rustc_type_ir/ty_kind.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
use std::fmt;
use derive_where::derive_where;
use rustc_ast_ir::Mutability;
#[cfg(feature = "nightly")]
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
#[cfg(feature = "nightly")]
use rustc_data_structures::unify::{NoError, UnifyKey, UnifyValue};
#[cfg(feature = "nightly")]
use rustc_macros::{Decodable, Encodable, HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};
use self::TyKind::*;
pub use self::closure::*;
use crate::inherent::*;
use crate::{self as ty, DebruijnIndex, Interner};
mod closure;
/// Specifies how a trait object is represented.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum DynKind {
/// An unsized `dyn Trait` object
Dyn,
/// A sized `dyn* Trait` object
///
/// These objects are represented as a `(data, vtable)` pair where `data` is a value of some
/// ptr-sized and ptr-aligned dynamically determined type `T` and `vtable` is a pointer to the
/// vtable of `impl T for Trait`. This allows a `dyn*` object to be treated agnostically with
/// respect to whether it points to a `Box<T>`, `Rc<T>`, etc.
DynStar,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum AliasTyKind {
/// A projection `<Type as Trait>::AssocType`.
/// Can get normalized away if monomorphic enough.
Projection,
/// An associated type in an inherent `impl`
Inherent,
/// An opaque type (usually from `impl Trait` in type aliases or function return types)
/// Can only be normalized away in RevealAll mode
Opaque,
/// A type alias that actually checks its trait bounds.
/// Currently only used if the type alias references opaque types.
/// Can always be normalized away.
Weak,
}
impl AliasTyKind {
pub fn descr(self) -> &'static str {
match self {
AliasTyKind::Projection => "associated type",
AliasTyKind::Inherent => "inherent associated type",
AliasTyKind::Opaque => "opaque type",
AliasTyKind::Weak => "type alias",
}
}
}
/// Defines the kinds of types used by the type system.
///
/// Types written by the user start out as `hir::TyKind` and get
/// converted to this representation using `<dyn HirTyLowerer>::lower_ty`.
#[cfg_attr(feature = "nightly", rustc_diagnostic_item = "IrTyKind")]
#[derive_where(Clone, Copy, Hash, PartialEq, Eq; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
pub enum TyKind<I: Interner> {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive signed integer type. For example, `i32`.
Int(IntTy),
/// A primitive unsigned integer type. For example, `u32`.
Uint(UintTy),
/// A primitive floating-point type. For example, `f64`.
Float(FloatTy),
/// Algebraic data types (ADT). For example: structures, enumerations and unions.
///
/// For example, the type `List<i32>` would be represented using the `AdtDef`
/// for `struct List<T>` and the args `[i32]`.
///
/// Note that generic parameters in fields only get lazily instantiated
/// by using something like `adt_def.all_fields().map(|field| field.ty(interner, args))`.
Adt(I::AdtDef, I::GenericArgs),
/// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
Foreign(I::DefId),
/// The pointee of a string slice. Written as `str`.
Str,
/// An array with the given length. Written as `[T; N]`.
Array(I::Ty, I::Const),
/// A pattern newtype. Takes any type and restricts its valid values to its pattern.
/// This will also change the layout to take advantage of this restriction.
/// Only `Copy` and `Clone` will automatically get implemented for pattern types.
/// Auto-traits treat this as if it were an aggregate with a single nested type.
/// Only supports integer range patterns for now.
Pat(I::Ty, I::Pat),
/// The pointee of an array slice. Written as `[T]`.
Slice(I::Ty),
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(I::Ty, Mutability),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(I::Region, I::Ty, Mutability),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type.
///
/// For the function `fn foo() -> i32 { 3 }` this type would be
/// shown to the user as `fn() -> i32 {foo}`.
///
/// For example the type of `bar` here:
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar = foo; // bar: fn() -> i32 {foo}
/// ```
FnDef(I::DefId, I::GenericArgs),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// Note that both functions and closures start out as either
/// [FnDef] or [Closure] which can be then be coerced to this variant.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
///
/// These two fields are equivalent to a `ty::Binder<I, FnSig<I>>`. But by
/// splitting that into two pieces, we get a more compact data layout that
/// reduces the size of `TyKind` by 8 bytes. It is a very hot type, so it's
/// worth the mild inconvenience.
