rustc_middle/mir/interpret/allocation/
init_mask.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
#[cfg(test)]
mod tests;

use std::ops::Range;
use std::{hash, iter};

use rustc_macros::{HashStable, TyDecodable, TyEncodable};
use rustc_serialize::{Decodable, Encodable};
use rustc_target::abi::Size;
use rustc_type_ir::{TyDecoder, TyEncoder};

use super::AllocRange;

type Block = u64;

/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
/// is initialized. If it is `false` the byte is uninitialized.
/// The actual bits are only materialized when needed, and we try to keep this data lazy as long as
/// possible. Currently, if all the blocks have the same value, then the mask represents either a
/// fully initialized or fully uninitialized const allocation, so we can only store that single
/// value.
#[derive(Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
pub struct InitMask {
    blocks: InitMaskBlocks,
    len: Size,
}

#[derive(Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
enum InitMaskBlocks {
    Lazy {
        /// Whether the lazy init mask is fully initialized or uninitialized.
        state: bool,
    },
    Materialized(InitMaskMaterialized),
}

impl InitMask {
    pub fn new(size: Size, state: bool) -> Self {
        // Blocks start lazily allocated, until we have to materialize them.
        let blocks = InitMaskBlocks::Lazy { state };
        InitMask { len: size, blocks }
    }

    /// Checks whether the `range` is entirely initialized.
    ///
    /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
    /// indexes for the first contiguous span of the uninitialized access.
    #[inline]
    pub fn is_range_initialized(&self, range: AllocRange) -> Result<(), AllocRange> {
        let end = range.end();
        if end > self.len {
            return Err(AllocRange::from(self.len..end));
        }

        match self.blocks {
            InitMaskBlocks::Lazy { state } => {
                // Lazily allocated blocks represent the full mask, and cover the requested range by
                // definition.
                if state { Ok(()) } else { Err(range) }
            }
            InitMaskBlocks::Materialized(ref blocks) => {
                blocks.is_range_initialized(range.start, end)
            }
        }
    }

    /// Sets a specified range to a value. If the range is out-of-bounds, the mask will grow to
    /// accommodate it entirely.
    pub fn set_range(&mut self, range: AllocRange, new_state: bool) {
        let start = range.start;
        let end = range.end();

        let is_full_overwrite = start == Size::ZERO && end >= self.len;

        // Optimize the cases of a full init/uninit state, while handling growth if needed.
        match self.blocks {
            InitMaskBlocks::Lazy { ref mut state } if is_full_overwrite => {
                // This is fully overwriting the mask, and we'll still have a single initialization
                // state: the blocks can stay lazy.
                *state = new_state;
                self.len = end;
            }
            InitMaskBlocks::Materialized(_) if is_full_overwrite => {
                // This is also fully overwriting materialized blocks with a single initialization
                // state: we'll have no need for these blocks anymore and can make them lazy.
                self.blocks = InitMaskBlocks::Lazy { state: new_state };
                self.len = end;
            }
            InitMaskBlocks::Lazy { state } if state == new_state => {
                // Here we're partially overwriting the mask but the initialization state doesn't
                // change: the blocks can stay lazy.
                if end > self.len {
                    self.len = end;
                }
            }
            _ => {
                // Otherwise, we have a partial overwrite that can result in a mix of initialization
                // states, so we'll need materialized blocks.
                let len = self.len;
                let blocks = self.materialize_blocks();

