rustc_middle/mir/interpret/allocation/init_mask.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
#[cfg(test)]
mod tests;
use std::ops::Range;
use std::{hash, iter};
use rustc_macros::{HashStable, TyDecodable, TyEncodable};
use rustc_serialize::{Decodable, Encodable};
use rustc_target::abi::Size;
use rustc_type_ir::{TyDecoder, TyEncoder};
use super::AllocRange;
type Block = u64;
/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
/// is initialized. If it is `false` the byte is uninitialized.
/// The actual bits are only materialized when needed, and we try to keep this data lazy as long as
/// possible. Currently, if all the blocks have the same value, then the mask represents either a
/// fully initialized or fully uninitialized const allocation, so we can only store that single
/// value.
#[derive(Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
pub struct InitMask {
blocks: InitMaskBlocks,
len: Size,
}
#[derive(Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
enum InitMaskBlocks {
Lazy {
/// Whether the lazy init mask is fully initialized or uninitialized.
state: bool,
},
Materialized(InitMaskMaterialized),
}
impl InitMask {
pub fn new(size: Size, state: bool) -> Self {
// Blocks start lazily allocated, until we have to materialize them.
let blocks = InitMaskBlocks::Lazy { state };
InitMask { len: size, blocks }
}
/// Checks whether the `range` is entirely initialized.
///
/// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
/// indexes for the first contiguous span of the uninitialized access.
#[inline]
pub fn is_range_initialized(&self, range: AllocRange) -> Result<(), AllocRange> {
let end = range.end();
if end > self.len {
return Err(AllocRange::from(self.len..end));
}
match self.blocks {
InitMaskBlocks::Lazy { state } => {
// Lazily allocated blocks represent the full mask, and cover the requested range by
// definition.
if state { Ok(()) } else { Err(range) }
}
InitMaskBlocks::Materialized(ref blocks) => {
blocks.is_range_initialized(range.start, end)
}
}
}
/// Sets a specified range to a value. If the range is out-of-bounds, the mask will grow to
/// accommodate it entirely.
pub fn set_range(&mut self, range: AllocRange, new_state: bool) {
let start = range.start;
let end = range.end();
let is_full_overwrite = start == Size::ZERO && end >= self.len;
// Optimize the cases of a full init/uninit state, while handling growth if needed.
match self.blocks {
InitMaskBlocks::Lazy { ref mut state } if is_full_overwrite => {
// This is fully overwriting the mask, and we'll still have a single initialization
// state: the blocks can stay lazy.
*state = new_state;
self.len = end;
}
InitMaskBlocks::Materialized(_) if is_full_overwrite => {
// This is also fully overwriting materialized blocks with a single initialization
// state: we'll have no need for these blocks anymore and can make them lazy.
self.blocks = InitMaskBlocks::Lazy { state: new_state };
self.len = end;
}
InitMaskBlocks::Lazy { state } if state == new_state => {
// Here we're partially overwriting the mask but the initialization state doesn't
// change: the blocks can stay lazy.
if end > self.len {
self.len = end;
}
}
_ => {
// Otherwise, we have a partial overwrite that can result in a mix of initialization
// states, so we'll need materialized blocks.
let len = self.len;
let blocks = self.materialize_blocks();
// There are 3 cases of interest here, if we have:
//
// [--------]
// ^ ^
// 0 len
//
// 1) the range to set can be in-bounds:
//
// xxxx = [start, end]
// [--------]
// ^ ^
// 0 len
//
// Here, we'll simply set the single `start` to `end` range.
//
// 2) the range to set can be partially out-of-bounds:
//
// xxxx = [start, end]
// [--------]
// ^ ^
// 0 len
//
// We have 2 subranges to handle:
// - we'll set the existing `start` to `len` range.
// - we'll grow and set the `len` to `end` range.
//
// 3) the range to set can be fully out-of-bounds:
//
// ---xxxx = [start, end]
// [--------]
// ^ ^
// 0 len
//
// Since we're growing the mask to a single `new_state` value, we consider the gap
// from `len` to `start` to be part of the range, and have a single subrange to
// handle: we'll grow and set the `len` to `end` range.
//
// Note that we have to materialize, set blocks, and grow the mask. We could
// therefore slightly optimize things in situations where these writes overlap.