FnPtr(ty::Binder<I, FnSigTys<I>>, FnHeader<I>),
/// A trait object. Written as `dyn for<'b> Trait<'b, Assoc = u32> + Send + 'a`.
Dynamic(I::BoundExistentialPredicates, I::Region, DynKind),
/// The anonymous type of a closure. Used to represent the type of `|a| a`.
///
/// Closure args contain both the - potentially instantiated - generic parameters
/// of its parent and some synthetic parameters. See the documentation for
/// `ClosureArgs` for more details.
Closure(I::DefId, I::GenericArgs),
/// The anonymous type of a closure. Used to represent the type of `async |a| a`.
///
/// Coroutine-closure args contain both the - potentially instantiated - generic
/// parameters of its parent and some synthetic parameters. See the documentation
/// for `CoroutineClosureArgs` for more details.
CoroutineClosure(I::DefId, I::GenericArgs),
/// The anonymous type of a coroutine. Used to represent the type of
/// `|a| yield a`.
///
/// For more info about coroutine args, visit the documentation for
/// `CoroutineArgs`.
Coroutine(I::DefId, I::GenericArgs),
/// A type representing the types stored inside a coroutine.
/// This should only appear as part of the `CoroutineArgs`.
///
/// Unlike upvars, the witness can reference lifetimes from
/// inside of the coroutine itself. To deal with them in
/// the type of the coroutine, we convert them to higher ranked
/// lifetimes bound by the witness itself.
///
/// This contains the `DefId` and the `GenericArgsRef` of the coroutine.
/// The actual witness types are computed on MIR by the `mir_coroutine_witnesses` query.
///
/// Looking at the following example, the witness for this coroutine
/// may end up as something like `for<'a> [Vec<i32>, &'a Vec<i32>]`:
///
/// ```
/// #![feature(coroutines)]
/// #[coroutine] static |a| {
/// let x = &vec![3];
/// yield a;
/// yield x[0];
/// }
/// # ;
/// ```
CoroutineWitness(I::DefId, I::GenericArgs),
/// The never type `!`.
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple(I::Tys),
/// A projection, opaque type, weak type alias, or inherent associated type.
/// All of these types are represented as pairs of def-id and args, and can
/// be normalized, so they are grouped conceptually.
Alias(AliasTyKind, AliasTy<I>),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}`.
Param(I::ParamTy),
/// Bound type variable, used to represent the `'a` in `for<'a> fn(&'a ())`.
///
/// For canonical queries, we replace inference variables with bound variables,
/// so e.g. when checking whether `&'_ (): Trait<_>` holds, we canonicalize that to
/// `for<'a, T> &'a (): Trait<T>` and then convert the introduced bound variables
/// back to inference variables in a new inference context when inside of the query.
///
/// It is conventional to render anonymous bound types like `^N` or `^D_N`,
/// where `N` is the bound variable's anonymous index into the binder, and
/// `D` is the debruijn index, or totally omitted if the debruijn index is zero.
///
/// See the `rustc-dev-guide` for more details about
/// [higher-ranked trait bounds][1] and [canonical queries][2].
///
/// [1]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
/// [2]: https://rustc-dev-guide.rust-lang.org/traits/canonical-queries.html
Bound(DebruijnIndex, I::BoundTy),
/// A placeholder type, used during higher ranked subtyping to instantiate
/// bound variables.
///
/// It is conventional to render anonymous placeholder types like `!N` or `!U_N`,
/// where `N` is the placeholder variable's anonymous index (which corresponds
/// to the bound variable's index from the binder from which it was instantiated),
/// and `U` is the universe index in which it is instantiated, or totally omitted
/// if the universe index is zero.
Placeholder(I::PlaceholderTy),
/// A type variable used during type checking.
///
/// Similar to placeholders, inference variables also live in a universe to
/// correctly deal with higher ranked types. Though unlike placeholders,
/// that universe is stored in the `InferCtxt` instead of directly
/// inside of the type.
Infer(InferTy),
/// A placeholder for a type which could not be computed; this is
/// propagated to avoid useless error messages.
