rustc_hir_typeck/closure.rs
1//! Code for type-checking closure expressions.
2
3use std::iter;
4use std::ops::ControlFlow;
5
6use rustc_abi::ExternAbi;
7use rustc_errors::ErrorGuaranteed;
8use rustc_hir as hir;
9use rustc_hir::lang_items::LangItem;
10use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
11use rustc_infer::infer::{BoundRegionConversionTime, DefineOpaqueTypes, InferOk, InferResult};
12use rustc_infer::traits::{ObligationCauseCode, PredicateObligations};
13use rustc_macros::{TypeFoldable, TypeVisitable};
14use rustc_middle::span_bug;
15use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
16use rustc_middle::ty::{self, GenericArgs, Ty, TyCtxt, TypeSuperVisitable, TypeVisitor};
17use rustc_span::def_id::LocalDefId;
18use rustc_span::{DUMMY_SP, Span};
19use rustc_trait_selection::error_reporting::traits::ArgKind;
20use rustc_trait_selection::traits;
21use rustc_type_ir::ClosureKind;
22use tracing::{debug, instrument, trace};
23
24use super::{CoroutineTypes, Expectation, FnCtxt, check_fn};
25
26/// What signature do we *expect* the closure to have from context?
27#[derive(Debug, Clone, TypeFoldable, TypeVisitable)]
28struct ExpectedSig<'tcx> {
29 /// Span that gave us this expectation, if we know that.
30 cause_span: Option<Span>,
31 sig: ty::PolyFnSig<'tcx>,
32}
33
34#[derive(Debug)]
35struct ClosureSignatures<'tcx> {
36 /// The signature users of the closure see.
37 bound_sig: ty::PolyFnSig<'tcx>,
38 /// The signature within the function body.
39 /// This mostly differs in the sense that lifetimes are now early bound and any
40 /// opaque types from the signature expectation are overridden in case there are
41 /// explicit hidden types written by the user in the closure signature.
42 liberated_sig: ty::FnSig<'tcx>,
43}
44
45impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
46 #[instrument(skip(self, closure), level = "debug")]
47 pub(crate) fn check_expr_closure(
48 &self,
49 closure: &hir::Closure<'tcx>,
50 expr_span: Span,
51 expected: Expectation<'tcx>,
52 ) -> Ty<'tcx> {
53 let tcx = self.tcx;
54 let body = tcx.hir().body(closure.body);
55 let expr_def_id = closure.def_id;
56
57 // It's always helpful for inference if we know the kind of
58 // closure sooner rather than later, so first examine the expected
59 // type, and see if can glean a closure kind from there.
60 let (expected_sig, expected_kind) = match expected.to_option(self) {
61 Some(ty) => self.deduce_closure_signature(
62 self.try_structurally_resolve_type(expr_span, ty),
63 closure.kind,
64 ),
65 None => (None, None),
66 };
67
68 let ClosureSignatures { bound_sig, mut liberated_sig } =
69 self.sig_of_closure(expr_def_id, closure.fn_decl, closure.kind, expected_sig);
70
71 debug!(?bound_sig, ?liberated_sig);
72
73 let parent_args =
74 GenericArgs::identity_for_item(tcx, tcx.typeck_root_def_id(expr_def_id.to_def_id()));
75
76 let tupled_upvars_ty = self.next_ty_var(expr_span);
77
78 // FIXME: We could probably actually just unify this further --
79 // instead of having a `FnSig` and a `Option<CoroutineTypes>`,
80 // we can have a `ClosureSignature { Coroutine { .. }, Closure { .. } }`,
81 // similar to how `ty::GenSig` is a distinct data structure.
82 let (closure_ty, coroutine_types) = match closure.kind {
83 hir::ClosureKind::Closure => {
84 // Tuple up the arguments and insert the resulting function type into
85 // the `closures` table.
86 let sig = bound_sig.map_bound(|sig| {
87 tcx.mk_fn_sig(
88 [Ty::new_tup(tcx, sig.inputs())],
89 sig.output(),
90 sig.c_variadic,
91 sig.safety,
92 sig.abi,
93 )
94 });
95
96 debug!(?sig, ?expected_kind);
97
98 let closure_kind_ty = match expected_kind {
99 Some(kind) => Ty::from_closure_kind(tcx, kind),
100
101 // Create a type variable (for now) to represent the closure kind.
102 // It will be unified during the upvar inference phase (`upvar.rs`)
103 None => self.next_ty_var(expr_span),
104 };
105
106 let closure_args = ty::ClosureArgs::new(
107 tcx,
108 ty::ClosureArgsParts {
109 parent_args,
110 closure_kind_ty,
111 closure_sig_as_fn_ptr_ty: Ty::new_fn_ptr(tcx, sig),
112 tupled_upvars_ty,
113 },
114 );
115
116 (Ty::new_closure(tcx, expr_def_id.to_def_id(), closure_args.args), None)
117 }
118 hir::ClosureKind::Coroutine(kind) => {
119 let yield_ty = match kind {
120 hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _)
121 | hir::CoroutineKind::Coroutine(_) => {
122 let yield_ty = self.next_ty_var(expr_span);
123 self.require_type_is_sized(
124 yield_ty,
125 expr_span,
126 ObligationCauseCode::SizedYieldType,
127 );
128 yield_ty
129 }
130 // HACK(-Ztrait-solver=next): In the *old* trait solver, we must eagerly
131 // guide inference on the yield type so that we can handle `AsyncIterator`
132 // in this block in projection correctly. In the new trait solver, it is
133 // not a problem.
