rustc_middle/mir/
consts.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
use std::fmt::{self, Debug, Display, Formatter};

use rustc_hir::def_id::DefId;
use rustc_macros::{HashStable, Lift, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
use rustc_session::RemapFileNameExt;
use rustc_session::config::RemapPathScopeComponents;
use rustc_span::{DUMMY_SP, Span};
use rustc_target::abi::{HasDataLayout, Size};

use crate::mir::interpret::{AllocId, ConstAllocation, ErrorHandled, Scalar, alloc_range};
use crate::mir::{Promoted, pretty_print_const_value};
use crate::ty::print::{pretty_print_const, with_no_trimmed_paths};
use crate::ty::{self, GenericArgsRef, ScalarInt, Ty, TyCtxt};

///////////////////////////////////////////////////////////////////////////
/// Evaluated Constants

/// Represents the result of const evaluation via the `eval_to_allocation` query.
/// Not to be confused with `ConstAllocation`, which directly refers to the underlying data!
/// Here we indirect via an `AllocId`.
#[derive(Copy, Clone, HashStable, TyEncodable, TyDecodable, Debug, Hash, Eq, PartialEq)]
pub struct ConstAlloc<'tcx> {
    /// The value lives here, at offset 0, and that allocation definitely is an `AllocKind::Memory`
    /// (so you can use `AllocMap::unwrap_memory`).
    pub alloc_id: AllocId,
    pub ty: Ty<'tcx>,
}

/// Represents a constant value in Rust. `Scalar` and `Slice` are optimizations for
/// array length computations, enum discriminants and the pattern matching logic.
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash)]
#[derive(HashStable, Lift)]
pub enum ConstValue<'tcx> {
    /// Used for types with `layout::abi::Scalar` ABI.
    ///
    /// Not using the enum `Value` to encode that this must not be `Uninit`.
    Scalar(Scalar),

    /// Only for ZSTs.
    ZeroSized,

    /// Used for references to unsized types with slice tail.
    ///
    /// This is worth an optimized representation since Rust has literals of type `&str` and
    /// `&[u8]`. Not having to indirect those through an `AllocId` (or two, if we used `Indirect`)
    /// has shown measurable performance improvements on stress tests. We then reuse this
    /// optimization for slice-tail types more generally during valtree-to-constval conversion.
    Slice {
        /// The allocation storing the slice contents.
        /// This always points to the beginning of the allocation.
        data: ConstAllocation<'tcx>,
        /// The metadata field of the reference.
        /// This is a "target usize", so we use `u64` as in the interpreter.
        meta: u64,
    },

    /// A value not representable by the other variants; needs to be stored in-memory.
    ///
    /// Must *not* be used for scalars or ZST, but having `&str` or other slices in this variant is fine.
    Indirect {
        /// The backing memory of the value. May contain more memory than needed for just the value
        /// if this points into some other larger ConstValue.
        ///
        /// We use an `AllocId` here instead of a `ConstAllocation<'tcx>` to make sure that when a
        /// raw constant (which is basically just an `AllocId`) is turned into a `ConstValue` and
        /// back, we can preserve the original `AllocId`.
        alloc_id: AllocId,
        /// Offset into `alloc`
        offset: Size,
    },
}

#[cfg(target_pointer_width = "64")]
rustc_data_structures::static_assert_size!(ConstValue<'_>, 24);

impl<'tcx> ConstValue<'tcx> {
    #[inline]
    pub fn try_to_scalar(&self) -> Option<Scalar> {
        match *self {
            ConstValue::Indirect { .. } | ConstValue::Slice { .. } | ConstValue::ZeroSized => None,
            ConstValue::Scalar(val) => Some(val),
        }
    }

    pub fn try_to_scalar_int(&self) -> Option<ScalarInt> {
        self.try_to_scalar()?.try_to_scalar_int().ok()
    }

    pub fn try_to_bits(&self, size: Size) -> Option<u128> {
        Some(self.try_to_scalar_int()?.to_bits(size))
    }

    pub fn try_to_bool(&self) -> Option<bool> {
        self.try_to_scalar_int()?.try_into().ok()
    }