Error(I::ErrorGuaranteed),
}
// This is manually implemented because a derive would require `I: Debug`
impl<I: Interner> fmt::Debug for TyKind<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Bool => write!(f, "bool"),
Char => write!(f, "char"),
Int(i) => write!(f, "{i:?}"),
Uint(u) => write!(f, "{u:?}"),
Float(float) => write!(f, "{float:?}"),
Adt(d, s) => {
write!(f, "{d:?}")?;
let mut s = s.iter();
let first = s.next();
match first {
Some(first) => write!(f, "<{:?}", first)?,
None => return Ok(()),
};
for arg in s {
write!(f, ", {:?}", arg)?;
}
write!(f, ">")
}
Foreign(d) => f.debug_tuple("Foreign").field(d).finish(),
Str => write!(f, "str"),
Array(t, c) => write!(f, "[{t:?}; {c:?}]"),
Pat(t, p) => write!(f, "pattern_type!({t:?} is {p:?})"),
Slice(t) => write!(f, "[{:?}]", &t),
RawPtr(ty, mutbl) => write!(f, "*{} {:?}", mutbl.ptr_str(), ty),
Ref(r, t, m) => write!(f, "&{:?} {}{:?}", r, m.prefix_str(), t),
FnDef(d, s) => f.debug_tuple("FnDef").field(d).field(&s).finish(),
FnPtr(sig_tys, hdr) => write!(f, "{:?}", sig_tys.with(*hdr)),
Dynamic(p, r, repr) => match repr {
DynKind::Dyn => write!(f, "dyn {p:?} + {r:?}"),
DynKind::DynStar => write!(f, "dyn* {p:?} + {r:?}"),
},
Closure(d, s) => f.debug_tuple("Closure").field(d).field(&s).finish(),
CoroutineClosure(d, s) => f.debug_tuple("CoroutineClosure").field(d).field(&s).finish(),
Coroutine(d, s) => f.debug_tuple("Coroutine").field(d).field(&s).finish(),
CoroutineWitness(d, s) => f.debug_tuple("CoroutineWitness").field(d).field(&s).finish(),
Never => write!(f, "!"),
Tuple(t) => {
write!(f, "(")?;
let mut count = 0;
for ty in t.iter() {
if count > 0 {
write!(f, ", ")?;
}
write!(f, "{ty:?}")?;
count += 1;
}
// unary tuples need a trailing comma
if count == 1 {
write!(f, ",")?;
}
write!(f, ")")
}
Alias(i, a) => f.debug_tuple("Alias").field(i).field(&a).finish(),
Param(p) => write!(f, "{p:?}"),
Bound(d, b) => crate::debug_bound_var(f, *d, b),
Placeholder(p) => write!(f, "{p:?}"),
Infer(t) => write!(f, "{:?}", t),
TyKind::Error(_) => write!(f, "{{type error}}"),
}
}
}
/// Represents the projection of an associated, opaque, or lazy-type-alias type.
///
/// * For a projection, this would be `<Ty as Trait<...>>::N<...>`.
/// * For an inherent projection, this would be `Ty::N<...>`.
/// * For an opaque type, there is no explicit syntax.
#[derive_where(Clone, Copy, Hash, PartialEq, Eq, Debug; I: Interner)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct AliasTy<I: Interner> {
/// The parameters of the associated or opaque type.
///
/// For a projection, these are the generic parameters for the trait and the
/// GAT parameters, if there are any.
///
/// For an inherent projection, they consist of the self type and the GAT parameters,
/// if there are any.
///
/// For RPIT the generic parameters are for the generics of the function,
/// while for TAIT it is used for the generic parameters of the alias.
pub args: I::GenericArgs,
/// The `DefId` of the `TraitItem` or `ImplItem` for the associated type `N` depending on whether
/// this is a projection or an inherent projection or the `DefId` of the `OpaqueType` item if
/// this is an opaque.
///
/// During codegen, `interner.type_of(def_id)` can be used to get the type of the
/// underlying type if the type is an opaque.
///
/// Note that if this is an associated type, this is not the `DefId` of the
/// `TraitRef` containing this associated type, which is in `interner.associated_item(def_id).container`,
/// aka. `interner.parent(def_id)`.
pub def_id: I::DefId,
/// This field exists to prevent the creation of `AliasTy` without using [`AliasTy::new_from_args`].
