rustc_metadata/locator.rs
1//! Finds crate binaries and loads their metadata
2//!
3//! Might I be the first to welcome you to a world of platform differences,
4//! version requirements, dependency graphs, conflicting desires, and fun! This
5//! is the major guts (along with metadata::creader) of the compiler for loading
6//! crates and resolving dependencies. Let's take a tour!
7//!
8//! # The problem
9//!
10//! Each invocation of the compiler is immediately concerned with one primary
11//! problem, to connect a set of crates to resolved crates on the filesystem.
12//! Concretely speaking, the compiler follows roughly these steps to get here:
13//!
14//! 1. Discover a set of `extern crate` statements.
15//! 2. Transform these directives into crate names. If the directive does not
16//! have an explicit name, then the identifier is the name.
17//! 3. For each of these crate names, find a corresponding crate on the
18//! filesystem.
19//!
20//! Sounds easy, right? Let's walk into some of the nuances.
21//!
22//! ## Transitive Dependencies
23//!
24//! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
25//! on C. When we're compiling A, we primarily need to find and locate B, but we
26//! also end up needing to find and locate C as well.
27//!
28//! The reason for this is that any of B's types could be composed of C's types,
29//! any function in B could return a type from C, etc. To be able to guarantee
30//! that we can always type-check/translate any function, we have to have
31//! complete knowledge of the whole ecosystem, not just our immediate
32//! dependencies.
33//!
34//! So now as part of the "find a corresponding crate on the filesystem" step
35//! above, this involves also finding all crates for *all upstream
36//! dependencies*. This includes all dependencies transitively.
37//!
38//! ## Rlibs and Dylibs
39//!
40//! The compiler has two forms of intermediate dependencies. These are dubbed
41//! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
42//! is a rustc-defined file format (currently just an ar archive) while a dylib
43//! is a platform-defined dynamic library. Each library has a metadata somewhere
44//! inside of it.
45//!
46//! A third kind of dependency is an rmeta file. These are metadata files and do
47//! not contain any code, etc. To a first approximation, these are treated in the
48//! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
49//! gets priority (even if the rmeta file is newer). An rmeta file is only
50//! useful for checking a downstream crate, attempting to link one will cause an
51//! error.
52//!
53//! When translating a crate name to a crate on the filesystem, we all of a
54//! sudden need to take into account both rlibs and dylibs! Linkage later on may
55//! use either one of these files, as each has their pros/cons. The job of crate
56//! loading is to discover what's possible by finding all candidates.
57//!
58//! Most parts of this loading systems keep the dylib/rlib as just separate
59//! variables.
60//!
61//! ## Where to look?
62//!
63//! We can't exactly scan your whole hard drive when looking for dependencies,
64//! so we need to places to look. Currently the compiler will implicitly add the
65//! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
66//! and otherwise all -L flags are added to the search paths.
67//!
68//! ## What criterion to select on?
69//!
70//! This is a pretty tricky area of loading crates. Given a file, how do we know
71//! whether it's the right crate? Currently, the rules look along these lines:
72//!
73//! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
74//! filename have the right prefix/suffix?
75//! 2. Does the filename have the right prefix for the crate name being queried?
76//! This is filtering for files like `libfoo*.rlib` and such. If the crate
77//! we're looking for was originally compiled with -C extra-filename, the
78//! extra filename will be included in this prefix to reduce reading
79//! metadata from crates that would otherwise share our prefix.
80//! 3. Is the file an actual rust library? This is done by loading the metadata
81//! from the library and making sure it's actually there.
82//! 4. Does the name in the metadata agree with the name of the library?
83//! 5. Does the target in the metadata agree with the current target?
84//! 6. Does the SVH match? (more on this later)
85//!
86//! If the file answers `yes` to all these questions, then the file is
87//! considered as being *candidate* for being accepted. It is illegal to have
88//! more than two candidates as the compiler has no method by which to resolve
89//! this conflict. Additionally, rlib/dylib candidates are considered
90//! separately.
91//!
92//! After all this has happened, we have 1 or two files as candidates. These
93//! represent the rlib/dylib file found for a library, and they're returned as
94//! being found.
95//!
96//! ### What about versions?
97//!
98//! A lot of effort has been put forth to remove versioning from the compiler.
99//! There have been forays in the past to have versioning baked in, but it was
100//! largely always deemed insufficient to the point that it was recognized that
101//! it's probably something the compiler shouldn't do anyway due to its
102//! complicated nature and the state of the half-baked solutions.
103//!
104//! With a departure from versioning, the primary criterion for loading crates
105//! is just the name of a crate. If we stopped here, it would imply that you
106//! could never link two crates of the same name from different sources
107//! together, which is clearly a bad state to be in.
108//!
109//! To resolve this problem, we come to the next section!
110//!
111//! # Expert Mode
112//!
113//! A number of flags have been added to the compiler to solve the "version
114//! problem" in the previous section, as well as generally enabling more
115//! powerful usage of the crate loading system of the compiler. The goal of
116//! these flags and options are to enable third-party tools to drive the
117//! compiler with prior knowledge about how the world should look.
118//!
119//! ## The `--extern` flag
120//!
121//! The compiler accepts a flag of this form a number of times:
122//!
123//! ```text
124//! --extern crate-name=path/to/the/crate.rlib
125//! ```
126//!
127//! This flag is basically the following letter to the compiler:
128//!