    pub fn try_to_target_usize(&self, tcx: TyCtxt<'tcx>) -> Option<u64> {
        Some(self.try_to_scalar_int()?.to_target_usize(tcx))
    }

    pub fn try_to_bits_for_ty(
        &self,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        ty: Ty<'tcx>,
    ) -> Option<u128> {
        let size = tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(ty)).ok()?.size;
        self.try_to_bits(size)
    }

    pub fn from_bool(b: bool) -> Self {
        ConstValue::Scalar(Scalar::from_bool(b))
    }

    pub fn from_u64(i: u64) -> Self {
        ConstValue::Scalar(Scalar::from_u64(i))
    }

    pub fn from_u128(i: u128) -> Self {
        ConstValue::Scalar(Scalar::from_u128(i))
    }

    pub fn from_target_usize(i: u64, cx: &impl HasDataLayout) -> Self {
        ConstValue::Scalar(Scalar::from_target_usize(i, cx))
    }

    /// Must only be called on constants of type `&str` or `&[u8]`!
    pub fn try_get_slice_bytes_for_diagnostics(&self, tcx: TyCtxt<'tcx>) -> Option<&'tcx [u8]> {
        let (data, start, end) = match self {
            ConstValue::Scalar(_) | ConstValue::ZeroSized => {
                bug!("`try_get_slice_bytes` on non-slice constant")
            }
            &ConstValue::Slice { data, meta } => (data, 0, meta),
            &ConstValue::Indirect { alloc_id, offset } => {
                // The reference itself is stored behind an indirection.
                // Load the reference, and then load the actual slice contents.
                let a = tcx.global_alloc(alloc_id).unwrap_memory().inner();
                let ptr_size = tcx.data_layout.pointer_size;
                if a.size() < offset + 2 * ptr_size {
                    // (partially) dangling reference
                    return None;
                }
                // Read the wide pointer components.
                let ptr = a
                    .read_scalar(
                        &tcx,
                        alloc_range(offset, ptr_size),
                        /* read_provenance */ true,
                    )
                    .ok()?;
                let ptr = ptr.to_pointer(&tcx).discard_err()?;
                let len = a
                    .read_scalar(
                        &tcx,
                        alloc_range(offset + ptr_size, ptr_size),
                        /* read_provenance */ false,
                    )
                    .ok()?;
                let len = len.to_target_usize(&tcx).discard_err()?;
                if len == 0 {
                    return Some(&[]);
                }
                // Non-empty slice, must have memory. We know this is a relative pointer.
                let (inner_prov, offset) = ptr.into_parts();
                let data = tcx.global_alloc(inner_prov?.alloc_id()).unwrap_memory();
                (data, offset.bytes(), offset.bytes() + len)
            }
        };

        // This is for diagnostics only, so we are okay to use `inspect_with_uninit_and_ptr_outside_interpreter`.
        let start = start.try_into().unwrap();
        let end = end.try_into().unwrap();
        Some(data.inner().inspect_with_uninit_and_ptr_outside_interpreter(start..end))
    }

    /// Check if a constant may contain provenance information. This is used by MIR opts.
    /// Can return `true` even if there is no provenance.
    pub fn may_have_provenance(&self, tcx: TyCtxt<'tcx>, size: Size) -> bool {
        match *self {
            ConstValue::ZeroSized | ConstValue::Scalar(Scalar::Int(_)) => return false,
            ConstValue::Scalar(Scalar::Ptr(..)) => return true,
            // It's hard to find out the part of the allocation we point to;
            // just conservatively check everything.
            ConstValue::Slice { data, meta: _ } => !data.inner().provenance().ptrs().is_empty(),
            ConstValue::Indirect { alloc_id, offset } => !tcx
                .global_alloc(alloc_id)
                .unwrap_memory()
                .inner()
                .provenance()
                .range_empty(super::AllocRange::from(offset..offset + size), &tcx),
        }
    }
}

///////////////////////////////////////////////////////////////////////////
/// Constants

#[derive(Clone, Copy, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable, Debug)]
#[derive(TypeFoldable, TypeVisitable, Lift)]
pub enum Const<'tcx> {
    /// This constant came from the type system.
    ///
    /// Any way of turning `ty::Const` into `ConstValue` should go through `valtree_to_const_val`;
    /// this ensures that we consistently produce "clean" values without data in the padding or
    /// anything like that.
    ///
    /// FIXME(BoxyUwU): We should remove this `Ty` and look up the type for params via `ParamEnv`
    Ty(Ty<'tcx>, ty::Const<'tcx>),

