rustc_data_structures/obligation_forest/mod.rs
1//! The `ObligationForest` is a utility data structure used in trait
2//! matching to track the set of outstanding obligations (those not yet
3//! resolved to success or error). It also tracks the "backtrace" of each
4//! pending obligation (why we are trying to figure this out in the first
5//! place).
6//!
7//! ### External view
8//!
9//! `ObligationForest` supports two main public operations (there are a
10//! few others not discussed here):
11//!
12//! 1. Add a new root obligations (`register_obligation`).
13//! 2. Process the pending obligations (`process_obligations`).
14//!
15//! When a new obligation `N` is added, it becomes the root of an
16//! obligation tree. This tree can also carry some per-tree state `T`,
17//! which is given at the same time. This tree is a singleton to start, so
18//! `N` is both the root and the only leaf. Each time the
19//! `process_obligations` method is called, it will invoke its callback
20//! with every pending obligation (so that will include `N`, the first
21//! time). The callback also receives a (mutable) reference to the
22//! per-tree state `T`. The callback should process the obligation `O`
23//! that it is given and return a `ProcessResult`:
24//!
25//! - `Unchanged` -> ambiguous result. Obligation was neither a success
26//! nor a failure. It is assumed that further attempts to process the
27//! obligation will yield the same result unless something in the
28//! surrounding environment changes.
29//! - `Changed(C)` - the obligation was *shallowly successful*. The
30//! vector `C` is a list of subobligations. The meaning of this is that
31//! `O` was successful on the assumption that all the obligations in `C`
32//! are also successful. Therefore, `O` is only considered a "true"
33//! success if `C` is empty. Otherwise, `O` is put into a suspended
34//! state and the obligations in `C` become the new pending
35//! obligations. They will be processed the next time you call
36//! `process_obligations`.
37//! - `Error(E)` -> obligation failed with error `E`. We will collect this
38//! error and return it from `process_obligations`, along with the
39//! "backtrace" of obligations (that is, the list of obligations up to
40//! and including the root of the failed obligation). No further
41//! obligations from that same tree will be processed, since the tree is
42//! now considered to be in error.
43//!
44//! When the call to `process_obligations` completes, you get back an `Outcome`,
45//! which includes two bits of information:
46//!
47//! - `completed`: a list of obligations where processing was fully
48//! completed without error (meaning that all transitive subobligations
49//! have also been completed). So, for example, if the callback from
50//! `process_obligations` returns `Changed(C)` for some obligation `O`,
51//! then `O` will be considered completed right away if `C` is the
52//! empty vector. Otherwise it will only be considered completed once
53//! all the obligations in `C` have been found completed.
54//! - `errors`: a list of errors that occurred and associated backtraces
55//! at the time of error, which can be used to give context to the user.
56//!
57//! Upon completion, none of the existing obligations were *shallowly
58//! successful* (that is, no callback returned `Changed(_)`). This implies that
59//! all obligations were either errors or returned an ambiguous result.
60//!
61//! ### Implementation details
62//!
63//! For the most part, comments specific to the implementation are in the
64//! code. This file only contains a very high-level overview. Basically,
65//! the forest is stored in a vector. Each element of the vector is a node
66//! in some tree. Each node in the vector has the index of its dependents,
67//! including the first dependent which is known as the parent. It also
68//! has a current state, described by `NodeState`. After each processing
69//! step, we compress the vector to remove completed and error nodes, which
70//! aren't needed anymore.
71
72use std::cell::Cell;
73use std::collections::hash_map::Entry;
74use std::fmt::Debug;
75use std::hash;
76use std::marker::PhantomData;
77
78use thin_vec::ThinVec;
79use tracing::debug;
80
81use crate::fx::{FxHashMap, FxHashSet};
82
83mod graphviz;
84
85#[cfg(test)]
86mod tests;
87
88pub trait ForestObligation: Clone + Debug {
89 type CacheKey: Clone + hash::Hash + Eq + Debug;
90
91 /// Converts this `ForestObligation` suitable for use as a cache key.
92 /// If two distinct `ForestObligations`s return the same cache key,
93 /// then it must be sound to use the result of processing one obligation
94 /// (e.g. success for error) for the other obligation
95 fn as_cache_key(&self) -> Self::CacheKey;
96}
97
98pub trait ObligationProcessor {
99 type Obligation: ForestObligation;
100 type Error: Debug;
101 type OUT: OutcomeTrait<Obligation = Self::Obligation, Error = Error<Self::Obligation, Self::Error>>;
102
103 /// Implementations can provide a fast-path to obligation-processing
104 /// by counting the prefix of the passed iterator for which
105 /// `needs_process_obligation` would return false.