129//! > Dear rustc,
130//! >
131//! > When you are attempting to load the immediate dependency `crate-name`, I
132//! > would like you to assume that the library is located at
133//! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
134//! > assume that the path I specified has the name `crate-name`.
135//!
136//! This flag basically overrides most matching logic except for validating that
137//! the file is indeed a rust library. The same `crate-name` can be specified
138//! twice to specify the rlib/dylib pair.
139//!
140//! ## Enabling "multiple versions"
141//!
142//! This basically boils down to the ability to specify arbitrary packages to
143//! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
144//! would look something like:
145//!
146//! ```compile_fail,E0463
147//! extern crate b1;
148//! extern crate b2;
149//!
150//! fn main() {}
151//! ```
152//!
153//! and the compiler would be invoked as:
154//!
155//! ```text
156//! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
157//! ```
158//!
159//! In this scenario there are two crates named `b` and the compiler must be
160//! manually driven to be informed where each crate is.
161//!
162//! ## Frobbing symbols
163//!
164//! One of the immediate problems with linking the same library together twice
165//! in the same problem is dealing with duplicate symbols. The primary way to
166//! deal with this in rustc is to add hashes to the end of each symbol.
167//!
168//! In order to force hashes to change between versions of a library, if
169//! desired, the compiler exposes an option `-C metadata=foo`, which is used to
170//! initially seed each symbol hash. The string `foo` is prepended to each
171//! string-to-hash to ensure that symbols change over time.
172//!
173//! ## Loading transitive dependencies
174//!
175//! Dealing with same-named-but-distinct crates is not just a local problem, but
176//! one that also needs to be dealt with for transitive dependencies. Note that
177//! in the letter above `--extern` flags only apply to the *local* set of
178//! dependencies, not the upstream transitive dependencies. Consider this
179//! dependency graph:
180//!
181//! ```text
182//! A.1 A.2
183//! | |
184//! | |
185//! B C
186//! \ /
187//! \ /
188//! D
189//! ```
190//!
191//! In this scenario, when we compile `D`, we need to be able to distinctly
192//! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
193//! transitive dependencies.
194//!
195//! Note that the key idea here is that `B` and `C` are both *already compiled*.
196//! That is, they have already resolved their dependencies. Due to unrelated
197//! technical reasons, when a library is compiled, it is only compatible with
198//! the *exact same* version of the upstream libraries it was compiled against.
199//! We use the "Strict Version Hash" to identify the exact copy of an upstream
200//! library.
201//!
202//! With this knowledge, we know that `B` and `C` will depend on `A` with
203//! different SVH values, so we crawl the normal `-L` paths looking for
204//! `liba*.rlib` and filter based on the contained SVH.
205//!
206//! In the end, this ends up not needing `--extern` to specify upstream
207//! transitive dependencies.
208//!
209//! # Wrapping up
210//!
211//! That's the general overview of loading crates in the compiler, but it's by
212//! no means all of the necessary details. Take a look at the rest of
213//! metadata::locator or metadata::creader for all the juicy details!
214
215use std::borrow::Cow;
216use std::io::{Result as IoResult, Write};
217use std::ops::Deref;
218use std::path::{Path, PathBuf};
219use std::{cmp, fmt};
220
221use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
222use rustc_data_structures::memmap::Mmap;
223use rustc_data_structures::owned_slice::slice_owned;
224use rustc_data_structures::svh::Svh;
225use rustc_errors::{DiagArgValue, IntoDiagArg};
226use rustc_fs_util::try_canonicalize;
227use rustc_session::Session;
228use rustc_session::cstore::CrateSource;
229use rustc_session::filesearch::FileSearch;
230use rustc_session::search_paths::PathKind;
231use rustc_session::utils::CanonicalizedPath;
232use rustc_span::{Span, Symbol};
233use rustc_target::spec::{Target, TargetTuple};
234use tracing::{debug, info};
235
236use crate::creader::{Library, MetadataLoader};
237use crate::errors;
238use crate::rmeta::{METADATA_HEADER, MetadataBlob, rustc_version};
239
240#[derive(Clone)]
241pub(crate) struct CrateLocator<'a> {
242 // Immutable per-session configuration.
243 only_needs_metadata: bool,
244 sysroot: &'a Path,
245 metadata_loader: &'a dyn MetadataLoader,
246 cfg_version: &'static str,
247
248 // Immutable per-search configuration.
249 crate_name: Symbol,
250 exact_paths: Vec<CanonicalizedPath>,
251 pub hash: Option<Svh>,
252 extra_filename: Option<&'a str>,
253 pub target: &'a Target,
254 pub tuple: TargetTuple,
255 pub filesearch: &'a FileSearch,
256 pub is_proc_macro: bool,
257
258 pub path_kind: PathKind,
259 // Mutable in-progress state or output.
