rustc_data_structures/obligation_forest/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
//! The `ObligationForest` is a utility data structure used in trait
//! matching to track the set of outstanding obligations (those not yet
//! resolved to success or error). It also tracks the "backtrace" of each
//! pending obligation (why we are trying to figure this out in the first
//! place).
//!
//! ### External view
//!
//! `ObligationForest` supports two main public operations (there are a
//! few others not discussed here):
//!
//! 1. Add a new root obligations (`register_obligation`).
//! 2. Process the pending obligations (`process_obligations`).
//!
//! When a new obligation `N` is added, it becomes the root of an
//! obligation tree. This tree can also carry some per-tree state `T`,
//! which is given at the same time. This tree is a singleton to start, so
//! `N` is both the root and the only leaf. Each time the
//! `process_obligations` method is called, it will invoke its callback
//! with every pending obligation (so that will include `N`, the first
//! time). The callback also receives a (mutable) reference to the
//! per-tree state `T`. The callback should process the obligation `O`
//! that it is given and return a `ProcessResult`:
//!
//! - `Unchanged` -> ambiguous result. Obligation was neither a success
//! nor a failure. It is assumed that further attempts to process the
//! obligation will yield the same result unless something in the
//! surrounding environment changes.
//! - `Changed(C)` - the obligation was *shallowly successful*. The
//! vector `C` is a list of subobligations. The meaning of this is that
//! `O` was successful on the assumption that all the obligations in `C`
//! are also successful. Therefore, `O` is only considered a "true"
//! success if `C` is empty. Otherwise, `O` is put into a suspended
//! state and the obligations in `C` become the new pending
//! obligations. They will be processed the next time you call
//! `process_obligations`.
//! - `Error(E)` -> obligation failed with error `E`. We will collect this
//! error and return it from `process_obligations`, along with the
//! "backtrace" of obligations (that is, the list of obligations up to
//! and including the root of the failed obligation). No further
//! obligations from that same tree will be processed, since the tree is
//! now considered to be in error.
//!
//! When the call to `process_obligations` completes, you get back an `Outcome`,
//! which includes two bits of information:
//!
//! - `completed`: a list of obligations where processing was fully
//! completed without error (meaning that all transitive subobligations
//! have also been completed). So, for example, if the callback from
//! `process_obligations` returns `Changed(C)` for some obligation `O`,
//! then `O` will be considered completed right away if `C` is the
//! empty vector. Otherwise it will only be considered completed once
//! all the obligations in `C` have been found completed.
//! - `errors`: a list of errors that occurred and associated backtraces
//! at the time of error, which can be used to give context to the user.
//!
//! Upon completion, none of the existing obligations were *shallowly
//! successful* (that is, no callback returned `Changed(_)`). This implies that
//! all obligations were either errors or returned an ambiguous result.
//!
//! ### Implementation details
//!
//! For the most part, comments specific to the implementation are in the
//! code. This file only contains a very high-level overview. Basically,
//! the forest is stored in a vector. Each element of the vector is a node
//! in some tree. Each node in the vector has the index of its dependents,
//! including the first dependent which is known as the parent. It also
//! has a current state, described by `NodeState`. After each processing
//! step, we compress the vector to remove completed and error nodes, which
//! aren't needed anymore.
use std::cell::Cell;
use std::collections::hash_map::Entry;
use std::fmt::Debug;
use std::hash;
use std::marker::PhantomData;
use tracing::debug;
use crate::fx::{FxHashMap, FxHashSet};
mod graphviz;
#[cfg(test)]
mod tests;
pub trait ForestObligation: Clone + Debug {
type CacheKey: Clone + hash::Hash + Eq + Debug;
/// Converts this `ForestObligation` suitable for use as a cache key.
/// If two distinct `ForestObligations`s return the same cache key,
/// then it must be sound to use the result of processing one obligation
/// (e.g. success for error) for the other obligation
fn as_cache_key(&self) -> Self::CacheKey;
}
pub trait ObligationProcessor {
type Obligation: ForestObligation;
type Error: Debug;
type OUT: OutcomeTrait<Obligation = Self::Obligation, Error = Error<Self::Obligation, Self::Error>>;
/// Implementations can provide a fast-path to obligation-processing
/// by counting the prefix of the passed iterator for which
/// `needs_process_obligation` would return false.
fn skippable_obligations<'a>(
&'a self,
_it: impl Iterator<Item = &'a Self::Obligation>,
) -> usize {
0
}
fn needs_process_obligation(&self, _obligation: &Self::Obligation) -> bool;
fn process_obligation(
&mut self,
obligation: &mut Self::Obligation,
) -> ProcessResult<Self::Obligation, Self::Error>;
/// As we do the cycle check, we invoke this callback when we
/// encounter an actual cycle. `cycle` is an iterator that starts
/// at the start of the cycle in the stack and walks **toward the
/// top**.