134 hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _) => {
135 let yield_ty = self.next_ty_var(expr_span);
136 self.require_type_is_sized(
137 yield_ty,
138 expr_span,
139 ObligationCauseCode::SizedYieldType,
140 );
141
142 Ty::new_adt(
143 tcx,
144 tcx.adt_def(
145 tcx.require_lang_item(hir::LangItem::Poll, Some(expr_span)),
146 ),
147 tcx.mk_args(&[Ty::new_adt(
148 tcx,
149 tcx.adt_def(
150 tcx.require_lang_item(hir::LangItem::Option, Some(expr_span)),
151 ),
152 tcx.mk_args(&[yield_ty.into()]),
153 )
154 .into()]),
155 )
156 }
157 hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _) => {
158 tcx.types.unit
159 }
160 };
161
162 // Resume type defaults to `()` if the coroutine has no argument.
163 let resume_ty = liberated_sig.inputs().get(0).copied().unwrap_or(tcx.types.unit);
164
165 let interior = self.next_ty_var(expr_span);
166 self.deferred_coroutine_interiors.borrow_mut().push((
167 expr_def_id,
168 body.id(),
169 interior,
170 ));
171
172 // Coroutines that come from coroutine closures have not yet determined
173 // their kind ty, so make a fresh infer var which will be constrained
174 // later during upvar analysis. Regular coroutines always have the kind
175 // ty of `().`
176 let kind_ty = match kind {
177 hir::CoroutineKind::Desugared(_, hir::CoroutineSource::Closure) => {
178 self.next_ty_var(expr_span)
179 }
180 _ => tcx.types.unit,
181 };
182
183 let coroutine_args = ty::CoroutineArgs::new(
184 tcx,
185 ty::CoroutineArgsParts {
186 parent_args,
187 kind_ty,
188 resume_ty,
189 yield_ty,
190 return_ty: liberated_sig.output(),
191 witness: interior,
192 tupled_upvars_ty,
193 },
194 );
195
196 (
197 Ty::new_coroutine(tcx, expr_def_id.to_def_id(), coroutine_args.args),
198 Some(CoroutineTypes { resume_ty, yield_ty }),
199 )
200 }
201 hir::ClosureKind::CoroutineClosure(kind) => {
202 // async closures always return the type ascribed after the `->` (if present),
203 // and yield `()`.
204 let (bound_return_ty, bound_yield_ty) = match kind {
205 hir::CoroutineDesugaring::Async => {
206 (bound_sig.skip_binder().output(), tcx.types.unit)
207 }
208 hir::CoroutineDesugaring::Gen | hir::CoroutineDesugaring::AsyncGen => {
209 todo!("`gen` and `async gen` closures not supported yet")
210 }
211 };
212 // Compute all of the variables that will be used to populate the coroutine.
213 let resume_ty = self.next_ty_var(expr_span);
214 let interior = self.next_ty_var(expr_span);
215
216 let closure_kind_ty = match expected_kind {
217 Some(kind) => Ty::from_closure_kind(tcx, kind),
218
219 // Create a type variable (for now) to represent the closure kind.
220 // It will be unified during the upvar inference phase (`upvar.rs`)
221 None => self.next_ty_var(expr_span),
222 };
223
224 let coroutine_captures_by_ref_ty = self.next_ty_var(expr_span);
225 let closure_args = ty::CoroutineClosureArgs::new(
226 tcx,
227 ty::CoroutineClosureArgsParts {
228 parent_args,
229 closure_kind_ty,
230 signature_parts_ty: Ty::new_fn_ptr(
231 tcx,
232 bound_sig.map_bound(|sig| {
233 tcx.mk_fn_sig(
234 [
235 resume_ty,
236 Ty::new_tup_from_iter(tcx, sig.inputs().iter().copied()),
237 ],
238 Ty::new_tup(tcx, &[bound_yield_ty, bound_return_ty]),
239 sig.c_variadic,
240 sig.safety,
241 sig.abi,
242 )
243 }),
244 ),
245 tupled_upvars_ty,
246 coroutine_captures_by_ref_ty,
247 coroutine_witness_ty: interior,
248 },
249 );
250
251 let coroutine_kind_ty = match expected_kind {
252 Some(kind) => Ty::from_coroutine_closure_kind(tcx, kind),
253
254 // Create a type variable (for now) to represent the closure kind.
255 // It will be unified during the upvar inference phase (`upvar.rs`)
256 None => self.next_ty_var(expr_span),
257 };
258
259 let coroutine_upvars_ty = self.next_ty_var(expr_span);
260
261 // We need to turn the liberated signature that we got from HIR, which
262 // looks something like `|Args...| -> T`, into a signature that is suitable
263 // for type checking the inner body of the closure, which always returns a
264 // coroutine. To do so, we use the `CoroutineClosureSignature` to compute
265 // the coroutine type, filling in the tupled_upvars_ty and kind_ty with infer
266 // vars which will get constrained during upvar analysis.