    /// An unevaluated mir constant which is not part of the type system.
    ///
    /// Note that `Ty(ty::ConstKind::Unevaluated)` and this variant are *not* identical! `Ty` will
    /// always flow through a valtree, so all data not captured in the valtree is lost. This variant
    /// directly uses the evaluated result of the given constant, including e.g. data stored in
    /// padding.
    Unevaluated(UnevaluatedConst<'tcx>, Ty<'tcx>),

    /// This constant cannot go back into the type system, as it represents
    /// something the type system cannot handle (e.g. pointers).
    Val(ConstValue<'tcx>, Ty<'tcx>),
}

impl<'tcx> Const<'tcx> {
    /// Creates an unevaluated const from a `DefId` for a const item.
    /// The binders of the const item still need to be instantiated.
    pub fn from_unevaluated(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
    ) -> ty::EarlyBinder<'tcx, Const<'tcx>> {
        ty::EarlyBinder::bind(Const::Unevaluated(
            UnevaluatedConst {
                def: def_id,
                args: ty::GenericArgs::identity_for_item(tcx, def_id),
                promoted: None,
            },
            tcx.type_of(def_id).skip_binder(),
        ))
    }

    #[inline(always)]
    pub fn ty(&self) -> Ty<'tcx> {
        match self {
            Const::Ty(ty, ct) => {
                match ct.kind() {
                    // Dont use the outer ty as on invalid code we can wind up with them not being the same.
                    // this then results in allowing const eval to add `1_i64 + 1_usize` in cases where the mir
                    // was originally `({N: usize} + 1_usize)` under `generic_const_exprs`.
                    ty::ConstKind::Value(ty, _) => ty,
                    _ => *ty,
                }
            }
            Const::Val(_, ty) | Const::Unevaluated(_, ty) => *ty,
        }
    }

    /// Determines whether we need to add this const to `required_consts`. This is the case if and
    /// only if evaluating it may error.
    #[inline]
    pub fn is_required_const(&self) -> bool {
        match self {
            Const::Ty(_, c) => match c.kind() {
                ty::ConstKind::Value(_, _) => false, // already a value, cannot error
                _ => true,
            },
            Const::Val(..) => false, // already a value, cannot error
            Const::Unevaluated(..) => true,
        }
    }

    #[inline]
    pub fn try_to_scalar(self) -> Option<Scalar> {
        match self {
            Const::Ty(_, c) => match c.kind() {
                ty::ConstKind::Value(ty, valtree) if ty.is_primitive() => {
                    // A valtree of a type where leaves directly represent the scalar const value.
                    // Just checking whether it is a leaf is insufficient as e.g. references are leafs
                    // but the leaf value is the value they point to, not the reference itself!
                    Some(valtree.unwrap_leaf().into())
                }
                _ => None,
            },
            Const::Val(val, _) => val.try_to_scalar(),
            Const::Unevaluated(..) => None,
        }
    }

    #[inline]
    pub fn try_to_scalar_int(self) -> Option<ScalarInt> {
        // This is equivalent to `self.try_to_scalar()?.try_to_int().ok()`, but measurably faster.
        match self {
            Const::Val(ConstValue::Scalar(Scalar::Int(x)), _) => Some(x),
            Const::Ty(_, c) => match c.kind() {
                ty::ConstKind::Value(ty, valtree) if ty.is_primitive() => {
                    Some(valtree.unwrap_leaf())
                }
                _ => None,
            },
            _ => None,
        }
    }

    #[inline]
    pub fn try_to_bits(self, size: Size) -> Option<u128> {
        Some(self.try_to_scalar_int()?.to_bits(size))
    }

    #[inline]
    pub fn try_to_bool(self) -> Option<bool> {
        self.try_to_scalar_int()?.try_into().ok()
    }