106 fn skippable_obligations<'a>(
107 &'a self,
108 _it: impl Iterator<Item = &'a Self::Obligation>,
109 ) -> usize {
110 0
111 }
112
113 fn needs_process_obligation(&self, _obligation: &Self::Obligation) -> bool;
114
115 fn process_obligation(
116 &mut self,
117 obligation: &mut Self::Obligation,
118 ) -> ProcessResult<Self::Obligation, Self::Error>;
119
120 /// As we do the cycle check, we invoke this callback when we
121 /// encounter an actual cycle. `cycle` is an iterator that starts
122 /// at the start of the cycle in the stack and walks **toward the
123 /// top**.
124 ///
125 /// In other words, if we had O1 which required O2 which required
126 /// O3 which required O1, we would give an iterator yielding O1,
127 /// O2, O3 (O1 is not yielded twice).
128 fn process_backedge<'c, I>(
129 &mut self,
130 cycle: I,
131 _marker: PhantomData<&'c Self::Obligation>,
132 ) -> Result<(), Self::Error>
133 where
134 I: Clone + Iterator<Item = &'c Self::Obligation>;
135}
136
137/// The result type used by `process_obligation`.
138// `repr(C)` to inhibit the niche filling optimization. Otherwise, the `match` appearing
139// in `process_obligations` is significantly slower, which can substantially affect
140// benchmarks like `rustc-perf`'s inflate and keccak.
141#[repr(C)]
142#[derive(Debug)]
143pub enum ProcessResult<O, E> {
144 Unchanged,
145 Changed(ThinVec<O>),
146 Error(E),
147}
148
149#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
150struct ObligationTreeId(usize);
151
152pub struct ObligationForest<O: ForestObligation> {
153 /// The list of obligations. In between calls to [Self::process_obligations],
154 /// this list only contains nodes in the `Pending` or `Waiting` state.
155 ///
156 /// `usize` indices are used here and throughout this module, rather than
157 /// [`rustc_index::newtype_index!`] indices, because this code is hot enough
158 /// that the `u32`-to-`usize` conversions that would be required are
159 /// significant, and space considerations are not important.
160 nodes: Vec<Node<O>>,
161
162 /// A cache of predicates that have been successfully completed.
163 done_cache: FxHashSet<O::CacheKey>,
164
165 /// A cache of the nodes in `nodes`, indexed by predicate. Unfortunately,
166 /// its contents are not guaranteed to match those of `nodes`. See the
167 /// comments in `Self::process_obligation` for details.
168 active_cache: FxHashMap<O::CacheKey, usize>,
169
170 /// A vector reused in [Self::compress()] and [Self::find_cycles_from_node()],
171 /// to avoid allocating new vectors.
172 reused_node_vec: Vec<usize>,
173
174 obligation_tree_id_generator: ObligationTreeIdGenerator,
175
176 /// Per tree error cache. This is used to deduplicate errors,
177 /// which is necessary to avoid trait resolution overflow in
178 /// some cases.
179 ///
180 /// See [this][details] for details.
181 ///
182 /// [details]: https://github.com/rust-lang/rust/pull/53255#issuecomment-421184780
183 error_cache: FxHashMap<ObligationTreeId, FxHashSet<O::CacheKey>>,
184}
185
186#[derive(Debug)]
187struct Node<O> {
188 obligation: O,
189 state: Cell<NodeState>,
190
191 /// Obligations that depend on this obligation for their completion. They
192 /// must all be in a non-pending state.
193 dependents: Vec<usize>,
194
195 /// If true, `dependents[0]` points to a "parent" node, which requires
196 /// special treatment upon error but is otherwise treated the same.
197 /// (It would be more idiomatic to store the parent node in a separate
198 /// `Option<usize>` field, but that slows down the common case of
199 /// iterating over the parent and other descendants together.)
200 has_parent: bool,
201
202 /// Identifier of the obligation tree to which this node belongs.