267 let coroutine_output_ty = tcx.liberate_late_bound_regions(
268 expr_def_id.to_def_id(),
269 closure_args.coroutine_closure_sig().map_bound(|sig| {
270 sig.to_coroutine(
271 tcx,
272 parent_args,
273 coroutine_kind_ty,
274 tcx.coroutine_for_closure(expr_def_id),
275 coroutine_upvars_ty,
276 )
277 }),
278 );
279 liberated_sig = tcx.mk_fn_sig(
280 liberated_sig.inputs().iter().copied(),
281 coroutine_output_ty,
282 liberated_sig.c_variadic,
283 liberated_sig.safety,
284 liberated_sig.abi,
285 );
286
287 (Ty::new_coroutine_closure(tcx, expr_def_id.to_def_id(), closure_args.args), None)
288 }
289 };
290
291 check_fn(
292 &mut FnCtxt::new(self, self.param_env, closure.def_id),
293 liberated_sig,
294 coroutine_types,
295 closure.fn_decl,
296 expr_def_id,
297 body,
298 // Closure "rust-call" ABI doesn't support unsized params
299 false,
300 );
301
302 closure_ty
303 }
304
305 /// Given the expected type, figures out what it can about this closure we
306 /// are about to type check:
307 #[instrument(skip(self), level = "debug", ret)]
308 fn deduce_closure_signature(
309 &self,
310 expected_ty: Ty<'tcx>,
311 closure_kind: hir::ClosureKind,
312 ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
313 match *expected_ty.kind() {
314 ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => self
315 .deduce_closure_signature_from_predicates(
316 expected_ty,
317 closure_kind,
318 self.tcx
319 .explicit_item_self_bounds(def_id)
320 .iter_instantiated_copied(self.tcx, args)
321 .map(|(c, s)| (c.as_predicate(), s)),
322 ),
323 ty::Dynamic(object_type, ..) => {
324 let sig = object_type.projection_bounds().find_map(|pb| {
325 let pb = pb.with_self_ty(self.tcx, self.tcx.types.trait_object_dummy_self);
326 self.deduce_sig_from_projection(None, closure_kind, pb)
327 });
328 let kind = object_type
329 .principal_def_id()
330 .and_then(|did| self.tcx.fn_trait_kind_from_def_id(did));
331 (sig, kind)
332 }
333 ty::Infer(ty::TyVar(vid)) => self.deduce_closure_signature_from_predicates(
334 Ty::new_var(self.tcx, self.root_var(vid)),
335 closure_kind,
336 self.obligations_for_self_ty(vid)
337 .into_iter()
338 .map(|obl| (obl.predicate, obl.cause.span)),
339 ),
340 ty::FnPtr(sig_tys, hdr) => match closure_kind {
341 hir::ClosureKind::Closure => {
342 let expected_sig = ExpectedSig { cause_span: None, sig: sig_tys.with(hdr) };
343 (Some(expected_sig), Some(ty::ClosureKind::Fn))
344 }
345 hir::ClosureKind::Coroutine(_) | hir::ClosureKind::CoroutineClosure(_) => {
346 (None, None)
347 }
348 },
349 _ => (None, None),
350 }
351 }
352
353 fn deduce_closure_signature_from_predicates(
354 &self,
355 expected_ty: Ty<'tcx>,
356 closure_kind: hir::ClosureKind,
357 predicates: impl DoubleEndedIterator<Item = (ty::Predicate<'tcx>, Span)>,
358 ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
359 let mut expected_sig = None;
360 let mut expected_kind = None;
361
362 for (pred, span) in traits::elaborate(
363 self.tcx,
364 // Reverse the obligations here, since `elaborate_*` uses a stack,
365 // and we want to keep inference generally in the same order of
366 // the registered obligations.
367 predicates.rev(),
368 )
369 // We only care about self bounds
370 .filter_only_self()
371 {
372 debug!(?pred);
373 let bound_predicate = pred.kind();
374
375 // Given a Projection predicate, we can potentially infer
376 // the complete signature.
377 if expected_sig.is_none()
378 && let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj_predicate)) =
379 bound_predicate.skip_binder()
380 {
381 let inferred_sig = self.normalize(
382 span,
383 self.deduce_sig_from_projection(
384 Some(span),
385 closure_kind,
386 bound_predicate.rebind(proj_predicate),
387 ),
388 );
389
390 // Make sure that we didn't infer a signature that mentions itself.
391 // This can happen when we elaborate certain supertrait bounds that
392 // mention projections containing the `Self` type. See #105401.
393 struct MentionsTy<'tcx> {
394 expected_ty: Ty<'tcx>,
395 }
396 impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for MentionsTy<'tcx> {
397 type Result = ControlFlow<()>;
398
399 fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
400 if t == self.expected_ty {
401 ControlFlow::Break(())
402 } else {
403 t.super_visit_with(self)
404 }
405 }
406 }
407
408 // Don't infer a closure signature from a goal that names the closure type as this will
409 // (almost always) lead to occurs check errors later in type checking.
410 if self.next_trait_solver()
411 && let Some(inferred_sig) = inferred_sig
412 {
413 // In the new solver it is difficult to explicitly normalize the inferred signature as we
414 // would have to manually handle universes and rewriting bound vars and placeholders back
415 // and forth.
416 //
417 // Instead we take advantage of the fact that we relating an inference variable with an alias
418 // will only instantiate the variable if the alias is rigid(*not quite). Concretely we:
419 // - Create some new variable `?sig`
420 // - Equate `?sig` with the unnormalized signature, e.g. `fn(<Foo<?x> as Trait>::Assoc)`
421 // - Depending on whether `<Foo<?x> as Trait>::Assoc` is rigid, ambiguous or normalizeable,
422 // we will either wind up with `?sig=<Foo<?x> as Trait>::Assoc/?y/ConcreteTy` respectively.
423 //
424 // *: In cases where there are ambiguous aliases in the signature that make use of bound vars
425 // they will wind up present in `?sig` even though they are non-rigid.
426 //
427 // This is a bit weird and means we may wind up discarding the goal due to it naming `expected_ty`
428 // even though the normalized form may not name `expected_ty`. However, this matches the existing
429 // behaviour of the old solver and would be technically a breaking change to fix.