#[derive_where(skip(Debug))]
pub(crate) _use_alias_ty_new_instead: (),
}
impl<I: Interner> AliasTy<I> {
pub fn new_from_args(interner: I, def_id: I::DefId, args: I::GenericArgs) -> AliasTy<I> {
interner.debug_assert_args_compatible(def_id, args);
AliasTy { def_id, args, _use_alias_ty_new_instead: () }
}
pub fn new(
interner: I,
def_id: I::DefId,
args: impl IntoIterator<Item: Into<I::GenericArg>>,
) -> AliasTy<I> {
let args = interner.mk_args_from_iter(args.into_iter().map(Into::into));
Self::new_from_args(interner, def_id, args)
}
pub fn kind(self, interner: I) -> AliasTyKind {
interner.alias_ty_kind(self)
}
/// Whether this alias type is an opaque.
pub fn is_opaque(self, interner: I) -> bool {
matches!(self.kind(interner), AliasTyKind::Opaque)
}
pub fn to_ty(self, interner: I) -> I::Ty {
Ty::new_alias(interner, self.kind(interner), self)
}
}
/// The following methods work only with (trait) associated type projections.
impl<I: Interner> AliasTy<I> {
pub fn self_ty(self) -> I::Ty {
self.args.type_at(0)
}
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> Self {
AliasTy::new(
interner,
self.def_id,
[self_ty.into()].into_iter().chain(self.args.iter().skip(1)),
)
}
pub fn trait_def_id(self, interner: I) -> I::DefId {
assert_eq!(self.kind(interner), AliasTyKind::Projection, "expected a projection");
interner.parent(self.def_id)
}
/// Extracts the underlying trait reference and own args from this projection.
/// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
/// then this function would return a `T: StreamingIterator` trait reference and
/// `['a]` as the own args.
pub fn trait_ref_and_own_args(self, interner: I) -> (ty::TraitRef<I>, I::GenericArgsSlice) {
debug_assert_eq!(self.kind(interner), AliasTyKind::Projection);
interner.trait_ref_and_own_args_for_alias(self.def_id, self.args)
}
/// Extracts the underlying trait reference from this projection.
/// For example, if this is a projection of `<T as Iterator>::Item`,
/// then this function would return a `T: Iterator` trait reference.
///
/// WARNING: This will drop the args for generic associated types
/// consider calling [Self::trait_ref_and_own_args] to get those
/// as well.
pub fn trait_ref(self, interner: I) -> ty::TraitRef<I> {
self.trait_ref_and_own_args(interner).0
}
}
/// The following methods work only with inherent associated type projections.
impl<I: Interner> AliasTy<I> {
/// Transform the generic parameters to have the given `impl` args as the base and the GAT args on top of that.
///
/// Does the following transformation:
///
/// ```text
/// [Self, P_0...P_m] -> [I_0...I_n, P_0...P_m]
///
/// I_i impl args
/// P_j GAT args
/// ```
pub fn rebase_inherent_args_onto_impl(
self,
impl_args: I::GenericArgs,
interner: I,
) -> I::GenericArgs {
debug_assert_eq!(self.kind(interner), AliasTyKind::Inherent);
interner.mk_args_from_iter(impl_args.iter().chain(self.args.iter().skip(1)))
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum IntTy {
Isize,
I8,
I16,
I32,
I64,
I128,
}
impl IntTy {
pub fn name_str(&self) -> &'static str {
match *self {
IntTy::Isize => "isize",
IntTy::I8 => "i8",
IntTy::I16 => "i16",
IntTy::I32 => "i32",
IntTy::I64 => "i64",
IntTy::I128 => "i128",
}
}
pub fn bit_width(&self) -> Option<u64> {
Some(match *self {
IntTy::Isize => return None,
IntTy::I8 => 8,
IntTy::I16 => 16,
IntTy::I32 => 32,
IntTy::I64 => 64,
IntTy::I128 => 128,
})
}
pub fn normalize(&self, target_width: u32) -> Self {
match self {
IntTy::Isize => match target_width {
16 => IntTy::I16,
32 => IntTy::I32,
64 => IntTy::I64,
_ => unreachable!(),
},
_ => *self,
}
}
pub fn to_unsigned(self) -> UintTy {
match self {
IntTy::Isize => UintTy::Usize,
IntTy::I8 => UintTy::U8,
IntTy::I16 => UintTy::U16,
IntTy::I32 => UintTy::U32,
IntTy::I64 => UintTy::U64,
IntTy::I128 => UintTy::U128,
}
}
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum UintTy {
Usize,
U8,
U16,
U32,
U64,
U128,