///
/// In other words, if we had O1 which required O2 which required
/// O3 which required O1, we would give an iterator yielding O1,
/// O2, O3 (O1 is not yielded twice).
fn process_backedge<'c, I>(
&mut self,
cycle: I,
_marker: PhantomData<&'c Self::Obligation>,
) -> Result<(), Self::Error>
where
I: Clone + Iterator<Item = &'c Self::Obligation>;
}
/// The result type used by `process_obligation`.
// `repr(C)` to inhibit the niche filling optimization. Otherwise, the `match` appearing
// in `process_obligations` is significantly slower, which can substantially affect
// benchmarks like `rustc-perf`'s inflate and keccak.
#[repr(C)]
#[derive(Debug)]
pub enum ProcessResult<O, E> {
Unchanged,
Changed(Vec<O>),
Error(E),
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
struct ObligationTreeId(usize);
pub struct ObligationForest<O: ForestObligation> {
/// The list of obligations. In between calls to [Self::process_obligations],
/// this list only contains nodes in the `Pending` or `Waiting` state.
///
/// `usize` indices are used here and throughout this module, rather than
/// [`rustc_index::newtype_index!`] indices, because this code is hot enough
/// that the `u32`-to-`usize` conversions that would be required are
/// significant, and space considerations are not important.
nodes: Vec<Node<O>>,
/// A cache of predicates that have been successfully completed.
done_cache: FxHashSet<O::CacheKey>,
/// A cache of the nodes in `nodes`, indexed by predicate. Unfortunately,
/// its contents are not guaranteed to match those of `nodes`. See the
/// comments in `Self::process_obligation` for details.
active_cache: FxHashMap<O::CacheKey, usize>,
/// A vector reused in [Self::compress()] and [Self::find_cycles_from_node()],
/// to avoid allocating new vectors.
reused_node_vec: Vec<usize>,
obligation_tree_id_generator: ObligationTreeIdGenerator,
/// Per tree error cache. This is used to deduplicate errors,
/// which is necessary to avoid trait resolution overflow in
/// some cases.
///
/// See [this][details] for details.
///
/// [details]: https://github.com/rust-lang/rust/pull/53255#issuecomment-421184780
error_cache: FxHashMap<ObligationTreeId, FxHashSet<O::CacheKey>>,
}
#[derive(Debug)]
struct Node<O> {
obligation: O,
state: Cell<NodeState>,
/// Obligations that depend on this obligation for their completion. They
/// must all be in a non-pending state.
dependents: Vec<usize>,
/// If true, `dependents[0]` points to a "parent" node, which requires
/// special treatment upon error but is otherwise treated the same.
/// (It would be more idiomatic to store the parent node in a separate
/// `Option<usize>` field, but that slows down the common case of
/// iterating over the parent and other descendants together.)
has_parent: bool,
/// Identifier of the obligation tree to which this node belongs.
obligation_tree_id: ObligationTreeId,
}
impl<O> Node<O> {
fn new(parent: Option<usize>, obligation: O, obligation_tree_id: ObligationTreeId) -> Node<O> {
Node {
obligation,
state: Cell::new(NodeState::Pending),
dependents: if let Some(parent_index) = parent { vec![parent_index] } else { vec![] },
has_parent: parent.is_some(),
obligation_tree_id,
}
}
}
/// The state of one node in some tree within the forest. This represents the
/// current state of processing for the obligation (of type `O`) associated
/// with this node.
///
/// The non-`Error` state transitions are as follows.
/// ```text
/// (Pre-creation)
/// |
/// | register_obligation_at() (called by process_obligations() and
/// v from outside the crate)
/// Pending
/// |
/// | process_obligations()
/// v
/// Success
/// | ^
/// | | mark_successes()
/// | v
/// | Waiting
/// |
/// | process_cycles()
/// v
/// Done
/// |
/// | compress()
/// v
/// (Removed)
/// ```
/// The `Error` state can be introduced in several places, via `error_at()`.
///
/// Outside of `ObligationForest` methods, nodes should be either `Pending` or
/// `Waiting`.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum NodeState {
/// This obligation has not yet been selected successfully. Cannot have
/// subobligations.
Pending,
/// This obligation was selected successfully, but may or may not have
/// subobligations.
Success,
/// This obligation was selected successfully, but it has a pending
/// subobligation.