430 let generalized_fnptr_sig = self.next_ty_var(span);
431 let inferred_fnptr_sig = Ty::new_fn_ptr(self.tcx, inferred_sig.sig);
432 self.demand_eqtype(span, inferred_fnptr_sig, generalized_fnptr_sig);
433
434 let resolved_sig = self.resolve_vars_if_possible(generalized_fnptr_sig);
435
436 if resolved_sig.visit_with(&mut MentionsTy { expected_ty }).is_continue() {
437 expected_sig = Some(ExpectedSig {
438 cause_span: inferred_sig.cause_span,
439 sig: resolved_sig.fn_sig(self.tcx),
440 });
441 }
442 } else {
443 if inferred_sig.visit_with(&mut MentionsTy { expected_ty }).is_continue() {
444 expected_sig = inferred_sig;
445 }
446 }
447 }
448
449 // Even if we can't infer the full signature, we may be able to
450 // infer the kind. This can occur when we elaborate a predicate
451 // like `F : Fn<A>`. Note that due to subtyping we could encounter
452 // many viable options, so pick the most restrictive.
453 let trait_def_id = match bound_predicate.skip_binder() {
454 ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
455 Some(data.projection_term.trait_def_id(self.tcx))
456 }
457 ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => Some(data.def_id()),
458 _ => None,
459 };
460
461 if let Some(trait_def_id) = trait_def_id {
462 let found_kind = match closure_kind {
463 hir::ClosureKind::Closure => self.tcx.fn_trait_kind_from_def_id(trait_def_id),
464 hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async) => self
465 .tcx
466 .async_fn_trait_kind_from_def_id(trait_def_id)
467 .or_else(|| self.tcx.fn_trait_kind_from_def_id(trait_def_id)),
468 _ => None,
469 };
470
471 if let Some(found_kind) = found_kind {
472 // always use the closure kind that is more permissive.
473 match (expected_kind, found_kind) {
474 (None, _) => expected_kind = Some(found_kind),
475 (Some(ClosureKind::FnMut), ClosureKind::Fn) => {
476 expected_kind = Some(ClosureKind::Fn)
477 }
478 (Some(ClosureKind::FnOnce), ClosureKind::Fn | ClosureKind::FnMut) => {
479 expected_kind = Some(found_kind)
480 }
481 _ => {}
482 }
483 }
484 }
485 }
486
487 (expected_sig, expected_kind)
488 }
489
490 /// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
491 /// everything we need to know about a closure or coroutine.
492 ///
493 /// The `cause_span` should be the span that caused us to
494 /// have this expected signature, or `None` if we can't readily
495 /// know that.
496 #[instrument(level = "debug", skip(self, cause_span), ret)]
497 fn deduce_sig_from_projection(
498 &self,
499 cause_span: Option<Span>,
500 closure_kind: hir::ClosureKind,
501 projection: ty::PolyProjectionPredicate<'tcx>,
502 ) -> Option<ExpectedSig<'tcx>> {
503 let def_id = projection.item_def_id();
504
505 // For now, we only do signature deduction based off of the `Fn` and `AsyncFn` traits,
506 // for closures and async closures, respectively.
507 match closure_kind {
508 hir::ClosureKind::Closure if self.tcx.is_lang_item(def_id, LangItem::FnOnceOutput) => {
509 self.extract_sig_from_projection(cause_span, projection)
510 }
511 hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async)
512 if self.tcx.is_lang_item(def_id, LangItem::AsyncFnOnceOutput) =>
513 {
514 self.extract_sig_from_projection(cause_span, projection)
515 }
516 // It's possible we've passed the closure to a (somewhat out-of-fashion)
517 // `F: FnOnce() -> Fut, Fut: Future<Output = T>` style bound. Let's still
518 // guide inference here, since it's beneficial for the user.
519 hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async)
520 if self.tcx.is_lang_item(def_id, LangItem::FnOnceOutput) =>
521 {
522 self.extract_sig_from_projection_and_future_bound(cause_span, projection)
523 }
524 _ => None,
525 }
526 }
527
528 /// Given an `FnOnce::Output` or `AsyncFn::Output` projection, extract the args
529 /// and return type to infer a [`ty::PolyFnSig`] for the closure.
530 fn extract_sig_from_projection(
531 &self,
532 cause_span: Option<Span>,
533 projection: ty::PolyProjectionPredicate<'tcx>,
534 ) -> Option<ExpectedSig<'tcx>> {
535 let projection = self.resolve_vars_if_possible(projection);
536
537 let arg_param_ty = projection.skip_binder().projection_term.args.type_at(1);
538 debug!(?arg_param_ty);
539
540 let ty::Tuple(input_tys) = *arg_param_ty.kind() else {
541 return None;
542 };
543
544 // Since this is a return parameter type it is safe to unwrap.
545 let ret_param_ty = projection.skip_binder().term.expect_type();
546 debug!(?ret_param_ty);
547
548 let sig = projection.rebind(self.tcx.mk_fn_sig(
549 input_tys,
550 ret_param_ty,
551 false,
552 hir::Safety::Safe,
553 ExternAbi::Rust,
554 ));
555
556 Some(ExpectedSig { cause_span, sig })
557 }
558
559 /// When an async closure is passed to a function that has a "two-part" `Fn`
560 /// and `Future` trait bound, like:
561 ///
562 /// ```rust
563 /// use std::future::Future;
564 ///
565 /// fn not_exactly_an_async_closure<F, Fut>(_f: F)
566 /// where
567 /// F: FnOnce(String, u32) -> Fut,
568 /// Fut: Future<Output = i32>,
569 /// {}
570 /// ```
571 ///
572 /// The we want to be able to extract the signature to guide inference in the async
573 /// closure. We will have two projection predicates registered in this case. First,
574 /// we identify the `FnOnce<Args, Output = ?Fut>` bound, and if the output type is
575 /// an inference variable `?Fut`, we check if that is bounded by a `Future<Output = Ty>`
576 /// projection.
577 ///
578 /// This function is actually best-effort with the return type; if we don't find a
579 /// `Future` projection, we still will return arguments that we extracted from the `FnOnce`
580 /// projection, and the output will be an unconstrained type variable instead.