260 crate_rejections: CrateRejections,
261}
262
263#[derive(Clone)]
264pub(crate) struct CratePaths {
265 pub(crate) name: Symbol,
266 source: CrateSource,
267}
268
269impl CratePaths {
270 pub(crate) fn new(name: Symbol, source: CrateSource) -> CratePaths {
271 CratePaths { name, source }
272 }
273}
274
275#[derive(Copy, Clone, PartialEq)]
276pub(crate) enum CrateFlavor {
277 Rlib,
278 Rmeta,
279 Dylib,
280}
281
282impl fmt::Display for CrateFlavor {
283 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
284 f.write_str(match *self {
285 CrateFlavor::Rlib => "rlib",
286 CrateFlavor::Rmeta => "rmeta",
287 CrateFlavor::Dylib => "dylib",
288 })
289 }
290}
291
292impl IntoDiagArg for CrateFlavor {
293 fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
294 match self {
295 CrateFlavor::Rlib => DiagArgValue::Str(Cow::Borrowed("rlib")),
296 CrateFlavor::Rmeta => DiagArgValue::Str(Cow::Borrowed("rmeta")),
297 CrateFlavor::Dylib => DiagArgValue::Str(Cow::Borrowed("dylib")),
298 }
299 }
300}
301
302impl<'a> CrateLocator<'a> {
303 pub(crate) fn new(
304 sess: &'a Session,
305 metadata_loader: &'a dyn MetadataLoader,
306 crate_name: Symbol,
307 is_rlib: bool,
308 hash: Option<Svh>,
309 extra_filename: Option<&'a str>,
310 path_kind: PathKind,
311 ) -> CrateLocator<'a> {
312 let needs_object_code = sess.opts.output_types.should_codegen();
313 // If we're producing an rlib, then we don't need object code.
314 // Or, if we're not producing object code, then we don't need it either
315 // (e.g., if we're a cdylib but emitting just metadata).
316 let only_needs_metadata = is_rlib || !needs_object_code;
317
318 CrateLocator {
319 only_needs_metadata,
320 sysroot: &sess.sysroot,
321 metadata_loader,
322 cfg_version: sess.cfg_version,
323 crate_name,
324 exact_paths: if hash.is_none() {
325 sess.opts
326 .externs
327 .get(crate_name.as_str())
328 .into_iter()
329 .filter_map(|entry| entry.files())
330 .flatten()
331 .cloned()
332 .collect()
333 } else {
334 // SVH being specified means this is a transitive dependency,
335 // so `--extern` options do not apply.
336 Vec::new()
337 },
338 hash,
339 extra_filename,
340 target: &sess.target,
341 tuple: sess.opts.target_triple.clone(),
342 filesearch: sess.target_filesearch(),
343 path_kind,
344 is_proc_macro: false,
345 crate_rejections: CrateRejections::default(),
346 }
347 }
348
349 pub(crate) fn reset(&mut self) {
350 self.crate_rejections.via_hash.clear();
351 self.crate_rejections.via_triple.clear();
352 self.crate_rejections.via_kind.clear();
353 self.crate_rejections.via_version.clear();
354 self.crate_rejections.via_filename.clear();
355 self.crate_rejections.via_invalid.clear();
356 }
357
358 pub(crate) fn maybe_load_library_crate(&mut self) -> Result<Option<Library>, CrateError> {
359 if !self.exact_paths.is_empty() {
360 return self.find_commandline_library();
361 }
362 let mut seen_paths = FxHashSet::default();
363 if let Some(extra_filename) = self.extra_filename {
364 if let library @ Some(_) = self.find_library_crate(extra_filename, &mut seen_paths)? {
365 return Ok(library);
366 }
367 }
368 self.find_library_crate("", &mut seen_paths)
369 }
370
371 fn find_library_crate(
372 &mut self,
373 extra_prefix: &str,
374 seen_paths: &mut FxHashSet<PathBuf>,
375 ) -> Result<Option<Library>, CrateError> {
376 let rmeta_prefix = &format!("lib{}{}", self.crate_name, extra_prefix);
377 let rlib_prefix = rmeta_prefix;
378 let dylib_prefix =
379 &format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix);
380 let staticlib_prefix =
381 &format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix);
382
383 let rmeta_suffix = ".rmeta";
384 let rlib_suffix = ".rlib";
385 let dylib_suffix = &self.target.dll_suffix;
386 let staticlib_suffix = &self.target.staticlib_suffix;
387
388 let mut candidates: FxIndexMap<_, (FxIndexMap<_, _>, FxIndexMap<_, _>, FxIndexMap<_, _>)> =
389 Default::default();
390
391 // First, find all possible candidate rlibs and dylibs purely based on
392 // the name of the files themselves. We're trying to match against an
393 // exact crate name and a possibly an exact hash.
394 //
395 // During this step, we can filter all found libraries based on the
396 // name and id found in the crate id (we ignore the path portion for
397 // filename matching), as well as the exact hash (if specified). If we
398 // end up having many candidates, we must look at the metadata to
399 // perform exact matches against hashes/crate ids. Note that opening up
400 // the metadata is where we do an exact match against the full contents
401 // of the crate id (path/name/id).
402 //
403 // The goal of this step is to look at as little metadata as possible.
404 // Unfortunately, the prefix-based matching sometimes is over-eager.
405 // E.g. if `rlib_suffix` is `libstd` it'll match the file
406 // `libstd_detect-8d6701fb958915ad.rlib` (incorrect) as well as
407 // `libstd-f3ab5b1dea981f17.rlib` (correct). But this is hard to avoid
408 // given that `extra_filename` comes from the `-C extra-filename`
409 // option and thus can be anything, and the incorrect match will be
410 // handled safely in `extract_one`.