Waiting,
/// This obligation, along with its subobligations, are complete, and will
/// be removed in the next collection.
Done,
/// This obligation was resolved to an error. It will be removed by the
/// next compression step.
Error,
}
/// This trait allows us to have two different Outcome types:
/// - the normal one that does as little as possible
/// - one for tests that does some additional work and checking
pub trait OutcomeTrait {
type Error;
type Obligation;
fn new() -> Self;
fn record_completed(&mut self, outcome: &Self::Obligation);
fn record_error(&mut self, error: Self::Error);
}
#[derive(Debug)]
pub struct Outcome<O, E> {
/// Backtrace of obligations that were found to be in error.
pub errors: Vec<Error<O, E>>,
}
impl<O, E> OutcomeTrait for Outcome<O, E> {
type Error = Error<O, E>;
type Obligation = O;
fn new() -> Self {
Self { errors: vec![] }
}
fn record_completed(&mut self, _outcome: &Self::Obligation) {
// do nothing
}
fn record_error(&mut self, error: Self::Error) {
self.errors.push(error)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct Error<O, E> {
pub error: E,
pub backtrace: Vec<O>,
}
mod helper {
use super::*;
pub type ObligationTreeIdGenerator = impl Iterator<Item = ObligationTreeId>;
impl<O: ForestObligation> ObligationForest<O> {
pub fn new() -> ObligationForest<O> {
ObligationForest {
nodes: vec![],
done_cache: Default::default(),
active_cache: Default::default(),
reused_node_vec: vec![],
obligation_tree_id_generator: (0..).map(ObligationTreeId),
error_cache: Default::default(),
}
}
}
}
use helper::*;
impl<O: ForestObligation> ObligationForest<O> {
/// Returns the total number of nodes in the forest that have not
/// yet been fully resolved.
pub fn len(&self) -> usize {
self.nodes.len()
}
/// Registers an obligation.
pub fn register_obligation(&mut self, obligation: O) {
// Ignore errors here - there is no guarantee of success.
let _ = self.register_obligation_at(obligation, None);
}
// Returns Err(()) if we already know this obligation failed.
fn register_obligation_at(&mut self, obligation: O, parent: Option<usize>) -> Result<(), ()> {
let cache_key = obligation.as_cache_key();
if self.done_cache.contains(&cache_key) {
debug!("register_obligation_at: ignoring already done obligation: {:?}", obligation);
return Ok(());
}
match self.active_cache.entry(cache_key) {
Entry::Occupied(o) => {
let node = &mut self.nodes[*o.get()];
if let Some(parent_index) = parent {
// If the node is already in `active_cache`, it has already
// had its chance to be marked with a parent. So if it's
// not already present, just dump `parent` into the
// dependents as a non-parent.
if !node.dependents.contains(&parent_index) {
node.dependents.push(parent_index);
}
}
if let NodeState::Error = node.state.get() { Err(()) } else { Ok(()) }
}
Entry::Vacant(v) => {
let obligation_tree_id = match parent {
Some(parent_index) => self.nodes[parent_index].obligation_tree_id,
None => self.obligation_tree_id_generator.next().unwrap(),
};
let already_failed = parent.is_some()
&& self
.error_cache
.get(&obligation_tree_id)
.is_some_and(|errors| errors.contains(v.key()));
if already_failed {
Err(())
} else {
let new_index = self.nodes.len();
v.insert(new_index);
self.nodes.push(Node::new(parent, obligation, obligation_tree_id));
Ok(())
}
}
}
}
/// Converts all remaining obligations to the given error.
pub fn to_errors<E: Clone>(&mut self, error: E) -> Vec<Error<O, E>> {
let errors = self
.nodes
.iter()
.enumerate()
.filter(|(_index, node)| node.state.get() == NodeState::Pending)
.map(|(index, _node)| Error { error: error.clone(), backtrace: self.error_at(index) })
.collect();
self.compress(|_| assert!(false));
errors
}
/// Returns the set of obligations that are in a pending state.
pub fn map_pending_obligations<P, F>(&self, f: F) -> Vec<P>
where
F: Fn(&O) -> P,
{
self.nodes
.iter()
.filter(|node| node.state.get() == NodeState::Pending)
.map(|node| f(&node.obligation))
.collect()
}
fn insert_into_error_cache(&mut self, index: usize) {
let node = &self.nodes[index];
self.error_cache
.entry(node.obligation_tree_id)
.or_default()
.insert(node.obligation.as_cache_key());
}
/// Performs a fixpoint computation over the obligation list.