581 fn extract_sig_from_projection_and_future_bound(
582 &self,
583 cause_span: Option<Span>,
584 projection: ty::PolyProjectionPredicate<'tcx>,
585 ) -> Option<ExpectedSig<'tcx>> {
586 let projection = self.resolve_vars_if_possible(projection);
587
588 let arg_param_ty = projection.skip_binder().projection_term.args.type_at(1);
589 debug!(?arg_param_ty);
590
591 let ty::Tuple(input_tys) = *arg_param_ty.kind() else {
592 return None;
593 };
594
595 // If the return type is a type variable, look for bounds on it.
596 // We could theoretically support other kinds of return types here,
597 // but none of them would be useful, since async closures return
598 // concrete anonymous future types, and their futures are not coerced
599 // into any other type within the body of the async closure.
600 let ty::Infer(ty::TyVar(return_vid)) = *projection.skip_binder().term.expect_type().kind()
601 else {
602 return None;
603 };
604
605 // FIXME: We may want to elaborate here, though I assume this will be exceedingly rare.
606 let mut return_ty = None;
607 for bound in self.obligations_for_self_ty(return_vid) {
608 if let Some(ret_projection) = bound.predicate.as_projection_clause()
609 && let Some(ret_projection) = ret_projection.no_bound_vars()
610 && self.tcx.is_lang_item(ret_projection.def_id(), LangItem::FutureOutput)
611 {
612 return_ty = Some(ret_projection.term.expect_type());
613 break;
614 }
615 }
616
617 // SUBTLE: If we didn't find a `Future<Output = ...>` bound for the return
618 // vid, we still want to attempt to provide inference guidance for the async
619 // closure's arguments. Instantiate a new vid to plug into the output type.
620 //
621 // You may be wondering, what if it's higher-ranked? Well, given that we
622 // found a type variable for the `FnOnce::Output` projection above, we know
623 // that the output can't mention any of the vars.
624 //
625 // Also note that we use a fresh var here for the signature since the signature
626 // records the output of the *future*, and `return_vid` above is the type
627 // variable of the future, not its output.
628 //
629 // FIXME: We probably should store this signature inference output in a way
630 // that does not misuse a `FnSig` type, but that can be done separately.
631 let return_ty =
632 return_ty.unwrap_or_else(|| self.next_ty_var(cause_span.unwrap_or(DUMMY_SP)));
633
634 let sig = projection.rebind(self.tcx.mk_fn_sig(
635 input_tys,
636 return_ty,
637 false,
638 hir::Safety::Safe,
639 ExternAbi::Rust,
640 ));
641
642 Some(ExpectedSig { cause_span, sig })
643 }
644
645 fn sig_of_closure(
646 &self,
647 expr_def_id: LocalDefId,
648 decl: &hir::FnDecl<'tcx>,
649 closure_kind: hir::ClosureKind,
650 expected_sig: Option<ExpectedSig<'tcx>>,
651 ) -> ClosureSignatures<'tcx> {
652 if let Some(e) = expected_sig {
653 self.sig_of_closure_with_expectation(expr_def_id, decl, closure_kind, e)
654 } else {
655 self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind)
656 }
657 }
658
659 /// If there is no expected signature, then we will convert the
660 /// types that the user gave into a signature.
661 #[instrument(skip(self, expr_def_id, decl), level = "debug")]
662 fn sig_of_closure_no_expectation(
663 &self,
664 expr_def_id: LocalDefId,
665 decl: &hir::FnDecl<'tcx>,
666 closure_kind: hir::ClosureKind,
667 ) -> ClosureSignatures<'tcx> {
668 let bound_sig = self.supplied_sig_of_closure(expr_def_id, decl, closure_kind);
669
670 self.closure_sigs(expr_def_id, bound_sig)
671 }
672
673 /// Invoked to compute the signature of a closure expression. This
674 /// combines any user-provided type annotations (e.g., `|x: u32|
675 /// -> u32 { .. }`) with the expected signature.
676 ///
677 /// The approach is as follows:
678 ///
679 /// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations.
680 /// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any.
681 /// - If we have no expectation `E`, then the signature of the closure is `S`.
682 /// - Otherwise, the signature of the closure is E. Moreover:
683 /// - Skolemize the late-bound regions in `E`, yielding `E'`.
684 /// - Instantiate all the late-bound regions bound in the closure within `S`
685 /// with fresh (existential) variables, yielding `S'`
686 /// - Require that `E' = S'`
687 /// - We could use some kind of subtyping relationship here,
688 /// I imagine, but equality is easier and works fine for
689 /// our purposes.
690 ///
691 /// The key intuition here is that the user's types must be valid
692 /// from "the inside" of the closure, but the expectation
693 /// ultimately drives the overall signature.
694 ///
695 /// # Examples
696 ///
697 /// ```ignore (illustrative)
698 /// fn with_closure<F>(_: F)
699 /// where F: Fn(&u32) -> &u32 { .. }
700 ///
701 /// with_closure(|x: &u32| { ... })
702 /// ```
703 ///
704 /// Here:
705 /// - E would be `fn(&u32) -> &u32`.
706 /// - S would be `fn(&u32) -> ?T`
707 /// - E' is `&'!0 u32 -> &'!0 u32`
708 /// - S' is `&'?0 u32 -> ?T`
709 ///
710 /// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`.
711 ///
712 /// # Arguments
713 ///
714 /// - `expr_def_id`: the `LocalDefId` of the closure expression
715 /// - `decl`: the HIR declaration of the closure
716 /// - `body`: the body of the closure
717 /// - `expected_sig`: the expected signature (if any). Note that
718 /// this is missing a binder: that is, there may be late-bound
719 /// regions with depth 1, which are bound then by the closure.