203 obligation_tree_id: ObligationTreeId,
204}
205
206impl<O> Node<O> {
207 fn new(parent: Option<usize>, obligation: O, obligation_tree_id: ObligationTreeId) -> Node<O> {
208 Node {
209 obligation,
210 state: Cell::new(NodeState::Pending),
211 dependents: if let Some(parent_index) = parent { vec![parent_index] } else { vec![] },
212 has_parent: parent.is_some(),
213 obligation_tree_id,
214 }
215 }
216}
217
218/// The state of one node in some tree within the forest. This represents the
219/// current state of processing for the obligation (of type `O`) associated
220/// with this node.
221///
222/// The non-`Error` state transitions are as follows.
223/// ```text
224/// (Pre-creation)
225/// |
226/// | register_obligation_at() (called by process_obligations() and
227/// v from outside the crate)
228/// Pending
229/// |
230/// | process_obligations()
231/// v
232/// Success
233/// | ^
234/// | | mark_successes()
235/// | v
236/// | Waiting
237/// |
238/// | process_cycles()
239/// v
240/// Done
241/// |
242/// | compress()
243/// v
244/// (Removed)
245/// ```
246/// The `Error` state can be introduced in several places, via `error_at()`.
247///
248/// Outside of `ObligationForest` methods, nodes should be either `Pending` or
249/// `Waiting`.
250#[derive(Debug, Copy, Clone, PartialEq, Eq)]
251enum NodeState {
252 /// This obligation has not yet been selected successfully. Cannot have
253 /// subobligations.
254 Pending,
255
256 /// This obligation was selected successfully, but may or may not have
257 /// subobligations.
258 Success,
259
260 /// This obligation was selected successfully, but it has a pending
261 /// subobligation.
262 Waiting,
263
264 /// This obligation, along with its subobligations, are complete, and will
265 /// be removed in the next collection.
266 Done,
267
268 /// This obligation was resolved to an error. It will be removed by the
269 /// next compression step.
270 Error,
271}
272
273/// This trait allows us to have two different Outcome types:
274/// - the normal one that does as little as possible
275/// - one for tests that does some additional work and checking
276pub trait OutcomeTrait {
277 type Error;
278 type Obligation;
279
280 fn new() -> Self;
281 fn record_completed(&mut self, outcome: &Self::Obligation);
282 fn record_error(&mut self, error: Self::Error);
283}
284
285#[derive(Debug)]
286pub struct Outcome<O, E> {
287 /// Backtrace of obligations that were found to be in error.
288 pub errors: Vec<Error<O, E>>,
289}
290
291impl<O, E> OutcomeTrait for Outcome<O, E> {
292 type Error = Error<O, E>;
293 type Obligation = O;
294
295 fn new() -> Self {
296 Self { errors: vec![] }
297 }
298
299 fn record_completed(&mut self, _outcome: &Self::Obligation) {
300 // do nothing
301 }
302
303 fn record_error(&mut self, error: Self::Error) {
304 self.errors.push(error)
305 }
306}
307
308#[derive(Debug, PartialEq, Eq)]
309pub struct Error<O, E> {
310 pub error: E,
311 pub backtrace: Vec<O>,
312}
313
314mod helper {
315 use super::*;
316 pub type ObligationTreeIdGenerator = impl Iterator<Item = ObligationTreeId>;
317 impl<O: ForestObligation> ObligationForest<O> {
318 pub fn new() -> ObligationForest<O> {
319 ObligationForest {
320 nodes: vec![],
321 done_cache: Default::default(),
322 active_cache: Default::default(),
323 reused_node_vec: vec![],
324 obligation_tree_id_generator: (0..).map(ObligationTreeId),
325 error_cache: Default::default(),
326 }
327 }
328 }
329}
330use helper::*;
331
332impl<O: ForestObligation> ObligationForest<O> {
333 /// Returns the total number of nodes in the forest that have not
334 /// yet been fully resolved.
335 pub fn len(&self) -> usize {
336 self.nodes.len()
337 }
338
339 /// Registers an obligation.
340 pub fn register_obligation(&mut self, obligation: O) {
341 // Ignore errors here - there is no guarantee of success.
342 let _ = self.register_obligation_at(obligation, None);
343 }
344
345 // Returns Err(()) if we already know this obligation failed.
346 fn register_obligation_at(&mut self, obligation: O, parent: Option<usize>) -> Result<(), ()> {
347 let cache_key = obligation.as_cache_key();
348 if self.done_cache.contains(&cache_key) {
349 debug!("register_obligation_at: ignoring already done obligation: {:?}", obligation);
350 return Ok(());
351 }
352
353 match self.active_cache.entry(cache_key) {
354 Entry::Occupied(o) => {
355 let node = &mut self.nodes[*o.get()];
356 if let Some(parent_index) = parent {
357 // If the node is already in `active_cache`, it has already
358 // had its chance to be marked with a parent. So if it's
359 // not already present, just dump `parent` into the
360 // dependents as a non-parent.