// However, as of writing this, growing the mask doesn't happen in practice yet, so
// we don't do this micro-optimization.
if end <= len {
// Handle case 1.
blocks.set_range_inbounds(start, end, new_state);
} else {
if start < len {
// Handle the first subrange of case 2.
blocks.set_range_inbounds(start, len, new_state);
}
// Handle the second subrange of case 2, and case 3.
blocks.grow(len, end - len, new_state); // `Size` operation
self.len = end;
}
}
}
}
/// Materializes this mask's blocks when the mask is lazy.
#[inline]
fn materialize_blocks(&mut self) -> &mut InitMaskMaterialized {
if let InitMaskBlocks::Lazy { state } = self.blocks {
self.blocks = InitMaskBlocks::Materialized(InitMaskMaterialized::new(self.len, state));
}
let InitMaskBlocks::Materialized(ref mut blocks) = self.blocks else {
bug!("initmask blocks must be materialized here")
};
blocks
}
/// Returns the initialization state at the specified in-bounds index.
#[inline]
pub fn get(&self, idx: Size) -> bool {
match self.blocks {
InitMaskBlocks::Lazy { state } => state,
InitMaskBlocks::Materialized(ref blocks) => blocks.get(idx),
}
}
}
/// The actual materialized blocks of the bitmask, when we can't keep the `InitMask` lazy.
// Note: for performance reasons when interning, some of the fields can be partially
// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
#[derive(Clone, Debug, Eq, PartialEq, HashStable)]
struct InitMaskMaterialized {
blocks: Vec<Block>,
}
// `Block` is a `u64`, but it is a bitmask not a numeric value. If we were to just derive
// Encodable and Decodable we would apply varint encoding to the bitmasks, which is slower
// and also produces more output when the high bits of each `u64` are occupied.
// Note: There is probably a remaining optimization for masks that do not use an entire
// `Block`.
impl<E: TyEncoder> Encodable<E> for InitMaskMaterialized {
fn encode(&self, encoder: &mut E) {
encoder.emit_usize(self.blocks.len());
for block in &self.blocks {
encoder.emit_raw_bytes(&block.to_le_bytes());
}
}
}
// This implementation is deliberately not derived, see the matching `Encodable` impl.
impl<D: TyDecoder> Decodable<D> for InitMaskMaterialized {
fn decode(decoder: &mut D) -> Self {
let num_blocks = decoder.read_usize();
let mut blocks = Vec::with_capacity(num_blocks);
for _ in 0..num_blocks {
let bytes = decoder.read_raw_bytes(8);
let block = u64::from_le_bytes(bytes.try_into().unwrap());
blocks.push(block);
}
InitMaskMaterialized { blocks }
}
}
// Const allocations are only hashed for interning. However, they can be large, making the hashing
// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
// big buffers like the allocation's init mask. We can partially hash some fields when they're
// large.
impl hash::Hash for InitMaskMaterialized {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
const MAX_BLOCKS_TO_HASH: usize = super::MAX_BYTES_TO_HASH / std::mem::size_of::<Block>();
const MAX_BLOCKS_LEN: usize = super::MAX_HASHED_BUFFER_LEN / std::mem::size_of::<Block>();
// Partially hash the `blocks` buffer when it is large. To limit collisions with common
// prefixes and suffixes, we hash the length and some slices of the buffer.
let block_count = self.blocks.len();
if block_count > MAX_BLOCKS_LEN {
// Hash the buffer's length.
block_count.hash(state);
// And its head and tail.
self.blocks[..MAX_BLOCKS_TO_HASH].hash(state);
self.blocks[block_count - MAX_BLOCKS_TO_HASH..].hash(state);
} else {
self.blocks.hash(state);
}
}
}
impl InitMaskMaterialized {
const BLOCK_SIZE: u64 = 64;
fn new(size: Size, state: bool) -> Self {
let mut m = InitMaskMaterialized { blocks: vec![] };
m.grow(Size::ZERO, size, state);
m
}
#[inline]
fn bit_index(bits: Size) -> (usize, usize) {
// BLOCK_SIZE is the number of bits that can fit in a `Block`.