                // There are 3 cases of interest here, if we have:
                //
                //         [--------]
                //         ^        ^
                //         0        len
                //
                // 1) the range to set can be in-bounds:
                //
                //            xxxx = [start, end]
                //         [--------]
                //         ^        ^
                //         0        len
                //
                // Here, we'll simply set the single `start` to `end` range.
                //
                // 2) the range to set can be partially out-of-bounds:
                //
                //                xxxx = [start, end]
                //         [--------]
                //         ^        ^
                //         0        len
                //
                // We have 2 subranges to handle:
                // - we'll set the existing `start` to `len` range.
                // - we'll grow and set the `len` to `end` range.
                //
                // 3) the range to set can be fully out-of-bounds:
                //
                //                   ---xxxx = [start, end]
                //         [--------]
                //         ^        ^
                //         0        len
                //
                // Since we're growing the mask to a single `new_state` value, we consider the gap
                // from `len` to `start` to be part of the range, and have a single subrange to
                // handle: we'll grow and set the `len` to `end` range.
                //
                // Note that we have to materialize, set blocks, and grow the mask. We could
                // therefore slightly optimize things in situations where these writes overlap.
                // However, as of writing this, growing the mask doesn't happen in practice yet, so
                // we don't do this micro-optimization.

                if end <= len {
                    // Handle case 1.
                    blocks.set_range_inbounds(start, end, new_state);
                } else {
                    if start < len {
                        // Handle the first subrange of case 2.
                        blocks.set_range_inbounds(start, len, new_state);
                    }

                    // Handle the second subrange of case 2, and case 3.
                    blocks.grow(len, end - len, new_state); // `Size` operation
                    self.len = end;
                }
            }
        }
    }

    /// Materializes this mask's blocks when the mask is lazy.
    #[inline]
    fn materialize_blocks(&mut self) -> &mut InitMaskMaterialized {
        if let InitMaskBlocks::Lazy { state } = self.blocks {
            self.blocks = InitMaskBlocks::Materialized(InitMaskMaterialized::new(self.len, state));
        }

        let InitMaskBlocks::Materialized(ref mut blocks) = self.blocks else {
            bug!("initmask blocks must be materialized here")
        };
        blocks
    }

    /// Returns the initialization state at the specified in-bounds index.
    #[inline]
    pub fn get(&self, idx: Size) -> bool {
        match self.blocks {
            InitMaskBlocks::Lazy { state } => state,
            InitMaskBlocks::Materialized(ref blocks) => blocks.get(idx),
        }
    }
}

/// The actual materialized blocks of the bitmask, when we can't keep the `InitMask` lazy.
// Note: for performance reasons when interning, some of the fields can be partially
// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
#[derive(Clone, Debug, Eq, PartialEq, HashStable)]
struct InitMaskMaterialized {
    blocks: Vec<Block>,
}

// `Block` is a `u64`, but it is a bitmask not a numeric value. If we were to just derive
// Encodable and Decodable we would apply varint encoding to the bitmasks, which is slower
// and also produces more output when the high bits of each `u64` are occupied.
// Note: There is probably a remaining optimization for masks that do not use an entire
// `Block`.
impl<E: TyEncoder> Encodable<E> for InitMaskMaterialized {
    fn encode(&self, encoder: &mut E) {
        encoder.emit_usize(self.blocks.len());
        for block in &self.blocks {
            encoder.emit_raw_bytes(&block.to_le_bytes());
        }
    }
}

// This implementation is deliberately not derived, see the matching `Encodable` impl.
impl<D: TyDecoder> Decodable<D> for InitMaskMaterialized {
    fn decode(decoder: &mut D) -> Self {
        let num_blocks = decoder.read_usize();
        let mut blocks = Vec::with_capacity(num_blocks);
        for _ in 0..num_blocks {
            let bytes = decoder.read_raw_bytes(8);
            let block = u64::from_le_bytes(bytes.try_into().unwrap());
            blocks.push(block);
        }
        InitMaskMaterialized { blocks }
    }
}

// Const allocations are only hashed for interning. However, they can be large, making the hashing
// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
// big buffers like the allocation's init mask. We can partially hash some fields when they're
// large.
impl hash::Hash for InitMaskMaterialized {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        const MAX_BLOCKS_TO_HASH: usize = super::MAX_BYTES_TO_HASH / std::mem::size_of::<Block>();
        const MAX_BLOCKS_LEN: usize = super::MAX_HASHED_BUFFER_LEN / std::mem::size_of::<Block>();