}
impl UintTy {
pub fn name_str(&self) -> &'static str {
match *self {
UintTy::Usize => "usize",
UintTy::U8 => "u8",
UintTy::U16 => "u16",
UintTy::U32 => "u32",
UintTy::U64 => "u64",
UintTy::U128 => "u128",
}
}
pub fn bit_width(&self) -> Option<u64> {
Some(match *self {
UintTy::Usize => return None,
UintTy::U8 => 8,
UintTy::U16 => 16,
UintTy::U32 => 32,
UintTy::U64 => 64,
UintTy::U128 => 128,
})
}
pub fn normalize(&self, target_width: u32) -> Self {
match self {
UintTy::Usize => match target_width {
16 => UintTy::U16,
32 => UintTy::U32,
64 => UintTy::U64,
_ => unreachable!(),
},
_ => *self,
}
}
pub fn to_signed(self) -> IntTy {
match self {
UintTy::Usize => IntTy::Isize,
UintTy::U8 => IntTy::I8,
UintTy::U16 => IntTy::I16,
UintTy::U32 => IntTy::I32,
UintTy::U64 => IntTy::I64,
UintTy::U128 => IntTy::I128,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum FloatTy {
F16,
F32,
F64,
F128,
}
impl FloatTy {
pub fn name_str(self) -> &'static str {
match self {
FloatTy::F16 => "f16",
FloatTy::F32 => "f32",
FloatTy::F64 => "f64",
FloatTy::F128 => "f128",
}
}
pub fn bit_width(self) -> u64 {
match self {
FloatTy::F16 => 16,
FloatTy::F32 => 32,
FloatTy::F64 => 64,
FloatTy::F128 => 128,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum IntVarValue {
Unknown,
IntType(IntTy),
UintType(UintTy),
}
impl IntVarValue {
pub fn is_known(self) -> bool {
match self {
IntVarValue::IntType(_) | IntVarValue::UintType(_) => true,
IntVarValue::Unknown => false,
}
}
pub fn is_unknown(self) -> bool {
!self.is_known()
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum FloatVarValue {
Unknown,
Known(FloatTy),
}
impl FloatVarValue {
pub fn is_known(self) -> bool {
match self {
FloatVarValue::Known(_) => true,
FloatVarValue::Unknown => false,
}
}
pub fn is_unknown(self) -> bool {
!self.is_known()
}
}
rustc_index::newtype_index! {
/// A **ty**pe **v**ariable **ID**.
#[encodable]
#[orderable]
#[debug_format = "?{}t"]
#[gate_rustc_only]
pub struct TyVid {}
}
rustc_index::newtype_index! {
/// An **int**egral (`u32`, `i32`, `usize`, etc.) type **v**ariable **ID**.
#[encodable]
#[orderable]
#[debug_format = "?{}i"]
#[gate_rustc_only]
pub struct IntVid {}
}
rustc_index::newtype_index! {
/// A **float**ing-point (`f32` or `f64`) type **v**ariable **ID**.
#[encodable]
#[orderable]
#[debug_format = "?{}f"]
#[gate_rustc_only]
pub struct FloatVid {}
}
/// A placeholder for a type that hasn't been inferred yet.
///
/// E.g., if we have an empty array (`[]`), then we create a fresh
/// type variable for the element type since we won't know until it's
/// used what the element type is supposed to be.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable))]
pub enum InferTy {
/// A type variable.
TyVar(TyVid),
/// An integral type variable (`{integer}`).
///
/// These are created when the compiler sees an integer literal like
/// `1` that could be several different types (`u8`, `i32`, `u32`, etc.).
/// We don't know until it's used what type it's supposed to be, so
/// we create a fresh type variable.
IntVar(IntVid),
/// A floating-point type variable (`{float}`).
///
/// These are created when the compiler sees an float literal like
/// `1.0` that could be either an `f32` or an `f64`.
/// We don't know until it's used what type it's supposed to be, so
/// we create a fresh type variable.
FloatVar(FloatVid),
/// A [`FreshTy`][Self::FreshTy] is one that is generated as a replacement
/// for an unbound type variable. This is convenient for caching etc. See
/// `rustc_infer::infer::freshen` for more details.
///
/// Compare with [`TyVar`][Self::TyVar].
FreshTy(u32),
/// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`IntVar`][Self::IntVar].
FreshIntTy(u32),
/// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`FloatVar`][Self::FloatVar].
FreshFloatTy(u32),
}
/// Raw `TyVid` are used as the unification key for `sub_relations`;
/// they carry no values.