361 if !node.dependents.contains(&parent_index) {
362 node.dependents.push(parent_index);
363 }
364 }
365 if let NodeState::Error = node.state.get() { Err(()) } else { Ok(()) }
366 }
367 Entry::Vacant(v) => {
368 let obligation_tree_id = match parent {
369 Some(parent_index) => self.nodes[parent_index].obligation_tree_id,
370 None => self.obligation_tree_id_generator.next().unwrap(),
371 };
372
373 let already_failed = parent.is_some()
374 && self
375 .error_cache
376 .get(&obligation_tree_id)
377 .is_some_and(|errors| errors.contains(v.key()));
378
379 if already_failed {
380 Err(())
381 } else {
382 let new_index = self.nodes.len();
383 v.insert(new_index);
384 self.nodes.push(Node::new(parent, obligation, obligation_tree_id));
385 Ok(())
386 }
387 }
388 }
389 }
390
391 /// Converts all remaining obligations to the given error.
392 pub fn to_errors<E: Clone>(&mut self, error: E) -> Vec<Error<O, E>> {
393 let errors = self
394 .nodes
395 .iter()
396 .enumerate()
397 .filter(|(_index, node)| node.state.get() == NodeState::Pending)
398 .map(|(index, _node)| Error { error: error.clone(), backtrace: self.error_at(index) })
399 .collect();
400
401 self.compress(|_| assert!(false));
402 errors
403 }
404
405 /// Returns the set of obligations that are in a pending state.
406 pub fn map_pending_obligations<P, F, R>(&self, f: F) -> R
407 where
408 F: Fn(&O) -> P,
409 R: FromIterator<P>,
410 {
411 self.nodes
412 .iter()
413 .filter(|node| node.state.get() == NodeState::Pending)
414 .map(|node| f(&node.obligation))
415 .collect()
416 }
417
418 pub fn has_pending_obligations(&self) -> bool {
419 self.nodes.iter().any(|node| node.state.get() == NodeState::Pending)
420 }
421
422 fn insert_into_error_cache(&mut self, index: usize) {
423 let node = &self.nodes[index];
424 self.error_cache
425 .entry(node.obligation_tree_id)
426 .or_default()
427 .insert(node.obligation.as_cache_key());
428 }
429
430 /// Performs a fixpoint computation over the obligation list.
431 #[inline(never)]
432 pub fn process_obligations<P>(&mut self, processor: &mut P) -> P::OUT
433 where
434 P: ObligationProcessor<Obligation = O>,
435 {
436 let mut outcome = P::OUT::new();
437
438 // Fixpoint computation: we repeat until the inner loop stalls.
439 loop {
440 let mut has_changed = false;
441
442 // This is the super fast path for cheap-to-check conditions.
443 let mut index =
444 processor.skippable_obligations(self.nodes.iter().map(|n| &n.obligation));
445
446 // Note that the loop body can append new nodes, and those new nodes
447 // will then be processed by subsequent iterations of the loop.
448 //
449 // We can't use an iterator for the loop because `self.nodes` is
450 // appended to and the borrow checker would complain. We also can't use
451 // `for index in 0..self.nodes.len() { ... }` because the range would
452 // be computed with the initial length, and we would miss the appended
453 // nodes. Therefore we use a `while` loop.
454 while let Some(node) = self.nodes.get_mut(index) {
455 // This is the moderately fast path when the prefix skipping above didn't work out.
456 if node.state.get() != NodeState::Pending
457 || !processor.needs_process_obligation(&node.obligation)
458 {
459 index += 1;
460 continue;
461 }
462
463 // `processor.process_obligation` can modify the predicate within
464 // `node.obligation`, and that predicate is the key used for
465 // `self.active_cache`. This means that `self.active_cache` can get
466 // out of sync with `nodes`. It's not very common, but it does
467 // happen, and code in `compress` has to allow for it.
468
469 // This code is much less hot.
470 match processor.process_obligation(&mut node.obligation) {
471 ProcessResult::Unchanged => {
472 // No change in state.
473 }
474 ProcessResult::Changed(children) => {
475 // We are not (yet) stalled.