720 #[instrument(skip(self, expr_def_id, decl), level = "debug")]
721 fn sig_of_closure_with_expectation(
722 &self,
723 expr_def_id: LocalDefId,
724 decl: &hir::FnDecl<'tcx>,
725 closure_kind: hir::ClosureKind,
726 expected_sig: ExpectedSig<'tcx>,
727 ) -> ClosureSignatures<'tcx> {
728 // Watch out for some surprises and just ignore the
729 // expectation if things don't see to match up with what we
730 // expect.
731 if expected_sig.sig.c_variadic() != decl.c_variadic {
732 return self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind);
733 } else if expected_sig.sig.skip_binder().inputs_and_output.len() != decl.inputs.len() + 1 {
734 return self.sig_of_closure_with_mismatched_number_of_arguments(
735 expr_def_id,
736 decl,
737 expected_sig,
738 );
739 }
740
741 // Create a `PolyFnSig`. Note the oddity that late bound
742 // regions appearing free in `expected_sig` are now bound up
743 // in this binder we are creating.
744 assert!(!expected_sig.sig.skip_binder().has_vars_bound_above(ty::INNERMOST));
745 let bound_sig = expected_sig.sig.map_bound(|sig| {
746 self.tcx.mk_fn_sig(
747 sig.inputs().iter().cloned(),
748 sig.output(),
749 sig.c_variadic,
750 hir::Safety::Safe,
751 ExternAbi::RustCall,
752 )
753 });
754
755 // `deduce_expectations_from_expected_type` introduces
756 // late-bound lifetimes defined elsewhere, which we now
757 // anonymize away, so as not to confuse the user.
758 let bound_sig = self.tcx.anonymize_bound_vars(bound_sig);
759
760 let closure_sigs = self.closure_sigs(expr_def_id, bound_sig);
761
762 // Up till this point, we have ignored the annotations that the user
763 // gave. This function will check that they unify successfully.
764 // Along the way, it also writes out entries for types that the user
765 // wrote into our typeck results, which are then later used by the privacy
766 // check.
767 match self.merge_supplied_sig_with_expectation(
768 expr_def_id,
769 decl,
770 closure_kind,
771 closure_sigs,
772 ) {
773 Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok),
774 Err(_) => self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind),
775 }
776 }
777
778 fn sig_of_closure_with_mismatched_number_of_arguments(
779 &self,
780 expr_def_id: LocalDefId,
781 decl: &hir::FnDecl<'tcx>,
782 expected_sig: ExpectedSig<'tcx>,
783 ) -> ClosureSignatures<'tcx> {
784 let expr_map_node = self.tcx.hir_node_by_def_id(expr_def_id);
785 let expected_args: Vec<_> = expected_sig
786 .sig
787 .skip_binder()
788 .inputs()
789 .iter()
790 .map(|ty| ArgKind::from_expected_ty(*ty, None))
791 .collect();
792 let (closure_span, closure_arg_span, found_args) =
793 match self.err_ctxt().get_fn_like_arguments(expr_map_node) {
794 Some((sp, arg_sp, args)) => (Some(sp), arg_sp, args),
795 None => (None, None, Vec::new()),
796 };
797 let expected_span =
798 expected_sig.cause_span.unwrap_or_else(|| self.tcx.def_span(expr_def_id));
799 let guar = self
800 .err_ctxt()
801 .report_arg_count_mismatch(
802 expected_span,
803 closure_span,
804 expected_args,
805 found_args,
806 true,
807 closure_arg_span,
808 )
809 .emit();
810
811 let error_sig = self.error_sig_of_closure(decl, guar);
812
813 self.closure_sigs(expr_def_id, error_sig)
814 }
815
816 /// Enforce the user's types against the expectation. See
817 /// `sig_of_closure_with_expectation` for details on the overall
818 /// strategy.
819 #[instrument(level = "debug", skip(self, expr_def_id, decl, expected_sigs))]
820 fn merge_supplied_sig_with_expectation(
821 &self,
822 expr_def_id: LocalDefId,
823 decl: &hir::FnDecl<'tcx>,
824 closure_kind: hir::ClosureKind,
825 mut expected_sigs: ClosureSignatures<'tcx>,
826 ) -> InferResult<'tcx, ClosureSignatures<'tcx>> {
827 // Get the signature S that the user gave.
828 //
829 // (See comment on `sig_of_closure_with_expectation` for the
830 // meaning of these letters.)
831 let supplied_sig = self.supplied_sig_of_closure(expr_def_id, decl, closure_kind);
832
833 debug!(?supplied_sig);
834
835 // FIXME(#45727): As discussed in [this comment][c1], naively
836 // forcing equality here actually results in suboptimal error
837 // messages in some cases. For now, if there would have been
838 // an obvious error, we fallback to declaring the type of the
839 // closure to be the one the user gave, which allows other
840 // error message code to trigger.
841 //
842 // However, I think [there is potential to do even better
843 // here][c2], since in *this* code we have the precise span of
844 // the type parameter in question in hand when we report the
845 // error.
846 //
847 // [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706
848 // [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796
849 self.commit_if_ok(|_| {
850 let mut all_obligations = PredicateObligations::new();
851 let supplied_sig = self.instantiate_binder_with_fresh_vars(
852 self.tcx.def_span(expr_def_id),
853 BoundRegionConversionTime::FnCall,
854 supplied_sig,
855 );
856
857 // The liberated version of this signature should be a subtype
858 // of the liberated form of the expectation.