#[inline(never)]
pub fn process_obligations<P>(&mut self, processor: &mut P) -> P::OUT
where
P: ObligationProcessor<Obligation = O>,
{
let mut outcome = P::OUT::new();
// Fixpoint computation: we repeat until the inner loop stalls.
loop {
let mut has_changed = false;
// This is the super fast path for cheap-to-check conditions.
let mut index =
processor.skippable_obligations(self.nodes.iter().map(|n| &n.obligation));
// Note that the loop body can append new nodes, and those new nodes
// will then be processed by subsequent iterations of the loop.
//
// We can't use an iterator for the loop because `self.nodes` is
// appended to and the borrow checker would complain. We also can't use
// `for index in 0..self.nodes.len() { ... }` because the range would
// be computed with the initial length, and we would miss the appended
// nodes. Therefore we use a `while` loop.
while let Some(node) = self.nodes.get_mut(index) {
// This is the moderately fast path when the prefix skipping above didn't work out.
if node.state.get() != NodeState::Pending
|| !processor.needs_process_obligation(&node.obligation)
{
index += 1;
continue;
}
// `processor.process_obligation` can modify the predicate within
// `node.obligation`, and that predicate is the key used for
// `self.active_cache`. This means that `self.active_cache` can get
// out of sync with `nodes`. It's not very common, but it does
// happen, and code in `compress` has to allow for it.
// This code is much less hot.
match processor.process_obligation(&mut node.obligation) {
ProcessResult::Unchanged => {
// No change in state.
}
ProcessResult::Changed(children) => {
// We are not (yet) stalled.
has_changed = true;
node.state.set(NodeState::Success);
for child in children {
let st = self.register_obligation_at(child, Some(index));
if let Err(()) = st {
// Error already reported - propagate it
// to our node.
self.error_at(index);
}
}
}
ProcessResult::Error(err) => {
has_changed = true;
outcome.record_error(Error { error: err, backtrace: self.error_at(index) });
}
}
index += 1;
}
// If unchanged, then we saw no successful obligations, which means
// there is no point in further iteration. This is based on the
// assumption that when trait matching returns `Error` or
// `Unchanged`, those results do not affect environmental inference
// state. (Note that this will occur if we invoke
// `process_obligations` with no pending obligations.)
if !has_changed {
break;
}
self.mark_successes();
self.process_cycles(processor, &mut outcome);
self.compress(|obl| outcome.record_completed(obl));
}
outcome
}
/// Returns a vector of obligations for `p` and all of its
/// ancestors, putting them into the error state in the process.
fn error_at(&self, mut index: usize) -> Vec<O> {
let mut error_stack: Vec<usize> = vec![];
let mut trace = vec![];
loop {
let node = &self.nodes[index];
node.state.set(NodeState::Error);
trace.push(node.obligation.clone());
if node.has_parent {
// The first dependent is the parent, which is treated
// specially.
error_stack.extend(node.dependents.iter().skip(1));
index = node.dependents[0];
} else {
// No parent; treat all dependents non-specially.
error_stack.extend(node.dependents.iter());
break;
}
}
while let Some(index) = error_stack.pop() {
let node = &self.nodes[index];
if node.state.get() != NodeState::Error {
node.state.set(NodeState::Error);
error_stack.extend(node.dependents.iter());
}
}
trace
}
/// Mark all `Waiting` nodes as `Success`, except those that depend on a
/// pending node.
fn mark_successes(&self) {
// Convert all `Waiting` nodes to `Success`.
for node in &self.nodes {
if node.state.get() == NodeState::Waiting {
node.state.set(NodeState::Success);
}
}
// Convert `Success` nodes that depend on a pending node back to
// `Waiting`.
for node in &self.nodes {
if node.state.get() == NodeState::Pending {
// This call site is hot.
self.inlined_mark_dependents_as_waiting(node);
}
}
}
// This always-inlined function is for the hot call site.
#[inline(always)]
fn inlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
for &index in node.dependents.iter() {
let node = &self.nodes[index];
let state = node.state.get();
if state == NodeState::Success {
// This call site is cold.
self.uninlined_mark_dependents_as_waiting(node);
} else {
debug_assert!(state == NodeState::Waiting || state == NodeState::Error)
}
}
}
// This never-inlined function is for the cold call site.