        // Partially hash the `blocks` buffer when it is large. To limit collisions with common
        // prefixes and suffixes, we hash the length and some slices of the buffer.
        let block_count = self.blocks.len();
        if block_count > MAX_BLOCKS_LEN {
            // Hash the buffer's length.
            block_count.hash(state);

            // And its head and tail.
            self.blocks[..MAX_BLOCKS_TO_HASH].hash(state);
            self.blocks[block_count - MAX_BLOCKS_TO_HASH..].hash(state);
        } else {
            self.blocks.hash(state);
        }
    }
}

impl InitMaskMaterialized {
    const BLOCK_SIZE: u64 = 64;

    fn new(size: Size, state: bool) -> Self {
        let mut m = InitMaskMaterialized { blocks: vec![] };
        m.grow(Size::ZERO, size, state);
        m
    }

    #[inline]
    fn bit_index(bits: Size) -> (usize, usize) {
        // BLOCK_SIZE is the number of bits that can fit in a `Block`.
        // Each bit in a `Block` represents the initialization state of one byte of an allocation,
        // so we use `.bytes()` here.
        let bits = bits.bytes();
        let a = bits / Self::BLOCK_SIZE;
        let b = bits % Self::BLOCK_SIZE;
        (usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
    }

    #[inline]
    fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
        let block = block.try_into().ok().unwrap();
        let bit = bit.try_into().ok().unwrap();
        Size::from_bytes(block * Self::BLOCK_SIZE + bit)
    }

    /// Checks whether the `range` is entirely initialized.
    ///
    /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
    /// indexes for the first contiguous span of the uninitialized access.
    #[inline]
    fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), AllocRange> {
        let uninit_start = self.find_bit(start, end, false);

        match uninit_start {
            Some(uninit_start) => {
                let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end);
                Err(AllocRange::from(uninit_start..uninit_end))
            }
            None => Ok(()),
        }
    }

    fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
        let (block_a, bit_a) = Self::bit_index(start);
        let (block_b, bit_b) = Self::bit_index(end);
        if block_a == block_b {
            // First set all bits except the first `bit_a`,
            // then unset the last `64 - bit_b` bits.
            let range = if bit_b == 0 {
                u64::MAX << bit_a
            } else {
                (u64::MAX << bit_a) & (u64::MAX >> (64 - bit_b))
            };
            if new_state {
                self.blocks[block_a] |= range;
            } else {
                self.blocks[block_a] &= !range;
            }
            return;
        }
        // across block boundaries
        if new_state {
            // Set `bit_a..64` to `1`.
            self.blocks[block_a] |= u64::MAX << bit_a;
            // Set `0..bit_b` to `1`.
            if bit_b != 0 {
                self.blocks[block_b] |= u64::MAX >> (64 - bit_b);
            }
            // Fill in all the other blocks (much faster than one bit at a time).
            for block in (block_a + 1)..block_b {
                self.blocks[block] = u64::MAX;
            }
        } else {
            // Set `bit_a..64` to `0`.
            self.blocks[block_a] &= !(u64::MAX << bit_a);
            // Set `0..bit_b` to `0`.
            if bit_b != 0 {
                self.blocks[block_b] &= !(u64::MAX >> (64 - bit_b));
            }
            // Fill in all the other blocks (much faster than one bit at a time).
            for block in (block_a + 1)..block_b {
                self.blocks[block] = 0;
            }
        }
    }

    #[inline]
    fn get(&self, i: Size) -> bool {
        let (block, bit) = Self::bit_index(i);
        (self.blocks[block] & (1 << bit)) != 0
    }

    fn grow(&mut self, len: Size, amount: Size, new_state: bool) {
        if amount.bytes() == 0 {
            return;
        }
        let unused_trailing_bits =
            u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - len.bytes();