859 for ((hir_ty, &supplied_ty), expected_ty) in iter::zip(
860 iter::zip(decl.inputs, supplied_sig.inputs()),
861 expected_sigs.liberated_sig.inputs(), // `liberated_sig` is E'.
862 ) {
863 // Check that E' = S'.
864 let cause = self.misc(hir_ty.span);
865 let InferOk { value: (), obligations } = self.at(&cause, self.param_env).eq(
866 DefineOpaqueTypes::Yes,
867 *expected_ty,
868 supplied_ty,
869 )?;
870 all_obligations.extend(obligations);
871 }
872
873 let supplied_output_ty = supplied_sig.output();
874 let cause = &self.misc(decl.output.span());
875 let InferOk { value: (), obligations } = self.at(cause, self.param_env).eq(
876 DefineOpaqueTypes::Yes,
877 expected_sigs.liberated_sig.output(),
878 supplied_output_ty,
879 )?;
880 all_obligations.extend(obligations);
881
882 let inputs =
883 supplied_sig.inputs().into_iter().map(|&ty| self.resolve_vars_if_possible(ty));
884
885 expected_sigs.liberated_sig = self.tcx.mk_fn_sig(
886 inputs,
887 supplied_output_ty,
888 expected_sigs.liberated_sig.c_variadic,
889 hir::Safety::Safe,
890 ExternAbi::RustCall,
891 );
892
893 Ok(InferOk { value: expected_sigs, obligations: all_obligations })
894 })
895 }
896
897 /// If there is no expected signature, then we will convert the
898 /// types that the user gave into a signature.
899 ///
900 /// Also, record this closure signature for later.
901 #[instrument(skip(self, decl), level = "debug", ret)]
902 fn supplied_sig_of_closure(
903 &self,
904 expr_def_id: LocalDefId,
905 decl: &hir::FnDecl<'tcx>,
906 closure_kind: hir::ClosureKind,
907 ) -> ty::PolyFnSig<'tcx> {
908 let lowerer = self.lowerer();
909
910 trace!("decl = {:#?}", decl);
911 debug!(?closure_kind);
912
913 let hir_id = self.tcx.local_def_id_to_hir_id(expr_def_id);
914 let bound_vars = self.tcx.late_bound_vars(hir_id);
915
916 // First, convert the types that the user supplied (if any).
917 let supplied_arguments = decl.inputs.iter().map(|a| lowerer.lower_ty(a));
918 let supplied_return = match decl.output {
919 hir::FnRetTy::Return(ref output) => lowerer.lower_ty(output),
920 hir::FnRetTy::DefaultReturn(_) => match closure_kind {
921 // In the case of the async block that we create for a function body,
922 // we expect the return type of the block to match that of the enclosing
923 // function.
924 hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
925 hir::CoroutineDesugaring::Async,
926 hir::CoroutineSource::Fn,
927 )) => {
928 debug!("closure is async fn body");
929 self.deduce_future_output_from_obligations(expr_def_id).unwrap_or_else(|| {
930 // AFAIK, deducing the future output
931 // always succeeds *except* in error cases
932 // like #65159. I'd like to return Error
933 // here, but I can't because I can't
934 // easily (and locally) prove that we
935 // *have* reported an
936 // error. --nikomatsakis
937 lowerer.ty_infer(None, decl.output.span())
938 })
939 }
940 // All `gen {}` and `async gen {}` must return unit.
941 hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
942 hir::CoroutineDesugaring::Gen | hir::CoroutineDesugaring::AsyncGen,
943 _,
944 )) => self.tcx.types.unit,
945
946 // For async blocks, we just fall back to `_` here.
947 // For closures/coroutines, we know nothing about the return
948 // type unless it was supplied.
949 hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
950 hir::CoroutineDesugaring::Async,
951 _,
952 ))
953 | hir::ClosureKind::Coroutine(hir::CoroutineKind::Coroutine(_))
954 | hir::ClosureKind::Closure
955 | hir::ClosureKind::CoroutineClosure(_) => {
956 lowerer.ty_infer(None, decl.output.span())
957 }
958 },
959 };
960
961 let result = ty::Binder::bind_with_vars(
962 self.tcx.mk_fn_sig(
963 supplied_arguments,
964 supplied_return,
965 decl.c_variadic,
966 hir::Safety::Safe,
967 ExternAbi::RustCall,
968 ),
969 bound_vars,
970 );
971
972 let c_result = self.infcx.canonicalize_response(result);
973 self.typeck_results.borrow_mut().user_provided_sigs.insert(expr_def_id, c_result);
974
975 // Normalize only after registering in `user_provided_sigs`.
976 self.normalize(self.tcx.hir().span(hir_id), result)
977 }
978
979 /// Invoked when we are translating the coroutine that results
980 /// from desugaring an `async fn`. Returns the "sugared" return
981 /// type of the `async fn` -- that is, the return type that the
982 /// user specified. The "desugared" return type is an `impl
983 /// Future<Output = T>`, so we do this by searching through the
984 /// obligations to extract the `T`.
985 #[instrument(skip(self), level = "debug", ret)]
986 fn deduce_future_output_from_obligations(&self, body_def_id: LocalDefId) -> Option<Ty<'tcx>> {
987 let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
988 span_bug!(self.tcx.def_span(body_def_id), "async fn coroutine outside of a fn")
989 });
990
991 let closure_span = self.tcx.def_span(body_def_id);
992 let ret_ty = ret_coercion.borrow().expected_ty();
993 let ret_ty = self.try_structurally_resolve_type(closure_span, ret_ty);
994
995 let get_future_output = |predicate: ty::Predicate<'tcx>, span| {
996 // Search for a pending obligation like
997 //
998 // `<R as Future>::Output = T`
999 //
1000 // where R is the return type we are expecting. This type `T`
1001 // will be our output.