#[inline(never)]
fn uninlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
// Mark node Waiting in the cold uninlined code instead of the hot inlined
node.state.set(NodeState::Waiting);
self.inlined_mark_dependents_as_waiting(node)
}
/// Report cycles between all `Success` nodes, and convert all `Success`
/// nodes to `Done`. This must be called after `mark_successes`.
fn process_cycles<P>(&mut self, processor: &mut P, outcome: &mut P::OUT)
where
P: ObligationProcessor<Obligation = O>,
{
let mut stack = std::mem::take(&mut self.reused_node_vec);
for (index, node) in self.nodes.iter().enumerate() {
// For some benchmarks this state test is extremely hot. It's a win
// to handle the no-op cases immediately to avoid the cost of the
// function call.
if node.state.get() == NodeState::Success {
self.find_cycles_from_node(&mut stack, processor, index, outcome);
}
}
debug_assert!(stack.is_empty());
self.reused_node_vec = stack;
}
fn find_cycles_from_node<P>(
&self,
stack: &mut Vec<usize>,
processor: &mut P,
index: usize,
outcome: &mut P::OUT,
) where
P: ObligationProcessor<Obligation = O>,
{
let node = &self.nodes[index];
if node.state.get() == NodeState::Success {
match stack.iter().rposition(|&n| n == index) {
None => {
stack.push(index);
for &dep_index in node.dependents.iter() {
self.find_cycles_from_node(stack, processor, dep_index, outcome);
}
stack.pop();
node.state.set(NodeState::Done);
}
Some(rpos) => {
// Cycle detected.
let result = processor.process_backedge(
stack[rpos..].iter().map(|&i| &self.nodes[i].obligation),
PhantomData,
);
if let Err(err) = result {
outcome.record_error(Error { error: err, backtrace: self.error_at(index) });
}
}
}
}
}
/// Compresses the vector, removing all popped nodes. This adjusts the
/// indices and hence invalidates any outstanding indices. `process_cycles`
/// must be run beforehand to remove any cycles on `Success` nodes.
#[inline(never)]
fn compress(&mut self, mut outcome_cb: impl FnMut(&O)) {
let orig_nodes_len = self.nodes.len();
let mut node_rewrites: Vec<_> = std::mem::take(&mut self.reused_node_vec);
debug_assert!(node_rewrites.is_empty());
node_rewrites.extend(0..orig_nodes_len);
let mut dead_nodes = 0;
// Move removable nodes to the end, preserving the order of the
// remaining nodes.
//
// LOOP INVARIANT:
// self.nodes[0..index - dead_nodes] are the first remaining nodes
// self.nodes[index - dead_nodes..index] are all dead
// self.nodes[index..] are unchanged
for index in 0..orig_nodes_len {
let node = &self.nodes[index];
match node.state.get() {
NodeState::Pending | NodeState::Waiting => {
if dead_nodes > 0 {
self.nodes.swap(index, index - dead_nodes);
node_rewrites[index] -= dead_nodes;
}
}
NodeState::Done => {
// The removal lookup might fail because the contents of
// `self.active_cache` are not guaranteed to match those of
// `self.nodes`. See the comment in `process_obligation`
// for more details.
let cache_key = node.obligation.as_cache_key();
self.active_cache.remove(&cache_key);
self.done_cache.insert(cache_key);
// Extract the success stories.
outcome_cb(&node.obligation);
node_rewrites[index] = orig_nodes_len;
dead_nodes += 1;
}
NodeState::Error => {
// We *intentionally* remove the node from the cache at this point. Otherwise
// tests must come up with a different type on every type error they
// check against.
self.active_cache.remove(&node.obligation.as_cache_key());
self.insert_into_error_cache(index);
node_rewrites[index] = orig_nodes_len;
dead_nodes += 1;
}
NodeState::Success => unreachable!(),
}
}
if dead_nodes > 0 {
// Remove the dead nodes and rewrite indices.
self.nodes.truncate(orig_nodes_len - dead_nodes);
self.apply_rewrites(&node_rewrites);
}
node_rewrites.truncate(0);
self.reused_node_vec = node_rewrites;
}
#[inline(never)]
fn apply_rewrites(&mut self, node_rewrites: &[usize]) {
let orig_nodes_len = node_rewrites.len();
for node in &mut self.nodes {
let mut i = 0;
while let Some(dependent) = node.dependents.get_mut(i) {
let new_index = node_rewrites[*dependent];
if new_index >= orig_nodes_len {
node.dependents.swap_remove(i);
if i == 0 && node.has_parent {
// We just removed the parent.
node.has_parent = false;
}
} else {
*dependent = new_index;
i += 1;
}
}
}
// This updating of `self.active_cache` is necessary because the
// removal of nodes within `compress` can fail. See above.
self.active_cache.retain(|_predicate, index| {
let new_index = node_rewrites[*index];
if new_index >= orig_nodes_len {
false
} else {
*index = new_index;
true
}
});
}
}