        // If there's not enough capacity in the currently allocated blocks, allocate some more.
        if amount.bytes() > unused_trailing_bits {
            let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;

            // We allocate the blocks to the correct value for the requested init state, so we won't
            // have to manually set them with another write.
            let block = if new_state { u64::MAX } else { 0 };
            self.blocks
                .extend(iter::repeat(block).take(usize::try_from(additional_blocks).unwrap()));
        }

        // New blocks have already been set here, so we only need to set the unused trailing bits,
        // if any.
        if unused_trailing_bits > 0 {
            let in_bounds_tail = Size::from_bytes(unused_trailing_bits);
            self.set_range_inbounds(len, len + in_bounds_tail, new_state); // `Size` operation
        }
    }

    /// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
    fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option<Size> {
        /// A fast implementation of `find_bit`,
        /// which skips over an entire block at a time if it's all 0s (resp. 1s),
        /// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
        ///
        /// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
        /// and with the least significant bit (and lowest block) first:
        /// ```text
        ///        00000000|00000000
        ///        ^      ^ ^      ^
        /// index: 0      7 8      15
        /// ```
        /// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
        fn find_bit_fast(
            init_mask: &InitMaskMaterialized,
            start: Size,
            end: Size,
            is_init: bool,
        ) -> Option<Size> {
            /// Search one block, returning the index of the first bit equal to `is_init`.
            fn search_block(
                bits: Block,
                block: usize,
                start_bit: usize,
                is_init: bool,
            ) -> Option<Size> {
                // For the following examples, assume this function was called with:
                //   bits = 0b00111011
                //   start_bit = 3
                //   is_init = false
                // Note that, for the examples in this function, the most significant bit is written first,
                // which is backwards compared to the comments in `find_bit`/`find_bit_fast`.

                // Invert bits so we're always looking for the first set bit.
                //        ! 0b00111011
                //   bits = 0b11000100
                let bits = if is_init { bits } else { !bits };
                // Mask off unused start bits.
                //          0b11000100
                //        & 0b11111000
                //   bits = 0b11000000
                let bits = bits & (!0 << start_bit);
                // Find set bit, if any.
                //   bit = trailing_zeros(0b11000000)
                //   bit = 6
                if bits == 0 {
                    None
                } else {
                    let bit = bits.trailing_zeros();
                    Some(InitMaskMaterialized::size_from_bit_index(block, bit))
                }
            }

            if start >= end {
                return None;
            }

            // Convert `start` and `end` to block indexes and bit indexes within each block.
            // We must convert `end` to an inclusive bound to handle block boundaries correctly.
            //
            // For example:
            //
            //   (a) 00000000|00000000    (b) 00000000|
            //       ^~~~~~~~~~~^             ^~~~~~~~~^
            //     start       end          start     end
            //
            // In both cases, the block index of `end` is 1.
            // But we do want to search block 1 in (a), and we don't in (b).
            //
            // We subtract 1 from both end positions to make them inclusive:
            //
            //   (a) 00000000|00000000    (b) 00000000|
            //       ^~~~~~~~~~^              ^~~~~~~^
            //     start    end_inclusive   start end_inclusive
            //
            // For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
            // This provides the desired behavior of searching blocks 0 and 1 for (a),
            // and searching only block 0 for (b).
            // There is no concern of overflows since we checked for `start >= end` above.
            let (start_block, start_bit) = InitMaskMaterialized::bit_index(start);
            let end_inclusive = Size::from_bytes(end.bytes() - 1);
            let (end_block_inclusive, _) = InitMaskMaterialized::bit_index(end_inclusive);