    #[inline]
    pub fn eval(
        self,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        span: Span,
    ) -> Result<ConstValue<'tcx>, ErrorHandled> {
        match self {
            Const::Ty(_, c) => {
                // We want to consistently have a "clean" value for type system constants (i.e., no
                // data hidden in the padding), so we always go through a valtree here.
                let (ty, val) = c.eval(tcx, param_env, span)?;
                Ok(tcx.valtree_to_const_val((ty, val)))
            }
            Const::Unevaluated(uneval, _) => {
                // FIXME: We might want to have a `try_eval`-like function on `Unevaluated`
                tcx.const_eval_resolve(param_env, uneval, span)
            }
            Const::Val(val, _) => Ok(val),
        }
    }

    #[inline]
    pub fn try_eval_scalar(
        self,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Option<Scalar> {
        if let Const::Ty(_, c) = self
            && let ty::ConstKind::Value(ty, val) = c.kind()
            && ty.is_primitive()
        {
            // Avoid the `valtree_to_const_val` query. Can only be done on primitive types that
            // are valtree leaves, and *not* on references. (References should return the
            // pointer here, which valtrees don't represent.)
            Some(val.unwrap_leaf().into())
        } else {
            self.eval(tcx, param_env, DUMMY_SP).ok()?.try_to_scalar()
        }
    }

    #[inline]
    pub fn try_eval_scalar_int(
        self,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Option<ScalarInt> {
        self.try_eval_scalar(tcx, param_env)?.try_to_scalar_int().ok()
    }

    #[inline]
    pub fn try_eval_bits(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<u128> {
        let int = self.try_eval_scalar_int(tcx, param_env)?;
        let size =
            tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(self.ty())).ok()?.size;
        Some(int.to_bits(size))
    }

    /// Panics if the value cannot be evaluated or doesn't contain a valid integer of the given type.
    #[inline]
    pub fn eval_bits(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> u128 {
        self.try_eval_bits(tcx, param_env)
            .unwrap_or_else(|| bug!("expected bits of {:#?}, got {:#?}", self.ty(), self))
    }

    #[inline]
    pub fn try_eval_target_usize(
        self,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Option<u64> {
        Some(self.try_eval_scalar_int(tcx, param_env)?.to_target_usize(tcx))
    }

    #[inline]
    /// Panics if the value cannot be evaluated or doesn't contain a valid `usize`.
    pub fn eval_target_usize(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> u64 {
        self.try_eval_target_usize(tcx, param_env)
            .unwrap_or_else(|| bug!("expected usize, got {:#?}", self))
    }

    #[inline]
    pub fn try_eval_bool(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<bool> {
        self.try_eval_scalar_int(tcx, param_env)?.try_into().ok()
    }

    #[inline]
    pub fn from_value(val: ConstValue<'tcx>, ty: Ty<'tcx>) -> Self {
        Self::Val(val, ty)
    }

    pub fn from_bits(
        tcx: TyCtxt<'tcx>,
        bits: u128,
        param_env_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
    ) -> Self {
        let size = tcx
            .layout_of(param_env_ty)
            .unwrap_or_else(|e| {
                bug!("could not compute layout for {:?}: {:?}", param_env_ty.value, e)
            })
            .size;
        let cv = ConstValue::Scalar(Scalar::from_uint(bits, size));

        Self::Val(cv, param_env_ty.value)
    }

    #[inline]
    pub fn from_bool(tcx: TyCtxt<'tcx>, v: bool) -> Self {
        let cv = ConstValue::from_bool(v);
        Self::Val(cv, tcx.types.bool)
    }

    #[inline]
    pub fn zero_sized(ty: Ty<'tcx>) -> Self {
        let cv = ConstValue::ZeroSized;
        Self::Val(cv, ty)
    }

    pub fn from_usize(tcx: TyCtxt<'tcx>, n: u64) -> Self {
        let ty = tcx.types.usize;
        Self::from_bits(tcx, n as u128, ty::ParamEnv::empty().and(ty))
    }

    #[inline]
    pub fn from_scalar(_tcx: TyCtxt<'tcx>, s: Scalar, ty: Ty<'tcx>) -> Self {
        let val = ConstValue::Scalar(s);
        Self::Val(val, ty)
    }

    pub fn from_ty_const(c: ty::Const<'tcx>, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        match c.kind() {
            ty::ConstKind::Value(ty, valtree) => {
                // Make sure that if `c` is normalized, then the return value is normalized.
                let const_val = tcx.valtree_to_const_val((ty, valtree));
                Self::Val(const_val, ty)
            }
            _ => Self::Ty(ty, c),
        }
    }