#[cfg(feature = "nightly")]
impl UnifyKey for TyVid {
type Value = ();
#[inline]
fn index(&self) -> u32 {
self.as_u32()
}
#[inline]
fn from_index(i: u32) -> TyVid {
TyVid::from_u32(i)
}
fn tag() -> &'static str {
"TyVid"
}
}
#[cfg(feature = "nightly")]
impl UnifyValue for IntVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, Self::Error> {
match (*value1, *value2) {
(IntVarValue::Unknown, IntVarValue::Unknown) => Ok(IntVarValue::Unknown),
(
IntVarValue::Unknown,
known @ (IntVarValue::UintType(_) | IntVarValue::IntType(_)),
)
| (
known @ (IntVarValue::UintType(_) | IntVarValue::IntType(_)),
IntVarValue::Unknown,
) => Ok(known),
_ => panic!("differing ints should have been resolved first"),
}
}
}
#[cfg(feature = "nightly")]
impl UnifyKey for IntVid {
type Value = IntVarValue;
#[inline] // make this function eligible for inlining - it is quite hot.
fn index(&self) -> u32 {
self.as_u32()
}
#[inline]
fn from_index(i: u32) -> IntVid {
IntVid::from_u32(i)
}
fn tag() -> &'static str {
"IntVid"
}
}
#[cfg(feature = "nightly")]
impl UnifyValue for FloatVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, Self::Error> {
match (*value1, *value2) {
(FloatVarValue::Unknown, FloatVarValue::Unknown) => Ok(FloatVarValue::Unknown),
(FloatVarValue::Unknown, FloatVarValue::Known(known))
| (FloatVarValue::Known(known), FloatVarValue::Unknown) => {
Ok(FloatVarValue::Known(known))
}
(FloatVarValue::Known(_), FloatVarValue::Known(_)) => {
panic!("differing floats should have been resolved first")
}
}
}
}
#[cfg(feature = "nightly")]
impl UnifyKey for FloatVid {
type Value = FloatVarValue;
#[inline]
fn index(&self) -> u32 {
self.as_u32()
}
#[inline]
fn from_index(i: u32) -> FloatVid {
FloatVid::from_u32(i)
}
fn tag() -> &'static str {
"FloatVid"
}
}
#[cfg(feature = "nightly")]
impl<CTX> HashStable<CTX> for InferTy {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
use InferTy::*;
std::mem::discriminant(self).hash_stable(ctx, hasher);
match self {
TyVar(_) | IntVar(_) | FloatVar(_) => {
panic!("type variables should not be hashed: {self:?}")
}
FreshTy(v) | FreshIntTy(v) | FreshFloatTy(v) => v.hash_stable(ctx, hasher),
}
}
}
impl fmt::Display for InferTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use InferTy::*;
match *self {
TyVar(_) => write!(f, "_"),
IntVar(_) => write!(f, "{}", "{integer}"),
FloatVar(_) => write!(f, "{}", "{float}"),
FreshTy(v) => write!(f, "FreshTy({v})"),
FreshIntTy(v) => write!(f, "FreshIntTy({v})"),
FreshFloatTy(v) => write!(f, "FreshFloatTy({v})"),
}
}
}
impl fmt::Debug for IntTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.name_str())
}
}
impl fmt::Debug for UintTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.name_str())
}
}
impl fmt::Debug for FloatTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.name_str())
}
}
impl fmt::Debug for InferTy {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use InferTy::*;
match *self {
TyVar(ref v) => v.fmt(f),
IntVar(ref v) => v.fmt(f),
FloatVar(ref v) => v.fmt(f),
FreshTy(v) => write!(f, "FreshTy({v:?})"),
FreshIntTy(v) => write!(f, "FreshIntTy({v:?})"),
FreshFloatTy(v) => write!(f, "FreshFloatTy({v:?})"),
}
}
}
#[derive_where(Clone, Copy, PartialEq, Eq, Hash, Debug; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
pub struct TypeAndMut<I: Interner> {
pub ty: I::Ty,
pub mutbl: Mutability,
}
#[derive_where(Clone, Copy, PartialEq, Eq, Hash; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
pub struct FnSig<I: Interner> {
pub inputs_and_output: I::Tys,
pub c_variadic: bool,