            // Handle first block: need to skip `start_bit` bits.
            //
            // We need to handle the first block separately,
            // because there may be bits earlier in the block that should be ignored,
            // such as the bit marked (1) in this example:
            //
            //       (1)
            //       -|------
            //   (c) 01000000|00000000|00000001
            //          ^~~~~~~~~~~~~~~~~~^
            //        start              end
            if let Some(i) =
                search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
            {
                // If the range is less than a block, we may find a matching bit after `end`.
                //
                // For example, we shouldn't successfully find bit (2), because it's after `end`:
                //
                //             (2)
                //       -------|
                //   (d) 00000001|00000000|00000001
                //        ^~~~~^
                //      start end
                //
                // An alternative would be to mask off end bits in the same way as we do for start bits,
                // but performing this check afterwards is faster and simpler to implement.
                if i < end {
                    return Some(i);
                } else {
                    return None;
                }
            }

            // Handle remaining blocks.
            //
            // We can skip over an entire block at once if it's all 0s (resp. 1s).
            // The block marked (3) in this example is the first block that will be handled by this loop,
            // and it will be skipped for that reason:
            //
            //                   (3)
            //                --------
            //   (e) 01000000|00000000|00000001
            //          ^~~~~~~~~~~~~~~~~~^
            //        start              end
            if start_block < end_block_inclusive {
                // This loop is written in a specific way for performance.
                // Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
                // and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
                // because both alternatives result in significantly worse codegen.
                // `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
                // and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
                for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
                    .iter()
                    .zip(start_block + 1..)
                {
                    if let Some(i) = search_block(bits, block, 0, is_init) {
                        // If this is the last block, we may find a matching bit after `end`.
                        //
                        // For example, we shouldn't successfully find bit (4), because it's after `end`:
                        //
                        //                               (4)
                        //                         -------|
                        //   (f) 00000001|00000000|00000001
                        //          ^~~~~~~~~~~~~~~~~~^
                        //        start              end
                        //
                        // As above with example (d), we could handle the end block separately and mask off end bits,
                        // but unconditionally searching an entire block at once and performing this check afterwards
                        // is faster and much simpler to implement.
                        if i < end {
                            return Some(i);
                        } else {
                            return None;
                        }
                    }
                }
            }

            None
        }

        #[cfg_attr(not(debug_assertions), allow(dead_code))]
        fn find_bit_slow(
            init_mask: &InitMaskMaterialized,
            start: Size,
            end: Size,
            is_init: bool,
        ) -> Option<Size> {
            (start..end).find(|&i| init_mask.get(i) == is_init)
        }

        let result = find_bit_fast(self, start, end, is_init);

        debug_assert_eq!(
            result,
            find_bit_slow(self, start, end, is_init),
            "optimized implementation of find_bit is wrong for start={start:?} end={end:?} is_init={is_init} init_mask={self:#?}"
        );

        result
    }
}

/// A contiguous chunk of initialized or uninitialized memory.
pub enum InitChunk {
    Init(Range<Size>),
    Uninit(Range<Size>),
}

impl InitChunk {
    #[inline]
    pub fn is_init(&self) -> bool {
        match self {
            Self::Init(_) => true,
            Self::Uninit(_) => false,
        }
    }

    #[inline]
    pub fn range(&self) -> Range<Size> {
        match self {
            Self::Init(r) => r.clone(),
            Self::Uninit(r) => r.clone(),
        }
    }
}

impl InitMask {
    /// Returns an iterator, yielding a range of byte indexes for each contiguous region
    /// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
    ///
    /// The iterator guarantees the following:
    /// - Chunks are nonempty.
    /// - Chunks are adjacent (each range's start is equal to the previous range's end).
    /// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
    /// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
    #[inline]
    pub fn range_as_init_chunks(&self, range: AllocRange) -> InitChunkIter<'_> {
        let start = range.start;
        let end = range.end();
        assert!(end <= self.len);

        let is_init = if start < end {
            self.get(start)
        } else {
            // `start..end` is empty: there are no chunks, so use some arbitrary value
            false
        };