411 for search_path in self.filesearch.search_paths(self.path_kind) {
412 debug!("searching {}", search_path.dir.display());
413 let spf = &search_path.files;
414
415 let mut should_check_staticlibs = true;
416 for (prefix, suffix, kind) in [
417 (rlib_prefix.as_str(), rlib_suffix, CrateFlavor::Rlib),
418 (rmeta_prefix.as_str(), rmeta_suffix, CrateFlavor::Rmeta),
419 (dylib_prefix, dylib_suffix, CrateFlavor::Dylib),
420 ] {
421 if prefix == staticlib_prefix && suffix == staticlib_suffix {
422 should_check_staticlibs = false;
423 }
424 if let Some(matches) = spf.query(prefix, suffix) {
425 for (hash, spf) in matches {
426 info!("lib candidate: {}", spf.path.display());
427
428 let (rlibs, rmetas, dylibs) =
429 candidates.entry(hash.to_string()).or_default();
430 let path =
431 try_canonicalize(&spf.path).unwrap_or_else(|_| spf.path.to_path_buf());
432 if seen_paths.contains(&path) {
433 continue;
434 };
435 seen_paths.insert(path.clone());
436 match kind {
437 CrateFlavor::Rlib => rlibs.insert(path, search_path.kind),
438 CrateFlavor::Rmeta => rmetas.insert(path, search_path.kind),
439 CrateFlavor::Dylib => dylibs.insert(path, search_path.kind),
440 };
441 }
442 }
443 }
444 if let Some(static_matches) = should_check_staticlibs
445 .then(|| spf.query(staticlib_prefix, staticlib_suffix))
446 .flatten()
447 {
448 for (_, spf) in static_matches {
449 self.crate_rejections.via_kind.push(CrateMismatch {
450 path: spf.path.to_path_buf(),
451 got: "static".to_string(),
452 });
453 }
454 }
455 }
456
457 // We have now collected all known libraries into a set of candidates
458 // keyed of the filename hash listed. For each filename, we also have a
459 // list of rlibs/dylibs that apply. Here, we map each of these lists
460 // (per hash), to a Library candidate for returning.
461 //
462 // A Library candidate is created if the metadata for the set of
463 // libraries corresponds to the crate id and hash criteria that this
464 // search is being performed for.
465 let mut libraries = FxIndexMap::default();
466 for (_hash, (rlibs, rmetas, dylibs)) in candidates {
467 if let Some((svh, lib)) = self.extract_lib(rlibs, rmetas, dylibs)? {
468 libraries.insert(svh, lib);
469 }
470 }
471
472 // Having now translated all relevant found hashes into libraries, see
473 // what we've got and figure out if we found multiple candidates for
474 // libraries or not.
475 match libraries.len() {
476 0 => Ok(None),
477 1 => Ok(Some(libraries.into_iter().next().unwrap().1)),
478 _ => {
479 let mut libraries: Vec<_> = libraries.into_values().collect();
480
481 libraries.sort_by_cached_key(|lib| lib.source.paths().next().unwrap().clone());
482 let candidates = libraries
483 .iter()
484 .map(|lib| lib.source.paths().next().unwrap().clone())
485 .collect::<Vec<_>>();
486
487 Err(CrateError::MultipleCandidates(
488 self.crate_name,
489 // these are the same for all candidates
490 get_flavor_from_path(candidates.first().unwrap()),
491 candidates,
492 ))
493 }
494 }
495 }
496
497 fn extract_lib(
498 &mut self,
499 rlibs: FxIndexMap<PathBuf, PathKind>,
500 rmetas: FxIndexMap<PathBuf, PathKind>,
501 dylibs: FxIndexMap<PathBuf, PathKind>,
502 ) -> Result<Option<(Svh, Library)>, CrateError> {
503 let mut slot = None;
504 // Order here matters, rmeta should come first.
505 //
506 // Make sure there's at most one rlib and at most one dylib.
507 //
508 // See comment in `extract_one` below.
509 let source = CrateSource {
510 rmeta: self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot)?,
511 rlib: self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot)?,
512 dylib: self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot)?,
513 };
514 Ok(slot.map(|(svh, metadata, _)| (svh, Library { source, metadata })))
515 }
516
517 fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool {
518 if flavor == CrateFlavor::Dylib && self.is_proc_macro {
519 return true;
520 }
521
522 if self.only_needs_metadata {
523 flavor == CrateFlavor::Rmeta
524 } else {
525 // we need all flavors (perhaps not true, but what we do for now)
526 true
527 }
528 }
529
530 // Attempts to extract *one* library from the set `m`. If the set has no
531 // elements, `None` is returned. If the set has more than one element, then
532 // the errors and notes are emitted about the set of libraries.
533 //
534 // With only one library in the set, this function will extract it, and then
535 // read the metadata from it if `*slot` is `None`. If the metadata couldn't
536 // be read, it is assumed that the file isn't a valid rust library (no
537 // errors are emitted).
538 //
539 // The `PathBuf` in `slot` will only be used for diagnostic purposes.
540 fn extract_one(
541 &mut self,
542 m: FxIndexMap<PathBuf, PathKind>,
543 flavor: CrateFlavor,
544 slot: &mut Option<(Svh, MetadataBlob, PathBuf)>,
545 ) -> Result<Option<(PathBuf, PathKind)>, CrateError> {
546 // If we are producing an rlib, and we've already loaded metadata, then
547 // we should not attempt to discover further crate sources (unless we're
548 // locating a proc macro; exact logic is in needs_crate_flavor). This means
549 // that under -Zbinary-dep-depinfo we will not emit a dependency edge on
550 // the *unused* rlib, and by returning `None` here immediately we
551 // guarantee that we do indeed not use it.
552 //
553 // See also #68149 which provides more detail on why emitting the
554 // dependency on the rlib is a bad thing.
