map_err(|_| {
MetadataError::LoadFailure(format!(
"failed to mmap rmeta metadata: '{}'",
filename.display()
))
})?;
slice_owned(mmap, Deref::deref)
}
};
let Ok(blob) = MetadataBlob::new(raw_bytes) else {
return Err(MetadataError::LoadFailure(format!(
"corrupt metadata encountered in {}",
filename.display()
)));
};
match blob.check_compatibility(cfg_version) {
Ok(()) => Ok(blob),
Err(None) => Err(MetadataError::LoadFailure(format!(
"invalid metadata version found: {}",
filename.display()
))),
Err(Some(found_version)) => {
return Err(MetadataError::VersionMismatch {
expected_version: rustc_version(cfg_version),
found_version,
});
}
}
}
/// A diagnostic function for dumping crate metadata to an output stream.
pub fn list_file_metadata(
target: &Target,
path: &Path,
metadata_loader: &dyn MetadataLoader,
out: &mut dyn Write,
ls_kinds: &[String],
cfg_version: &'static str,
) -> IoResult<()> {
let flavor = get_flavor_from_path(path);
match get_metadata_section(target, flavor, path, metadata_loader, cfg_version) {
Ok(metadata) => metadata.list_crate_metadata(out, ls_kinds),
Err(msg) => write!(out, "{msg}\n"),
}
}
fn get_flavor_from_path(path: &Path) -> CrateFlavor {
let filename = path.file_name().unwrap().to_str().unwrap();
if filename.ends_with(".rlib") {
CrateFlavor::Rlib
} else if filename.ends_with(".rmeta") {
CrateFlavor::Rmeta
} else {
CrateFlavor::Dylib
}
}
// ------------------------------------------ Error reporting -------------------------------------
#[derive(Clone)]
struct CrateMismatch {
path: PathBuf,
got: String,
}
#[derive(Clone, Default)]
struct CrateRejections {
via_hash: Vec<CrateMismatch>,
via_triple: Vec<CrateMismatch>,
via_kind: Vec<CrateMismatch>,
via_version: Vec<CrateMismatch>,
via_filename: Vec<CrateMismatch>,
via_invalid: Vec<CrateMismatch>,
}
/// Candidate rejection reasons collected during crate search.
/// If no candidate is accepted, then these reasons are presented to the user,
/// otherwise they are ignored.
pub(crate) struct CombinedLocatorError {
crate_name: Symbol,
root: Option<CratePaths>,
triple: TargetTriple,
dll_prefix: String,
dll_suffix: String,
crate_rejections: CrateRejections,
}
pub(crate) enum CrateError {
NonAsciiName(Symbol),
ExternLocationNotExist(Symbol, PathBuf),
ExternLocationNotFile(Symbol, PathBuf),
MultipleCandidates(Symbol, CrateFlavor, Vec<PathBuf>),
SymbolConflictsCurrent(Symbol),
StableCrateIdCollision(Symbol, Symbol),
DlOpen(String, String),
DlSym(String, String),
LocatorCombined(Box<CombinedLocatorError>),
NotFound(Symbol),
}
enum MetadataError<'a> {
/// The file was missing.
NotPresent(&'a Path),
/// The file was present and invalid.
LoadFailure(String),
/// The file was present, but compiled with a different rustc version.