        InitChunkIter { init_mask: self, is_init, start, end }
    }
}

/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
#[derive(Clone)]
pub struct InitChunkIter<'a> {
    init_mask: &'a InitMask,
    /// Whether the next chunk we will return is initialized.
    /// If there are no more chunks, contains some arbitrary value.
    is_init: bool,
    /// The current byte index into `init_mask`.
    start: Size,
    /// The end byte index into `init_mask`.
    end: Size,
}

impl<'a> Iterator for InitChunkIter<'a> {
    type Item = InitChunk;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.start >= self.end {
            return None;
        }

        let end_of_chunk = match self.init_mask.blocks {
            InitMaskBlocks::Lazy { .. } => {
                // If we're iterating over the chunks of lazy blocks, we just emit a single
                // full-size chunk.
                self.end
            }
            InitMaskBlocks::Materialized(ref blocks) => {
                let end_of_chunk =
                    blocks.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
                end_of_chunk
            }
        };
        let range = self.start..end_of_chunk;
        let ret =
            Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });

        self.is_init = !self.is_init;
        self.start = end_of_chunk;

        ret
    }
}

/// Run-length encoding of the uninit mask.
/// Used to copy parts of a mask multiple times to another allocation.
pub struct InitCopy {
    /// Whether the first range is initialized.
    initial: bool,
    /// The lengths of ranges that are run-length encoded.
    /// The initialization state of the ranges alternate starting with `initial`.
    ranges: smallvec::SmallVec<[u64; 1]>,
}

impl InitCopy {
    pub fn no_bytes_init(&self) -> bool {
        // The `ranges` are run-length encoded and of alternating initialization state.
        // So if `ranges.len() > 1` then the second block is an initialized range.
        !self.initial && self.ranges.len() == 1
    }
}

/// Transferring the initialization mask to other allocations.
impl InitMask {
    /// Creates a run-length encoding of the initialization mask; panics if range is empty.
    ///
    /// This is essentially a more space-efficient version of
    /// `InitMask::range_as_init_chunks(...).collect::<Vec<_>>()`.
    pub fn prepare_copy(&self, range: AllocRange) -> InitCopy {
        // Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
        // a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
        // the source and write it to the destination. Even if we optimized the memory accesses,
        // we'd be doing all of this `repeat` times.
        // Therefore we precompute a compressed version of the initialization mask of the source value and
        // then write it back `repeat` times without computing any more information from the source.

        // A precomputed cache for ranges of initialized / uninitialized bits
        // 0000010010001110 will become
        // `[5, 1, 2, 1, 3, 3, 1]`,
        // where each element toggles the state.

        let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();

        let mut chunks = self.range_as_init_chunks(range).peekable();

        let initial = chunks.peek().expect("range should be nonempty").is_init();

        // Here we rely on `range_as_init_chunks` to yield alternating init/uninit chunks.
        for chunk in chunks {
            let len = chunk.range().end.bytes() - chunk.range().start.bytes();
            ranges.push(len);
        }

        InitCopy { ranges, initial }
    }

    /// Applies multiple instances of the run-length encoding to the initialization mask.
    pub fn apply_copy(&mut self, defined: InitCopy, range: AllocRange, repeat: u64) {
        // An optimization where we can just overwrite an entire range of initialization bits if
        // they are going to be uniformly `1` or `0`. If this happens to be a full-range overwrite,
        // we won't need materialized blocks either.
        if defined.ranges.len() <= 1 {
            let start = range.start;
            let end = range.start + range.size * repeat; // `Size` operations
            self.set_range(AllocRange::from(start..end), defined.initial);
            return;
        }

        // We're about to do one or more partial writes, so we ensure the blocks are materialized.
        let blocks = self.materialize_blocks();

        for mut j in 0..repeat {
            j *= range.size.bytes();
            j += range.start.bytes();
            let mut cur = defined.initial;
            for range in &defined.ranges {
                let old_j = j;
                j += range;
                blocks.set_range_inbounds(Size::from_bytes(old_j), Size::from_bytes(j), cur);
                cur = !cur;
            }
        }
    }
}