555 if slot.is_some() {
556 if m.is_empty() || !self.needs_crate_flavor(flavor) {
557 return Ok(None);
558 }
559 }
560
561 let mut ret: Option<(PathBuf, PathKind)> = None;
562 let mut err_data: Option<Vec<PathBuf>> = None;
563 for (lib, kind) in m {
564 info!("{} reading metadata from: {}", flavor, lib.display());
565 if flavor == CrateFlavor::Rmeta && lib.metadata().is_ok_and(|m| m.len() == 0) {
566 // Empty files will cause get_metadata_section to fail. Rmeta
567 // files can be empty, for example with binaries (which can
568 // often appear with `cargo check` when checking a library as
569 // a unittest). We don't want to emit a user-visible warning
570 // in this case as it is not a real problem.
571 debug!("skipping empty file");
572 continue;
573 }
574 let (hash, metadata) = match get_metadata_section(
575 self.target,
576 flavor,
577 &lib,
578 self.metadata_loader,
579 self.cfg_version,
580 ) {
581 Ok(blob) => {
582 if let Some(h) = self.crate_matches(&blob, &lib) {
583 (h, blob)
584 } else {
585 info!("metadata mismatch");
586 continue;
587 }
588 }
589 Err(MetadataError::VersionMismatch { expected_version, found_version }) => {
590 // The file was present and created by the same compiler version, but we
591 // couldn't load it for some reason. Give a hard error instead of silently
592 // ignoring it, but only if we would have given an error anyway.
593 info!(
594 "Rejecting via version: expected {} got {}",
595 expected_version, found_version
596 );
597 self.crate_rejections
598 .via_version
599 .push(CrateMismatch { path: lib, got: found_version });
600 continue;
601 }
602 Err(MetadataError::LoadFailure(err)) => {
603 info!("no metadata found: {}", err);
604 // The file was present and created by the same compiler version, but we
605 // couldn't load it for some reason. Give a hard error instead of silently
606 // ignoring it, but only if we would have given an error anyway.
607 self.crate_rejections.via_invalid.push(CrateMismatch { path: lib, got: err });
608 continue;
609 }
610 Err(err @ MetadataError::NotPresent(_)) => {
611 info!("no metadata found: {}", err);
612 continue;
613 }
614 };
615 // If we see multiple hashes, emit an error about duplicate candidates.
616 if slot.as_ref().is_some_and(|s| s.0 != hash) {
617 if let Some(candidates) = err_data {
618 return Err(CrateError::MultipleCandidates(
619 self.crate_name,
620 flavor,
621 candidates,
622 ));
623 }
624 err_data = Some(vec![slot.take().unwrap().2]);
625 }
626 if let Some(candidates) = &mut err_data {
627 candidates.push(lib);
628 continue;
629 }
630
631 // Ok so at this point we've determined that `(lib, kind)` above is
632 // a candidate crate to load, and that `slot` is either none (this
633 // is the first crate of its kind) or if some the previous path has
634 // the exact same hash (e.g., it's the exact same crate).
635 //
636 // In principle these two candidate crates are exactly the same so
637 // we can choose either of them to link. As a stupidly gross hack,
638 // however, we favor crate in the sysroot.
639 //
640 // You can find more info in rust-lang/rust#39518 and various linked
641 // issues, but the general gist is that during testing libstd the
642 // compilers has two candidates to choose from: one in the sysroot
643 // and one in the deps folder. These two crates are the exact same
644 // crate but if the compiler chooses the one in the deps folder
645 // it'll cause spurious errors on Windows.
646 //
647 // As a result, we favor the sysroot crate here. Note that the
648 // candidates are all canonicalized, so we canonicalize the sysroot
649 // as well.
650 if let Some((prev, _)) = &ret {
651 let sysroot = self.sysroot;
652 let sysroot = try_canonicalize(sysroot).unwrap_or_else(|_| sysroot.to_path_buf());
653 if prev.starts_with(&sysroot) {
654 continue;
655 }
656 }
657 *slot = Some((hash, metadata, lib.clone()));
658 ret = Some((lib, kind));
659 }
660
661 if let Some(candidates) = err_data {
662 Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates))
663 } else {
664 Ok(ret)
665 }
666 }
667
668 fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh> {
669 let header = metadata.get_header();
670 if header.is_proc_macro_crate != self.is_proc_macro {
671 info!(
672 "Rejecting via proc macro: expected {} got {}",
673 self.is_proc_macro, header.is_proc_macro_crate,
674 );
675 return None;
676 }
677
678 if self.exact_paths.is_empty() && self.crate_name != header.name {
679 info!("Rejecting via crate name");
680 return None;
681 }
682
683 if header.triple != self.tuple {
684 info!("Rejecting via crate triple: expected {} got {}", self.tuple, header.triple);
685 self.crate_rejections.via_triple.push(CrateMismatch {
686 path: libpath.to_path_buf(),
687 got: header.triple.to_string(),
688 });
689 return None;
690 }
691
692 let hash = header.hash;
693 if let Some(expected_hash) = self.hash {
694 if hash != expected_hash {
695 info!("Rejecting via hash: expected {} got {}", expected_hash, hash);
696 self.crate_rejections
697 .via_hash
698 .push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() });
699 return None;
700 }
701 }
702
703 Some(hash)
704 }
705
706 fn find_commandline_library(&mut self) -> Result<Option<Library>, CrateError> {
707 // First, filter out all libraries that look suspicious. We only accept
708 // files which actually exist that have the correct naming scheme for
709 // rlibs/dylibs.