pub safety: I::Safety,
pub abi: I::Abi,
}
impl<I: Interner> FnSig<I> {
pub fn inputs(self) -> I::FnInputTys {
self.inputs_and_output.inputs()
}
pub fn output(self) -> I::Ty {
self.inputs_and_output.output()
}
pub fn is_fn_trait_compatible(self) -> bool {
let FnSig { safety, abi, c_variadic, .. } = self;
!c_variadic && safety.is_safe() && abi.is_rust()
}
}
impl<I: Interner> ty::Binder<I, FnSig<I>> {
#[inline]
pub fn inputs(self) -> ty::Binder<I, I::FnInputTys> {
self.map_bound(|fn_sig| fn_sig.inputs())
}
#[inline]
#[track_caller]
pub fn input(self, index: usize) -> ty::Binder<I, I::Ty> {
self.map_bound(|fn_sig| fn_sig.inputs().get(index).unwrap())
}
pub fn inputs_and_output(self) -> ty::Binder<I, I::Tys> {
self.map_bound(|fn_sig| fn_sig.inputs_and_output)
}
#[inline]
pub fn output(self) -> ty::Binder<I, I::Ty> {
self.map_bound(|fn_sig| fn_sig.output())
}
pub fn c_variadic(self) -> bool {
self.skip_binder().c_variadic
}
pub fn safety(self) -> I::Safety {
self.skip_binder().safety
}
pub fn abi(self) -> I::Abi {
self.skip_binder().abi
}
pub fn is_fn_trait_compatible(&self) -> bool {
self.skip_binder().is_fn_trait_compatible()
}
// Used to split a single value into the two fields in `TyKind::FnPtr`.
pub fn split(self) -> (ty::Binder<I, FnSigTys<I>>, FnHeader<I>) {
let hdr =
FnHeader { c_variadic: self.c_variadic(), safety: self.safety(), abi: self.abi() };
(self.map_bound(|sig| FnSigTys { inputs_and_output: sig.inputs_and_output }), hdr)
}
}
impl<I: Interner> fmt::Debug for FnSig<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let sig = self;
let FnSig { inputs_and_output: _, c_variadic, safety, abi } = sig;
write!(f, "{}", safety.prefix_str())?;
if !abi.is_rust() {
write!(f, "extern \"{abi:?}\" ")?;
}
write!(f, "fn(")?;
let inputs = sig.inputs();
for (i, ty) in inputs.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{ty:?}")?;
}
if *c_variadic {
if inputs.is_empty() {
write!(f, "...")?;
} else {
write!(f, ", ...")?;
}
}
write!(f, ")")?;
let output = sig.output();
match output.kind() {
Tuple(list) if list.is_empty() => Ok(()),
_ => write!(f, " -> {:?}", sig.output()),
}
}
}
// This is just a `FnSig` without the `FnHeader` fields.
#[derive_where(Clone, Copy, Debug, PartialEq, Eq, Hash; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
pub struct FnSigTys<I: Interner> {
pub inputs_and_output: I::Tys,
}
impl<I: Interner> FnSigTys<I> {
pub fn inputs(self) -> I::FnInputTys {
self.inputs_and_output.inputs()
}
pub fn output(self) -> I::Ty {
self.inputs_and_output.output()
}
}
impl<I: Interner> ty::Binder<I, FnSigTys<I>> {
// Used to combine the two fields in `TyKind::FnPtr` into a single value.
pub fn with(self, hdr: FnHeader<I>) -> ty::Binder<I, FnSig<I>> {
self.map_bound(|sig_tys| FnSig {
inputs_and_output: sig_tys.inputs_and_output,
c_variadic: hdr.c_variadic,
safety: hdr.safety,
abi: hdr.abi,
})
}
#[inline]
pub fn inputs(self) -> ty::Binder<I, I::FnInputTys> {
self.map_bound(|sig_tys| sig_tys.inputs())
}
#[inline]
#[track_caller]
pub fn input(self, index: usize) -> ty::Binder<I, I::Ty> {
self.map_bound(|sig_tys| sig_tys.inputs().get(index).unwrap())
}
pub fn inputs_and_output(self) -> ty::Binder<I, I::Tys> {
self.map_bound(|sig_tys| sig_tys.inputs_and_output)
}
#[inline]
pub fn output(self) -> ty::Binder<I, I::Ty> {
self.map_bound(|sig_tys| sig_tys.output())
}
}
#[derive_where(Clone, Copy, Debug, PartialEq, Eq, Hash; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
pub struct FnHeader<I: Interner> {
pub c_variadic: bool,
pub safety: I::Safety,
pub abi: I::Abi,
}