// Each bit in a `Block` represents the initialization state of one byte of an allocation,
// so we use `.bytes()` here.
let bits = bits.bytes();
let a = bits / Self::BLOCK_SIZE;
let b = bits % Self::BLOCK_SIZE;
(usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
}
#[inline]
fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
let block = block.try_into().ok().unwrap();
let bit = bit.try_into().ok().unwrap();
Size::from_bytes(block * Self::BLOCK_SIZE + bit)
}
/// Checks whether the `range` is entirely initialized.
///
/// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
/// indexes for the first contiguous span of the uninitialized access.
#[inline]
fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), AllocRange> {
let uninit_start = self.find_bit(start, end, false);
match uninit_start {
Some(uninit_start) => {
let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end);
Err(AllocRange::from(uninit_start..uninit_end))
}
None => Ok(()),
}
}
fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
let (block_a, bit_a) = Self::bit_index(start);
let (block_b, bit_b) = Self::bit_index(end);
if block_a == block_b {
// First set all bits except the first `bit_a`,
// then unset the last `64 - bit_b` bits.
let range = if bit_b == 0 {
u64::MAX << bit_a
} else {
(u64::MAX << bit_a) & (u64::MAX >> (64 - bit_b))
};
if new_state {
self.blocks[block_a] |= range;
} else {
self.blocks[block_a] &= !range;
}
return;
}
// across block boundaries
if new_state {
// Set `bit_a..64` to `1`.
self.blocks[block_a] |= u64::MAX << bit_a;
// Set `0..bit_b` to `1`.
if bit_b != 0 {
self.blocks[block_b] |= u64::MAX >> (64 - bit_b);
}
// Fill in all the other blocks (much faster than one bit at a time).
for block in (block_a + 1)..block_b {
self.blocks[block] = u64::MAX;
}
} else {
// Set `bit_a..64` to `0`.
self.blocks[block_a] &= !(u64::MAX << bit_a);
// Set `0..bit_b` to `0`.
if bit_b != 0 {
self.blocks[block_b] &= !(u64::MAX >> (64 - bit_b));
}
// Fill in all the other blocks (much faster than one bit at a time).
for block in (block_a + 1)..block_b {
self.blocks[block] = 0;
}
}
}
#[inline]
fn get(&self, i: Size) -> bool {
let (block, bit) = Self::bit_index(i);
(self.blocks[block] & (1 << bit)) != 0
}
fn grow(&mut self, len: Size, amount: Size, new_state: bool) {
if amount.bytes() == 0 {
return;
}
let unused_trailing_bits =
u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - len.bytes();
// If there's not enough capacity in the currently allocated blocks, allocate some more.
if amount.bytes() > unused_trailing_bits {
let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
// We allocate the blocks to the correct value for the requested init state, so we won't
// have to manually set them with another write.
let block = if new_state { u64::MAX } else { 0 };
self.blocks
.extend(iter::repeat(block).take(usize::try_from(additional_blocks).unwrap()));
}
// New blocks have already been set here, so we only need to set the unused trailing bits,
// if any.
if unused_trailing_bits > 0 {
let in_bounds_tail = Size::from_bytes(unused_trailing_bits);
self.set_range_inbounds(len, len + in_bounds_tail, new_state); // `Size` operation
}
}
/// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option<Size> {
/// A fast implementation of `find_bit`,
/// which skips over an entire block at a time if it's all 0s (resp. 1s),
/// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
///
/// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
/// and with the least significant bit (and lowest block) first:
/// ```text
/// 00000000|00000000
/// ^ ^ ^ ^
/// index: 0 7 8 15
/// ```
/// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
fn find_bit_fast(
init_mask: &InitMaskMaterialized,
start: Size,
end: Size,
is_init: bool,
) -> Option<Size> {
/// Search one block, returning the index of the first bit equal to `is_init`.
fn search_block(
bits: Block,
block: usize,
start_bit: usize,
is_init: bool,
) -> Option<Size> {
// For the following examples, assume this function was called with:
// bits = 0b00111011
// start_bit = 3
// is_init = false
// Note that, for the examples in this function, the most significant bit is written first,
// which is backwards compared to the comments in `find_bit`/`find_bit_fast`.
// Invert bits so we're always looking for the first set bit.
// ! 0b00111011
// bits = 0b11000100
let bits = if is_init { bits } else { !bits };
// Mask off unused start bits.
// 0b11000100
// & 0b11111000
// bits = 0b11000000
let bits = bits & (!0 << start_bit);
// Find set bit, if any.