476 has_changed = true;
477 node.state.set(NodeState::Success);
478
479 for child in children {
480 let st = self.register_obligation_at(child, Some(index));
481 if let Err(()) = st {
482 // Error already reported - propagate it
483 // to our node.
484 self.error_at(index);
485 }
486 }
487 }
488 ProcessResult::Error(err) => {
489 has_changed = true;
490 outcome.record_error(Error { error: err, backtrace: self.error_at(index) });
491 }
492 }
493 index += 1;
494 }
495
496 // If unchanged, then we saw no successful obligations, which means
497 // there is no point in further iteration. This is based on the
498 // assumption that when trait matching returns `Error` or
499 // `Unchanged`, those results do not affect environmental inference
500 // state. (Note that this will occur if we invoke
501 // `process_obligations` with no pending obligations.)
502 if !has_changed {
503 break;
504 }
505
506 self.mark_successes();
507 self.process_cycles(processor, &mut outcome);
508 self.compress(|obl| outcome.record_completed(obl));
509 }
510
511 outcome
512 }
513
514 /// Returns a vector of obligations for `p` and all of its
515 /// ancestors, putting them into the error state in the process.
516 fn error_at(&self, mut index: usize) -> Vec<O> {
517 let mut error_stack: Vec<usize> = vec![];
518 let mut trace = vec![];
519
520 loop {
521 let node = &self.nodes[index];
522 node.state.set(NodeState::Error);
523 trace.push(node.obligation.clone());
524 if node.has_parent {
525 // The first dependent is the parent, which is treated
526 // specially.
527 error_stack.extend(node.dependents.iter().skip(1));
528 index = node.dependents[0];
529 } else {
530 // No parent; treat all dependents non-specially.
531 error_stack.extend(node.dependents.iter());
532 break;
533 }
534 }
535
536 while let Some(index) = error_stack.pop() {
537 let node = &self.nodes[index];
538 if node.state.get() != NodeState::Error {
539 node.state.set(NodeState::Error);
540 error_stack.extend(node.dependents.iter());
541 }
542 }
543
544 trace
545 }
546
547 /// Mark all `Waiting` nodes as `Success`, except those that depend on a
548 /// pending node.
549 fn mark_successes(&self) {
550 // Convert all `Waiting` nodes to `Success`.
551 for node in &self.nodes {
552 if node.state.get() == NodeState::Waiting {
553 node.state.set(NodeState::Success);
554 }
555 }
556
557 // Convert `Success` nodes that depend on a pending node back to
558 // `Waiting`.
559 for node in &self.nodes {
560 if node.state.get() == NodeState::Pending {
561 // This call site is hot.
562 self.inlined_mark_dependents_as_waiting(node);
563 }
564 }
565 }
566
567 // This always-inlined function is for the hot call site.
568 #[inline(always)]
569 fn inlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
570 for &index in node.dependents.iter() {
571 let node = &self.nodes[index];
572 let state = node.state.get();
573 if state == NodeState::Success {
574 // This call site is cold.
575 self.uninlined_mark_dependents_as_waiting(node);
576 } else {
577 debug_assert!(state == NodeState::Waiting || state == NodeState::Error)
578 }
579 }
580 }
581
582 // This never-inlined function is for the cold call site.
583 #[inline(never)]
584 fn uninlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
585 // Mark node Waiting in the cold uninlined code instead of the hot inlined
586 node.state.set(NodeState::Waiting);
587 self.inlined_mark_dependents_as_waiting(node)
588 }
589
590 /// Report cycles between all `Success` nodes, and convert all `Success`
591 /// nodes to `Done`. This must be called after `mark_successes`.
592 fn process_cycles<P>(&mut self, processor: &mut P, outcome: &mut P::OUT)
593 where
594 P: ObligationProcessor<Obligation = O>,
595 {
596 let mut stack = std::mem::take(&mut self.reused_node_vec);
597 for (index, node) in self.nodes.iter().enumerate() {
598 // For some benchmarks this state test is extremely hot. It's a win
599 // to handle the no-op cases immediately to avoid the cost of the
600 // function call.