VersionMismatch { expected_version: String, found_version: String },
}
impl fmt::Display for MetadataError<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
MetadataError::NotPresent(filename) => {
f.write_str(&format!("no such file: '{}'", filename.display()))
}
MetadataError::LoadFailure(msg) => f.write_str(msg),
MetadataError::VersionMismatch { expected_version, found_version } => {
f.write_str(&format!(
"rustc version mismatch. expected {}, found {}",
expected_version, found_version,
))
}
}
}
}
impl CrateError {
pub(crate) fn report(self, sess: &Session, span: Span, missing_core: bool) {
let dcx = sess.dcx();
match self {
CrateError::NonAsciiName(crate_name) => {
dcx.emit_err(errors::NonAsciiName { span, crate_name });
}
CrateError::ExternLocationNotExist(crate_name, loc) => {
dcx.emit_err(errors::ExternLocationNotExist { span, crate_name, location: &loc });
}
CrateError::ExternLocationNotFile(crate_name, loc) => {
dcx.emit_err(errors::ExternLocationNotFile { span, crate_name, location: &loc });
}
CrateError::MultipleCandidates(crate_name, flavor, candidates) => {
dcx.emit_err(errors::MultipleCandidates { span, crate_name, flavor, candidates });
}
CrateError::SymbolConflictsCurrent(root_name) => {
dcx.emit_err(errors::SymbolConflictsCurrent { span, crate_name: root_name });
}
CrateError::StableCrateIdCollision(crate_name0, crate_name1) => {
dcx.emit_err(errors::StableCrateIdCollision { span, crate_name0, crate_name1 });
}
CrateError::DlOpen(path, err) | CrateError::DlSym(path, err) => {
dcx.emit_err(errors::DlError { span, path, err });
}
CrateError::LocatorCombined(locator) => {
let crate_name = locator.crate_name;
let add_info = match &locator.root {
None => String::new(),
Some(r) => format!(" which `{}` depends on", r.name),
};
if !locator.crate_rejections.via_filename.is_empty() {
let mismatches = locator.crate_rejections.via_filename.iter();
for CrateMismatch { path, .. } in mismatches {
dcx.emit_err(errors::CrateLocationUnknownType { span, path, crate_name });
dcx.emit_err(errors::LibFilenameForm {
span,
dll_prefix: &locator.dll_prefix,
dll_suffix: &locator.dll_suffix,
});
}
}
let mut found_crates = String::new();
if !locator.crate_rejections.via_hash.is_empty() {
let mismatches = locator.crate_rejections.via_hash.iter();
for CrateMismatch { path, .. } in mismatches {
found_crates.push_str(&format!(
"\ncrate `{}`: {}",
crate_name,
path.display()
));
}
if let Some(r) = locator.root {
for path in r.source.paths() {
found_crates.push_str(&format!(
"\ncrate `{}`: {}",
r.name,
path.display()
));
}
}
dcx.emit_err(errors::NewerCrateVersion {
span,
crate_name,
add_info,
found_crates,
});
} else if !locator.crate_rejections.via_triple.is_empty() {
let mismatches = locator.crate_rejections.via_triple.iter();
for CrateMismatch { path, got } in mismatches {
found_crates.push_str(&format!(
"\ncrate `{}`, target triple {}: {}",
crate_name,
got,
path.display(),
));
}
dcx.emit_err(errors::NoCrateWithTriple {
span,
crate_name,
locator_triple: locator.triple.triple(),
add_info,
found_crates,
});
} else if !locator.crate_rejections.via_kind.is_empty() {
let mismatches = locator.crate_rejections.via_kind.iter();
for CrateMismatch { path, .. } in mismatches {
found_crates.push_str(&format!(
"\ncrate `{}`: {}",
crate_name,
path.display()
));
}
dcx.emit_err(errors::FoundStaticlib {
span,
crate_name,
add_info,
found_crates,
});
} else if !locator.crate_rejections.via_version.is_empty() {
let mismatches = locator.crate_rejections.via_version.iter();
for CrateMismatch { path, got } in mismatches {
found_crates.push_str(&format!(
"\ncrate `{}` compiled by {}: {}",
crate_name,
got,
path.display(),
));
}
dcx.emit_err(errors::IncompatibleRustc {
span,
crate_name,
add_info,
found_crates,
rustc_version: rustc_version(sess.cfg_version),
});
} else if !locator.crate_rejections.via_invalid.is_empty() {
let mut crate_rejections = Vec::new();
for CrateMismatch { path: _, got } in locator.crate_rejections.via_invalid {
crate_rejections.push(got);
}
dcx.emit_err(errors::InvalidMetadataFiles {
span,
crate_name,
add_info,
crate_rejections,
});
} else {
let error = errors::CannotFindCrate {
span,
crate_name,
add_info,
missing_core,
current_crate: sess
.opts
.crate_name
.clone()
.unwrap_or("<unknown>".to_string()),
is_nightly_build: sess.is_nightly_build(),
profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
locator_triple: locator.triple,
is_ui_testing: sess.opts.unstable_opts.ui_testing,
};
// The diagnostic for missing core is very good, but it is followed by a lot of
// other diagnostics that do not add information.
if missing_core {
dcx.emit_fatal(error);
} else {
dcx.emit_err(error);
}
}
}
CrateError::NotFound(crate_name) => {
let error = errors::CannotFindCrate {
span,
crate_name,
add_info: String::new(),
missing_core,
current_crate: sess.opts.crate_name.clone().unwrap_or("<unknown>".to_string()),
is_nightly_build: sess.is_nightly_build(),
profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
locator_triple: sess.opts.target_triple.clone(),
is_ui_testing: sess.opts.unstable_opts.ui_testing,
};
// The diagnostic for missing core is very good, but it is followed by a lot of
// other diagnostics that do not add information.
if missing_core {
dcx.emit_fatal(error);
} else {
dcx.emit_err(error);
}
}
}
}
}