// bit = trailing_zeros(0b11000000)
// bit = 6
if bits == 0 {
None
} else {
let bit = bits.trailing_zeros();
Some(InitMaskMaterialized::size_from_bit_index(block, bit))
}
}
if start >= end {
return None;
}
// Convert `start` and `end` to block indexes and bit indexes within each block.
// We must convert `end` to an inclusive bound to handle block boundaries correctly.
//
// For example:
//
// (a) 00000000|00000000 (b) 00000000|
// ^~~~~~~~~~~^ ^~~~~~~~~^
// start end start end
//
// In both cases, the block index of `end` is 1.
// But we do want to search block 1 in (a), and we don't in (b).
//
// We subtract 1 from both end positions to make them inclusive:
//
// (a) 00000000|00000000 (b) 00000000|
// ^~~~~~~~~~^ ^~~~~~~^
// start end_inclusive start end_inclusive
//
// For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
// This provides the desired behavior of searching blocks 0 and 1 for (a),
// and searching only block 0 for (b).
// There is no concern of overflows since we checked for `start >= end` above.
let (start_block, start_bit) = InitMaskMaterialized::bit_index(start);
let end_inclusive = Size::from_bytes(end.bytes() - 1);
let (end_block_inclusive, _) = InitMaskMaterialized::bit_index(end_inclusive);
// Handle first block: need to skip `start_bit` bits.
//
// We need to handle the first block separately,
// because there may be bits earlier in the block that should be ignored,
// such as the bit marked (1) in this example:
//
// (1)
// -|------
// (c) 01000000|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
if let Some(i) =
search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
{
// If the range is less than a block, we may find a matching bit after `end`.
//
// For example, we shouldn't successfully find bit (2), because it's after `end`:
//
// (2)
// -------|
// (d) 00000001|00000000|00000001
// ^~~~~^
// start end
//
// An alternative would be to mask off end bits in the same way as we do for start bits,
// but performing this check afterwards is faster and simpler to implement.
if i < end {
return Some(i);
} else {
return None;
}
}
// Handle remaining blocks.
//
// We can skip over an entire block at once if it's all 0s (resp. 1s).
// The block marked (3) in this example is the first block that will be handled by this loop,
// and it will be skipped for that reason:
//
// (3)
// --------
// (e) 01000000|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
if start_block < end_block_inclusive {
// This loop is written in a specific way for performance.
// Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
// and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
// because both alternatives result in significantly worse codegen.
// `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
// and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
.iter()
.zip(start_block + 1..)
{
if let Some(i) = search_block(bits, block, 0, is_init) {
// If this is the last block, we may find a matching bit after `end`.
//
// For example, we shouldn't successfully find bit (4), because it's after `end`:
//
// (4)
// -------|
// (f) 00000001|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
//
// As above with example (d), we could handle the end block separately and mask off end bits,
// but unconditionally searching an entire block at once and performing this check afterwards
// is faster and much simpler to implement.
if i < end {
return Some(i);
} else {
return None;
}
}
}
}
None
}
#[cfg_attr(not(debug_assertions), allow(dead_code))]
fn find_bit_slow(
init_mask: &InitMaskMaterialized,
start: Size,
end: Size,
is_init: bool,
) -> Option<Size> {
(start..end).find(|&i| init_mask.get(i) == is_init)
}
let result = find_bit_fast(self, start, end, is_init);
debug_assert_eq!(
result,
find_bit_slow(self, start, end, is_init),
"optimized implementation of find_bit is wrong for start={start:?} end={end:?} is_init={is_init} init_mask={self:#?}"
);
result
}
}
/// A contiguous chunk of initialized or uninitialized memory.
pub enum InitChunk {
Init(Range<Size>),
Uninit(Range<Size>),
}
impl InitChunk {
#[inline]
pub fn is_init(&self) -> bool {
match self {
Self::Init(_) => true,
Self::Uninit(_) => false,
}
}
#[inline]
pub fn range(&self) -> Range<Size> {
match self {
Self::Init(r) => r.clone(),
Self::Uninit(r) => r.clone(),
}
}
}
impl InitMask {
/// Returns an iterator, yielding a range of byte indexes for each contiguous region
/// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
///
/// The iterator guarantees the following:
/// - Chunks are nonempty.