601 if node.state.get() == NodeState::Success {
602 self.find_cycles_from_node(&mut stack, processor, index, outcome);
603 }
604 }
605
606 debug_assert!(stack.is_empty());
607 self.reused_node_vec = stack;
608 }
609
610 fn find_cycles_from_node<P>(
611 &self,
612 stack: &mut Vec<usize>,
613 processor: &mut P,
614 index: usize,
615 outcome: &mut P::OUT,
616 ) where
617 P: ObligationProcessor<Obligation = O>,
618 {
619 let node = &self.nodes[index];
620 if node.state.get() == NodeState::Success {
621 match stack.iter().rposition(|&n| n == index) {
622 None => {
623 stack.push(index);
624 for &dep_index in node.dependents.iter() {
625 self.find_cycles_from_node(stack, processor, dep_index, outcome);
626 }
627 stack.pop();
628 node.state.set(NodeState::Done);
629 }
630 Some(rpos) => {
631 // Cycle detected.
632 let result = processor.process_backedge(
633 stack[rpos..].iter().map(|&i| &self.nodes[i].obligation),
634 PhantomData,
635 );
636 if let Err(err) = result {
637 outcome.record_error(Error { error: err, backtrace: self.error_at(index) });
638 }
639 }
640 }
641 }
642 }
643
644 /// Compresses the vector, removing all popped nodes. This adjusts the
645 /// indices and hence invalidates any outstanding indices. `process_cycles`
646 /// must be run beforehand to remove any cycles on `Success` nodes.
647 #[inline(never)]
648 fn compress(&mut self, mut outcome_cb: impl FnMut(&O)) {
649 let orig_nodes_len = self.nodes.len();
650 let mut node_rewrites: Vec<_> = std::mem::take(&mut self.reused_node_vec);
651 debug_assert!(node_rewrites.is_empty());
652 node_rewrites.extend(0..orig_nodes_len);
653 let mut dead_nodes = 0;
654
655 // Move removable nodes to the end, preserving the order of the
656 // remaining nodes.
657 //
658 // LOOP INVARIANT:
659 // self.nodes[0..index - dead_nodes] are the first remaining nodes
660 // self.nodes[index - dead_nodes..index] are all dead
661 // self.nodes[index..] are unchanged
662 for index in 0..orig_nodes_len {
663 let node = &self.nodes[index];
664 match node.state.get() {
665 NodeState::Pending | NodeState::Waiting => {
666 if dead_nodes > 0 {
667 self.nodes.swap(index, index - dead_nodes);
668 node_rewrites[index] -= dead_nodes;
669 }
670 }
671 NodeState::Done => {
672 // The removal lookup might fail because the contents of
673 // `self.active_cache` are not guaranteed to match those of
674 // `self.nodes`. See the comment in `process_obligation`
675 // for more details.
676 let cache_key = node.obligation.as_cache_key();
677 self.active_cache.remove(&cache_key);
678 self.done_cache.insert(cache_key);
679
680 // Extract the success stories.
681 outcome_cb(&node.obligation);
682 node_rewrites[index] = orig_nodes_len;
683 dead_nodes += 1;
684 }
685 NodeState::Error => {
686 // We *intentionally* remove the node from the cache at this point. Otherwise
687 // tests must come up with a different type on every type error they
688 // check against.
689 self.active_cache.remove(&node.obligation.as_cache_key());
690 self.insert_into_error_cache(index);
691 node_rewrites[index] = orig_nodes_len;
692 dead_nodes += 1;
693 }
694 NodeState::Success => unreachable!(),
695 }
696 }
697
698 if dead_nodes > 0 {
699 // Remove the dead nodes and rewrite indices.
700 self.nodes.truncate(orig_nodes_len - dead_nodes);
701 self.apply_rewrites(&node_rewrites);
702 }
703
704 node_rewrites.truncate(0);
705 self.reused_node_vec = node_rewrites;
706 }
707
708 #[inline(never)]
709 fn apply_rewrites(&mut self, node_rewrites: &[usize]) {
710 let orig_nodes_len = node_rewrites.len();
711
712 for node in &mut self.nodes {
713 let mut i = 0;
714 while let Some(dependent) = node.dependents.get_mut(i) {
715 let new_index = node_rewrites[*dependent];
716 if new_index >= orig_nodes_len {
717 node.dependents.swap_remove(i);
718 if i == 0 && node.has_parent {
719 // We just removed the parent.
720 node.has_parent = false;
721 }
722 } else {
723 *dependent = new_index;
724 i += 1;
725 }
726 }
727 }
728
729 // This updating of `self.active_cache` is necessary because the
730 // removal of nodes within `compress` can fail. See above.
731 self.active_cache.retain(|_predicate, index| {
732 let new_index = node_rewrites[*index];
733 if new_index >= orig_nodes_len {
734 false
735 } else {
736 *index = new_index;
737 true
738 }
739 });
740 }
741}