1002 let bound_predicate = predicate.kind();
1003 if let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj_predicate)) =
1004 bound_predicate.skip_binder()
1005 {
1006 self.deduce_future_output_from_projection(
1007 span,
1008 bound_predicate.rebind(proj_predicate),
1009 )
1010 } else {
1011 None
1012 }
1013 };
1014
1015 let output_ty = match *ret_ty.kind() {
1016 ty::Infer(ty::TyVar(ret_vid)) => {
1017 self.obligations_for_self_ty(ret_vid).into_iter().find_map(|obligation| {
1018 get_future_output(obligation.predicate, obligation.cause.span)
1019 })?
1020 }
1021 ty::Alias(ty::Projection, _) => {
1022 return Some(Ty::new_error_with_message(
1023 self.tcx,
1024 closure_span,
1025 "this projection should have been projected to an opaque type",
1026 ));
1027 }
1028 ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => self
1029 .tcx
1030 .explicit_item_self_bounds(def_id)
1031 .iter_instantiated_copied(self.tcx, args)
1032 .find_map(|(p, s)| get_future_output(p.as_predicate(), s))?,
1033 ty::Error(_) => return Some(ret_ty),
1034 _ => {
1035 span_bug!(closure_span, "invalid async fn coroutine return type: {ret_ty:?}")
1036 }
1037 };
1038
1039 let output_ty = self.normalize(closure_span, output_ty);
1040
1041 // async fn that have opaque types in their return type need to redo the conversion to inference variables
1042 // as they fetch the still opaque version from the signature.
1043 let InferOk { value: output_ty, obligations } = self
1044 .replace_opaque_types_with_inference_vars(
1045 output_ty,
1046 body_def_id,
1047 closure_span,
1048 self.param_env,
1049 );
1050 self.register_predicates(obligations);
1051
1052 Some(output_ty)
1053 }
1054
1055 /// Given a projection like
1056 ///
1057 /// `<X as Future>::Output = T`
1058 ///
1059 /// where `X` is some type that has no late-bound regions, returns
1060 /// `Some(T)`. If the projection is for some other trait, returns
1061 /// `None`.
1062 fn deduce_future_output_from_projection(
1063 &self,
1064 cause_span: Span,
1065 predicate: ty::PolyProjectionPredicate<'tcx>,
1066 ) -> Option<Ty<'tcx>> {
1067 debug!("deduce_future_output_from_projection(predicate={:?})", predicate);
1068
1069 // We do not expect any bound regions in our predicate, so
1070 // skip past the bound vars.
1071 let Some(predicate) = predicate.no_bound_vars() else {
1072 debug!("deduce_future_output_from_projection: has late-bound regions");
1073 return None;
1074 };
1075
1076 // Check that this is a projection from the `Future` trait.
1077 let trait_def_id = predicate.projection_term.trait_def_id(self.tcx);
1078 let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(cause_span));
1079 if trait_def_id != future_trait {
1080 debug!("deduce_future_output_from_projection: not a future");
1081 return None;
1082 }
1083
1084 // The `Future` trait has only one associated item, `Output`,
1085 // so check that this is what we see.
1086 let output_assoc_item = self.tcx.associated_item_def_ids(future_trait)[0];
1087 if output_assoc_item != predicate.projection_term.def_id {
1088 span_bug!(
1089 cause_span,
1090 "projecting associated item `{:?}` from future, which is not Output `{:?}`",
1091 predicate.projection_term.def_id,
1092 output_assoc_item,
1093 );
1094 }
1095
1096 // Extract the type from the projection. Note that there can
1097 // be no bound variables in this type because the "self type"
1098 // does not have any regions in it.
1099 let output_ty = self.resolve_vars_if_possible(predicate.term);
1100 debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty);
1101 // This is a projection on a Fn trait so will always be a type.
1102 Some(output_ty.expect_type())
1103 }
1104
1105 /// Converts the types that the user supplied, in case that doing
1106 /// so should yield an error, but returns back a signature where
1107 /// all parameters are of type `ty::Error`.
1108 fn error_sig_of_closure(
1109 &self,
1110 decl: &hir::FnDecl<'tcx>,
1111 guar: ErrorGuaranteed,
1112 ) -> ty::PolyFnSig<'tcx> {
1113 let lowerer = self.lowerer();
1114 let err_ty = Ty::new_error(self.tcx, guar);
1115
1116 let supplied_arguments = decl.inputs.iter().map(|a| {
1117 // Convert the types that the user supplied (if any), but ignore them.
1118 lowerer.lower_ty(a);
1119 err_ty
1120 });
1121
1122 if let hir::FnRetTy::Return(ref output) = decl.output {
1123 lowerer.lower_ty(output);
1124 }
1125
1126 let result = ty::Binder::dummy(self.tcx.mk_fn_sig(
1127 supplied_arguments,
1128 err_ty,
1129 decl.c_variadic,
1130 hir::Safety::Safe,
1131 ExternAbi::RustCall,
1132 ));
1133
1134 debug!("supplied_sig_of_closure: result={:?}", result);
1135
1136 result
1137 }
1138
1139 #[instrument(level = "debug", skip(self), ret)]
1140 fn closure_sigs(
1141 &self,
1142 expr_def_id: LocalDefId,
1143 bound_sig: ty::PolyFnSig<'tcx>,
1144 ) -> ClosureSignatures<'tcx> {
1145 let liberated_sig =
1146 self.tcx().liberate_late_bound_regions(expr_def_id.to_def_id(), bound_sig);
1147 let liberated_sig = self.normalize(self.tcx.def_span(expr_def_id), liberated_sig);
1148 ClosureSignatures { bound_sig, liberated_sig }
1149 }
1150}