710 let mut rlibs = FxIndexMap::default();
711 let mut rmetas = FxIndexMap::default();
712 let mut dylibs = FxIndexMap::default();
713 for loc in &self.exact_paths {
714 let loc_canon = loc.canonicalized();
715 let loc_orig = loc.original();
716 if !loc_canon.exists() {
717 return Err(CrateError::ExternLocationNotExist(self.crate_name, loc_orig.clone()));
718 }
719 if !loc_orig.is_file() {
720 return Err(CrateError::ExternLocationNotFile(self.crate_name, loc_orig.clone()));
721 }
722 // Note to take care and match against the non-canonicalized name:
723 // some systems save build artifacts into content-addressed stores
724 // that do not preserve extensions, and then link to them using
725 // e.g. symbolic links. If we canonicalize too early, we resolve
726 // the symlink, the file type is lost and we might treat rlibs and
727 // rmetas as dylibs.
728 let Some(file) = loc_orig.file_name().and_then(|s| s.to_str()) else {
729 return Err(CrateError::ExternLocationNotFile(self.crate_name, loc_orig.clone()));
730 };
731 // FnMut cannot return reference to captured value, so references
732 // must be taken outside the closure.
733 let rlibs = &mut rlibs;
734 let rmetas = &mut rmetas;
735 let dylibs = &mut dylibs;
736 let type_via_filename = (|| {
737 if file.starts_with("lib") {
738 if file.ends_with(".rlib") {
739 return Some(rlibs);
740 }
741 if file.ends_with(".rmeta") {
742 return Some(rmetas);
743 }
744 }
745 let dll_prefix = self.target.dll_prefix.as_ref();
746 let dll_suffix = self.target.dll_suffix.as_ref();
747 if file.starts_with(dll_prefix) && file.ends_with(dll_suffix) {
748 return Some(dylibs);
749 }
750 None
751 })();
752 match type_via_filename {
753 Some(type_via_filename) => {
754 type_via_filename.insert(loc_canon.clone(), PathKind::ExternFlag);
755 }
756 None => {
757 self.crate_rejections
758 .via_filename
759 .push(CrateMismatch { path: loc_orig.clone(), got: String::new() });
760 }
761 }
762 }
763
764 // Extract the dylib/rlib/rmeta triple.
765 self.extract_lib(rlibs, rmetas, dylibs).map(|opt| opt.map(|(_, lib)| lib))
766 }
767
768 pub(crate) fn into_error(self, dep_root: Option<CratePaths>) -> CrateError {
769 CrateError::LocatorCombined(Box::new(CombinedLocatorError {
770 crate_name: self.crate_name,
771 dep_root,
772 triple: self.tuple,
773 dll_prefix: self.target.dll_prefix.to_string(),
774 dll_suffix: self.target.dll_suffix.to_string(),
775 crate_rejections: self.crate_rejections,
776 }))
777 }
778}
779
780fn get_metadata_section<'p>(
781 target: &Target,
782 flavor: CrateFlavor,
783 filename: &'p Path,
784 loader: &dyn MetadataLoader,
785 cfg_version: &'static str,
786) -> Result<MetadataBlob, MetadataError<'p>> {
787 if !filename.exists() {
788 return Err(MetadataError::NotPresent(filename));
789 }
790 let raw_bytes = match flavor {
791 CrateFlavor::Rlib => {
792 loader.get_rlib_metadata(target, filename).map_err(MetadataError::LoadFailure)?
793 }
794 CrateFlavor::Dylib => {
795 let buf =
796 loader.get_dylib_metadata(target, filename).map_err(MetadataError::LoadFailure)?;
797 let header_len = METADATA_HEADER.len();
798 // header + u64 length of data
799 let data_start = header_len + 8;
800
801 debug!("checking {} bytes of metadata-version stamp", header_len);
802 let header = &buf[..cmp::min(header_len, buf.len())];
803 if header != METADATA_HEADER {
804 return Err(MetadataError::LoadFailure(format!(
805 "invalid metadata version found: {}",
806 filename.display()
807 )));
808 }
809
810 // Length of the metadata - this allows linkers to pad the section if they want
811 let Ok(len_bytes) =
812 <[u8; 8]>::try_from(&buf[header_len..cmp::min(data_start, buf.len())])
813 else {
814 return Err(MetadataError::LoadFailure(
815 "invalid metadata length found".to_string(),
816 ));
817 };
818 let metadata_len = u64::from_le_bytes(len_bytes) as usize;
819
820 // Header is okay -> inflate the actual metadata
821 buf.slice(|buf| &buf[data_start..(data_start + metadata_len)])
822 }
823 CrateFlavor::Rmeta => {
824 // mmap the file, because only a small fraction of it is read.