    /// Return true if any evaluation of this constant always returns the same value,
    /// taking into account even pointer identity tests.
    pub fn is_deterministic(&self) -> bool {
        // Some constants may generate fresh allocations for pointers they contain,
        // so using the same constant twice can yield two different results:
        // - valtrees purposefully generate new allocations
        // - ConstValue::Slice also generate new allocations
        match self {
            Const::Ty(_, c) => match c.kind() {
                ty::ConstKind::Param(..) => true,
                // A valtree may be a reference. Valtree references correspond to a
                // different allocation each time they are evaluated. Valtrees for primitive
                // types are fine though.
                ty::ConstKind::Value(ty, _) => ty.is_primitive(),
                ty::ConstKind::Unevaluated(..) | ty::ConstKind::Expr(..) => false,
                // This can happen if evaluation of a constant failed. The result does not matter
                // much since compilation is doomed.
                ty::ConstKind::Error(..) => false,
                // Should not appear in runtime MIR.
                ty::ConstKind::Infer(..)
                | ty::ConstKind::Bound(..)
                | ty::ConstKind::Placeholder(..) => bug!(),
            },
            Const::Unevaluated(..) => false,
            // If the same slice appears twice in the MIR, we cannot guarantee that we will
            // give the same `AllocId` to the data.
            Const::Val(ConstValue::Slice { .. }, _) => false,
            Const::Val(
                ConstValue::ZeroSized | ConstValue::Scalar(_) | ConstValue::Indirect { .. },
                _,
            ) => true,
        }
    }
}

/// An unevaluated (potentially generic) constant used in MIR.
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable)]
#[derive(Hash, HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct UnevaluatedConst<'tcx> {
    pub def: DefId,
    pub args: GenericArgsRef<'tcx>,
    pub promoted: Option<Promoted>,
}

impl<'tcx> UnevaluatedConst<'tcx> {
    #[inline]
    pub fn shrink(self) -> ty::UnevaluatedConst<'tcx> {
        assert_eq!(self.promoted, None);
        ty::UnevaluatedConst { def: self.def, args: self.args }
    }
}

impl<'tcx> UnevaluatedConst<'tcx> {
    #[inline]
    pub fn new(def: DefId, args: GenericArgsRef<'tcx>) -> UnevaluatedConst<'tcx> {
        UnevaluatedConst { def, args, promoted: Default::default() }
    }

    #[inline]
    pub fn from_instance(instance: ty::Instance<'tcx>) -> Self {
        UnevaluatedConst::new(instance.def_id(), instance.args)
    }
}

impl<'tcx> Display for Const<'tcx> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        match *self {
            Const::Ty(_, c) => pretty_print_const(c, fmt, true),
            Const::Val(val, ty) => pretty_print_const_value(val, ty, fmt),
            // FIXME(valtrees): Correctly print mir constants.
            Const::Unevaluated(c, _ty) => {
                ty::tls::with(move |tcx| {
                    let c = tcx.lift(c).unwrap();
                    // Matches `GlobalId` printing.
                    let instance =
                        with_no_trimmed_paths!(tcx.def_path_str_with_args(c.def, c.args));
                    write!(fmt, "{instance}")?;
                    if let Some(promoted) = c.promoted {
                        write!(fmt, "::{promoted:?}")?;
                    }
                    Ok(())
                })
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////
/// Const-related utilities

impl<'tcx> TyCtxt<'tcx> {
    pub fn span_as_caller_location(self, span: Span) -> ConstValue<'tcx> {
        let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
        let caller = self.sess.source_map().lookup_char_pos(topmost.lo());
        self.const_caller_location(
            rustc_span::symbol::Symbol::intern(
                &caller
                    .file
                    .name
                    .for_scope(self.sess, RemapPathScopeComponents::MACRO)
                    .to_string_lossy(),
            ),
            caller.line as u32,
            caller.col_display as u32 + 1,
        )
    }
}