/// - Chunks are adjacent (each range's start is equal to the previous range's end).
/// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
/// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
#[inline]
pub fn range_as_init_chunks(&self, range: AllocRange) -> InitChunkIter<'_> {
let start = range.start;
let end = range.end();
assert!(end <= self.len);
let is_init = if start < end {
self.get(start)
} else {
// `start..end` is empty: there are no chunks, so use some arbitrary value
false
};
InitChunkIter { init_mask: self, is_init, start, end }
}
}
/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
#[derive(Clone)]
pub struct InitChunkIter<'a> {
init_mask: &'a InitMask,
/// Whether the next chunk we will return is initialized.
/// If there are no more chunks, contains some arbitrary value.
is_init: bool,
/// The current byte index into `init_mask`.
start: Size,
/// The end byte index into `init_mask`.
end: Size,
}
impl<'a> Iterator for InitChunkIter<'a> {
type Item = InitChunk;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.start >= self.end {
return None;
}
let end_of_chunk = match self.init_mask.blocks {
InitMaskBlocks::Lazy { .. } => {
// If we're iterating over the chunks of lazy blocks, we just emit a single
// full-size chunk.
self.end
}
InitMaskBlocks::Materialized(ref blocks) => {
let end_of_chunk =
blocks.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
end_of_chunk
}
};
let range = self.start..end_of_chunk;
let ret =
Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });
self.is_init = !self.is_init;
self.start = end_of_chunk;
ret
}
}
/// Run-length encoding of the uninit mask.
/// Used to copy parts of a mask multiple times to another allocation.
pub struct InitCopy {
/// Whether the first range is initialized.
initial: bool,
/// The lengths of ranges that are run-length encoded.
/// The initialization state of the ranges alternate starting with `initial`.
ranges: smallvec::SmallVec<[u64; 1]>,
}
impl InitCopy {
pub fn no_bytes_init(&self) -> bool {
// The `ranges` are run-length encoded and of alternating initialization state.
// So if `ranges.len() > 1` then the second block is an initialized range.
!self.initial && self.ranges.len() == 1
}
}
/// Transferring the initialization mask to other allocations.
impl InitMask {
/// Creates a run-length encoding of the initialization mask; panics if range is empty.
///
/// This is essentially a more space-efficient version of
/// `InitMask::range_as_init_chunks(...).collect::<Vec<_>>()`.
pub fn prepare_copy(&self, range: AllocRange) -> InitCopy {
// Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
// a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
// the source and write it to the destination. Even if we optimized the memory accesses,
// we'd be doing all of this `repeat` times.
// Therefore we precompute a compressed version of the initialization mask of the source value and
// then write it back `repeat` times without computing any more information from the source.
// A precomputed cache for ranges of initialized / uninitialized bits
// 0000010010001110 will become
// `[5, 1, 2, 1, 3, 3, 1]`,
// where each element toggles the state.
let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
let mut chunks = self.range_as_init_chunks(range).peekable();
let initial = chunks.peek().expect("range should be nonempty").is_init();
// Here we rely on `range_as_init_chunks` to yield alternating init/uninit chunks.
for chunk in chunks {
let len = chunk.range().end.bytes() - chunk.range().start.bytes();
ranges.push(len);
}
InitCopy { ranges, initial }
}
/// Applies multiple instances of the run-length encoding to the initialization mask.
pub fn apply_copy(&mut self, defined: InitCopy, range: AllocRange, repeat: u64) {
// An optimization where we can just overwrite an entire range of initialization bits if
// they are going to be uniformly `1` or `0`. If this happens to be a full-range overwrite,
// we won't need materialized blocks either.
if defined.ranges.len() <= 1 {
let start = range.start;
let end = range.start + range.size * repeat; // `Size` operations
self.set_range(AllocRange::from(start..end), defined.initial);
return;
}
// We're about to do one or more partial writes, so we ensure the blocks are materialized.
let blocks = self.materialize_blocks();
for mut j in 0..repeat {
j *= range.size.bytes();
j += range.start.bytes();
let mut cur = defined.initial;
for range in &defined.ranges {
let old_j = j;
j += range;
blocks.set_range_inbounds(Size::from_bytes(old_j), Size::from_bytes(j), cur);
cur = !cur;
}
}
}
}