825 let file = std::fs::File::open(filename).map_err(|_| {
826 MetadataError::LoadFailure(format!(
827 "failed to open rmeta metadata: '{}'",
828 filename.display()
829 ))
830 })?;
831 let mmap = unsafe { Mmap::map(file) };
832 let mmap = mmap.map_err(|_| {
833 MetadataError::LoadFailure(format!(
834 "failed to mmap rmeta metadata: '{}'",
835 filename.display()
836 ))
837 })?;
838
839 slice_owned(mmap, Deref::deref)
840 }
841 };
842 let Ok(blob) = MetadataBlob::new(raw_bytes) else {
843 return Err(MetadataError::LoadFailure(format!(
844 "corrupt metadata encountered in {}",
845 filename.display()
846 )));
847 };
848 match blob.check_compatibility(cfg_version) {
849 Ok(()) => {
850 debug!("metadata blob read okay");
851 Ok(blob)
852 }
853 Err(None) => Err(MetadataError::LoadFailure(format!(
854 "invalid metadata version found: {}",
855 filename.display()
856 ))),
857 Err(Some(found_version)) => {
858 return Err(MetadataError::VersionMismatch {
859 expected_version: rustc_version(cfg_version),
860 found_version,
861 });
862 }
863 }
864}
865
866/// A diagnostic function for dumping crate metadata to an output stream.
867pub fn list_file_metadata(
868 target: &Target,
869 path: &Path,
870 metadata_loader: &dyn MetadataLoader,
871 out: &mut dyn Write,
872 ls_kinds: &[String],
873 cfg_version: &'static str,
874) -> IoResult<()> {
875 let flavor = get_flavor_from_path(path);
876 match get_metadata_section(target, flavor, path, metadata_loader, cfg_version) {
877 Ok(metadata) => metadata.list_crate_metadata(out, ls_kinds),
878 Err(msg) => write!(out, "{msg}\n"),
879 }
880}
881
882fn get_flavor_from_path(path: &Path) -> CrateFlavor {
883 let filename = path.file_name().unwrap().to_str().unwrap();
884
885 if filename.ends_with(".rlib") {
886 CrateFlavor::Rlib
887 } else if filename.ends_with(".rmeta") {
888 CrateFlavor::Rmeta
889 } else {
890 CrateFlavor::Dylib
891 }
892}
893
894// ------------------------------------------ Error reporting -------------------------------------
895
896#[derive(Clone)]
897struct CrateMismatch {
898 path: PathBuf,
899 got: String,
900}
901
902#[derive(Clone, Default)]
903struct CrateRejections {
904 via_hash: Vec<CrateMismatch>,
905 via_triple: Vec<CrateMismatch>,
906 via_kind: Vec<CrateMismatch>,
907 via_version: Vec<CrateMismatch>,
908 via_filename: Vec<CrateMismatch>,
909 via_invalid: Vec<CrateMismatch>,
910}
911
912/// Candidate rejection reasons collected during crate search.
913/// If no candidate is accepted, then these reasons are presented to the user,
914/// otherwise they are ignored.
915pub(crate) struct CombinedLocatorError {
916 crate_name: Symbol,
917 dep_root: Option<CratePaths>,
918 triple: TargetTuple,
919 dll_prefix: String,
920 dll_suffix: String,
921 crate_rejections: CrateRejections,
922}
923
924pub(crate) enum CrateError {
925 NonAsciiName(Symbol),
926 ExternLocationNotExist(Symbol, PathBuf),
927 ExternLocationNotFile(Symbol, PathBuf),
928 MultipleCandidates(Symbol, CrateFlavor, Vec<PathBuf>),
929 SymbolConflictsCurrent(Symbol),
930 StableCrateIdCollision(Symbol, Symbol),
931 DlOpen(String, String),
932 DlSym(String, String),
933 LocatorCombined(Box<CombinedLocatorError>),
934 NotFound(Symbol),
935}
936
937enum MetadataError<'a> {
938 /// The file was missing.
939 NotPresent(&'a Path),
940 /// The file was present and invalid.
941 LoadFailure(String),
942 /// The file was present, but compiled with a different rustc version.
943 VersionMismatch { expected_version: String, found_version: String },
944}
945
946impl fmt::Display for MetadataError<'_> {
947 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
948 match self {
949 MetadataError::NotPresent(filename) => {
950 f.write_str(&format!("no such file: '{}'", filename.display()))
951 }
952 MetadataError::LoadFailure(msg) => f.write_str(msg),
953 MetadataError::VersionMismatch { expected_version, found_version } => {
954 f.write_str(&format!(
955 "rustc version mismatch. expected {}, found {}",
956 expected_version, found_version,
957 ))
958 }
959 }
960 }
961}
962
963impl CrateError {
964 pub(crate) fn report(self, sess: &Session, span: Span, missing_core: bool) {
965 let dcx = sess.dcx();
966 match self {
967 CrateError::NonAsciiName(crate_name) => {
968 dcx.emit_err(errors::NonAsciiName { span, crate_name });
969 }
970 CrateError::ExternLocationNotExist(crate_name, loc) => {
971 dcx.emit_err(errors::ExternLocationNotExist { span, crate_name, location: &loc });
972 }
973 CrateError::ExternLocationNotFile(crate_name, loc) => {
974 dcx.emit_err(errors::ExternLocationNotFile { span, crate_name, location: &loc });
975 }
976 CrateError::MultipleCandidates(crate_name, flavor, candidates) => {
977 dcx.emit_err(errors::MultipleCandidates { span, crate_name, flavor, candidates });
978 }
979 CrateError::SymbolConflictsCurrent(root_name) => {
980 dcx.emit_err(errors::SymbolConflictsCurrent { span, crate_name: root_name });
981 }
982 CrateError::StableCrateIdCollision(crate_name0, crate_name1) => {
983 dcx.emit_err(errors::StableCrateIdCollision { span, crate_name0, crate_name1 });
984 }
985 CrateError::DlOpen(path, err) | CrateError::DlSym(path, err) => {
986 dcx.emit_err(errors::DlError { span, path, err });
987 }
988 CrateError::LocatorCombined(locator) => {
989 let crate_name = locator.crate_name;
990 let add_info = match &locator.dep_root {
991 None => String::new(),
992 Some(r) => format!(" which `{}` depends on", r.name),
993 };
994 if !locator.crate_rejections.via_filename.is_empty() {
995 let mismatches = locator.crate_rejections.via_filename.iter();
996 for CrateMismatch { path, .. } in mismatches {
997 dcx.emit_err(errors::CrateLocationUnknownType { span, path, crate_name });
998 dcx.emit_err(errors::LibFilenameForm {
999 span,
1000 dll_prefix: &locator.dll_prefix,
1001 dll_suffix: &locator.dll_suffix,
1002 });
1003 }
1004 }
1005 let mut found_crates = String::new();
1006 if !locator.crate_rejections.via_hash.is_empty() {
1007 let mismatches = locator.crate_rejections.via_hash.iter();
1008 for CrateMismatch { path, .. } in mismatches {
1009 found_crates.push_str(&format!(
1010 "\ncrate `{}`: {}",
1011 crate_name,
1012 path.display()
1013 ));
1014 }
1015 if let Some(r) = locator.dep_root {
1016 for path in r.source.paths() {
1017 found_crates.push_str(&format!(
1018 "\ncrate `{}`: {}",
1019 r.name,
1020 path.display()
1021 ));
1022 }
1023 }
1024 dcx.emit_err(errors::NewerCrateVersion {
1025 span,
1026 crate_name,
1027 add_info,
1028 found_crates,
1029 });
1030 } else if !locator.crate_rejections.via_triple.is_empty() {
1031 let mismatches = locator.crate_rejections.via_triple.iter();
1032 for CrateMismatch { path, got } in mismatches {
1033 found_crates.push_str(&format!(
1034 "\ncrate `{}`, target triple {}: {}",
1035 crate_name,
1036 got,
1037 path.display(),
1038 ));
1039 }
1040 dcx.emit_err(errors::NoCrateWithTriple {
1041 span,
1042 crate_name,
1043 locator_triple: locator.triple.tuple(),
1044 add_info,
1045 found_crates,
1046 });
1047 } else if !locator.crate_rejections.via_kind.is_empty() {
1048 let mismatches = locator.crate_rejections.via_kind.iter();
1049 for CrateMismatch { path, .. } in mismatches {
1050 found_crates.push_str(&format!(
1051 "\ncrate `{}`: {}",
1052 crate_name,
1053 path.display()
1054 ));
1055 }
1056 dcx.emit_err(errors::FoundStaticlib {
1057 span,
1058 crate_name,
1059 add_info,
1060 found_crates,
1061 });
1062 } else if !locator.crate_rejections.via_version.is_empty() {
1063 let mismatches = locator.crate_rejections.via_version.iter();
1064 for CrateMismatch { path, got } in mismatches {
1065 found_crates.push_str(&format!(
1066 "\ncrate `{}` compiled by {}: {}",
1067 crate_name,
1068 got,
1069 path.display(),
1070 ));
1071 }
1072 dcx.emit_err(errors::IncompatibleRustc {
1073 span,
1074 crate_name,
1075 add_info,
1076 found_crates,
1077 rustc_version: rustc_version(sess.cfg_version),
1078 });
1079 } else if !locator.crate_rejections.via_invalid.is_empty() {
1080 let mut crate_rejections = Vec::new();
1081 for CrateMismatch { path: _, got } in locator.crate_rejections.via_invalid {
1082 crate_rejections.push(got);
1083 }
1084 dcx.emit_err(errors::InvalidMetadataFiles {
1085 span,
1086 crate_name,
1087 add_info,
1088 crate_rejections,
1089 });
1090 } else {
1091 let error = errors::CannotFindCrate {
1092 span,
1093 crate_name,
1094 add_info,
1095 missing_core,
1096 current_crate: sess
1097 .opts
1098 .crate_name
1099 .clone()
1100 .unwrap_or("<unknown>".to_string()),
1101 is_nightly_build: sess.is_nightly_build(),
1102 profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1103 locator_triple: locator.triple,
1104 is_ui_testing: sess.opts.unstable_opts.ui_testing,
1105 };
1106 // The diagnostic for missing core is very good, but it is followed by a lot of
1107 // other diagnostics that do not add information.
1108 if missing_core {
1109 dcx.emit_fatal(error);
1110 } else {
1111 dcx.emit_err(error);
1112 }
1113 }
1114 }
1115 CrateError::NotFound(crate_name) => {
1116 let error = errors::CannotFindCrate {
1117 span,
1118 crate_name,
1119 add_info: String::new(),
1120 missing_core,
1121 current_crate: sess.opts.crate_name.clone().unwrap_or("<unknown>".to_string()),
1122 is_nightly_build: sess.is_nightly_build(),
1123 profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1124 locator_triple: sess.opts.target_triple.clone(),
1125 is_ui_testing: sess.opts.unstable_opts.ui_testing,
1126 };
1127 // The diagnostic for missing core is very good, but it is followed by a lot of
1128 // other diagnostics that do not add information.
1129 if missing_core {
1130 dcx.emit_fatal(error);
1131 } else {
1132 dcx.emit_err(error);
1133 }
1134 }
1135 }
1136 }
1137}