rustc_parse/parser/item.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
use std::fmt::Write;
use std::mem;
use ast::token::IdentIsRaw;
use rustc_ast::ast::*;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Delimiter, TokenKind};
use rustc_ast::tokenstream::{DelimSpan, TokenStream, TokenTree};
use rustc_ast::util::case::Case;
use rustc_ast::{self as ast};
use rustc_ast_pretty::pprust;
use rustc_errors::codes::*;
use rustc_errors::{Applicability, PResult, StashKey, struct_span_code_err};
use rustc_span::edit_distance::edit_distance;
use rustc_span::edition::Edition;
use rustc_span::symbol::{Ident, Symbol, kw, sym};
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span, source_map};
use thin_vec::{ThinVec, thin_vec};
use tracing::debug;
use super::diagnostics::{ConsumeClosingDelim, dummy_arg};
use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
use super::{
AttrWrapper, FollowedByType, ForceCollect, Parser, PathStyle, Trailing, UsePreAttrPos,
};
use crate::errors::{self, MacroExpandsToAdtField};
use crate::{fluent_generated as fluent, maybe_whole};
impl<'a> Parser<'a> {
/// Parses a source module as a crate. This is the main entry point for the parser.
pub fn parse_crate_mod(&mut self) -> PResult<'a, ast::Crate> {
let (attrs, items, spans) = self.parse_mod(&token::Eof)?;
Ok(ast::Crate { attrs, items, spans, id: DUMMY_NODE_ID, is_placeholder: false })
}
/// Parses a `mod <foo> { ... }` or `mod <foo>;` item.
fn parse_item_mod(&mut self, attrs: &mut AttrVec) -> PResult<'a, ItemInfo> {
let safety = self.parse_safety(Case::Sensitive);
self.expect_keyword(kw::Mod)?;
let id = self.parse_ident()?;
let mod_kind = if self.eat(&token::Semi) {
ModKind::Unloaded
} else {
self.expect(&token::OpenDelim(Delimiter::Brace))?;
let (inner_attrs, items, inner_span) =
self.parse_mod(&token::CloseDelim(Delimiter::Brace))?;
attrs.extend(inner_attrs);
ModKind::Loaded(items, Inline::Yes, inner_span)
};
Ok((id, ItemKind::Mod(safety, mod_kind)))
}
/// Parses the contents of a module (inner attributes followed by module items).
/// We exit once we hit `term` which can be either
/// - EOF (for files)
/// - `}` for mod items
pub fn parse_mod(
&mut self,
term: &TokenKind,
) -> PResult<'a, (AttrVec, ThinVec<P<Item>>, ModSpans)> {
let lo = self.token.span;
let attrs = self.parse_inner_attributes()?;
let post_attr_lo = self.token.span;
let mut items: ThinVec<P<_>> = ThinVec::new();
// There shouldn't be any stray semicolons before or after items.
// `parse_item` consumes the appropriate semicolons so any leftover is an error.
loop {
while self.maybe_consume_incorrect_semicolon(items.last().map(|x| &**x)) {} // Eat all bad semicolons
let Some(item) = self.parse_item(ForceCollect::No)? else {
break;
};
items.push(item);
}
if !self.eat(term) {
let token_str = super::token_descr(&self.token);
if !self.maybe_consume_incorrect_semicolon(items.last().map(|x| &**x)) {
let is_let = self.token.is_keyword(kw::Let);
let is_let_mut = is_let && self.look_ahead(1, |t| t.is_keyword(kw::Mut));
let let_has_ident = is_let && !is_let_mut && self.is_kw_followed_by_ident(kw::Let);
let msg = format!("expected item, found {token_str}");
let mut err = self.dcx().struct_span_err(self.token.span, msg);
let label = if is_let {
"`let` cannot be used for global variables"
} else {
"expected item"
};
err.span_label(self.token.span, label);
if is_let {
if is_let_mut {
err.help("consider using `static` and a `Mutex` instead of `let mut`");
} else if let_has_ident {
err.span_suggestion_short(
self.token.span,
"consider using `static` or `const` instead of `let`",
"static",
Applicability::MaybeIncorrect,
);
} else {
err.help("consider using `static` or `const` instead of `let`");
}
}
err.note("for a full list of items that can appear in modules, see <https://doc.rust-lang.org/reference/items.html>");
return Err(err);
}
}
let inject_use_span = post_attr_lo.data().with_hi(post_attr_lo.lo());
let mod_spans = ModSpans { inner_span: lo.to(self.prev_token.span), inject_use_span };
Ok((attrs, items, mod_spans))
}
}
pub(super) type ItemInfo = (Ident, ItemKind);
impl<'a> Parser<'a> {
pub fn parse_item(&mut self, force_collect: ForceCollect) -> PResult<'a, Option<P<Item>>> {
let fn_parse_mode = FnParseMode { req_name: |_| true, req_body: true };
self.parse_item_(fn_parse_mode, force_collect).map(|i| i.map(P))
}
fn parse_item_(
&mut self,
fn_parse_mode: FnParseMode,
force_collect: ForceCollect,
) -> PResult<'a, Option<Item>> {
self.recover_vcs_conflict_marker();
let attrs = self.parse_outer_attributes()?;
self.recover_vcs_conflict_marker();
self.parse_item_common(attrs, true, false, fn_parse_mode, force_collect)
}
pub(super) fn parse_item_common(
&mut self,
attrs: AttrWrapper,
mac_allowed: bool,
attrs_allowed: bool,
fn_parse_mode: FnParseMode,
force_collect: ForceCollect,
) -> PResult<'a, Option<Item>> {
maybe_whole!(self, NtItem, |item| {
attrs.prepend_to_nt_inner(&mut item.attrs);
Some(item.into_inner())
});
self.collect_tokens(None, attrs, force_collect, |this, mut attrs| {
let lo = this.token.span;
let vis = this.parse_visibility(FollowedByType::No)?;
let mut def = this.parse_defaultness();
let kind = this.parse_item_kind(
&mut attrs,
mac_allowed,
lo,
&vis,
&mut def,
fn_parse_mode,
Case::Sensitive,
)?;
if let Some((ident, kind)) = kind {
this.error_on_unconsumed_default(def, &kind);
let span = lo.to(this.prev_token.span);
let id = DUMMY_NODE_ID;
let item = Item { ident, attrs, id, kind, vis, span, tokens: None };
return Ok((Some(item), Trailing::No, UsePreAttrPos::No));
}
// At this point, we have failed to parse an item.
if !matches!(vis.kind, VisibilityKind::Inherited) {
this.dcx().emit_err(errors::VisibilityNotFollowedByItem { span: vis.span, vis });
}
if let Defaultness::Default(span) = def {
this.dcx().emit_err(errors::DefaultNotFollowedByItem { span });
}
if !attrs_allowed {
this.recover_attrs_no_item(&attrs)?;
}
Ok((None, Trailing::No, UsePreAttrPos::No))
})
}
/// Error in-case `default` was parsed in an in-appropriate context.
fn error_on_unconsumed_default(&self, def: Defaultness, kind: &ItemKind) {
if let Defaultness::Default(span) = def {
self.dcx().emit_err(errors::InappropriateDefault {
span,
article: kind.article(),
descr: kind.descr(),
});
}
}
/// Parses one of the items allowed by the flags.
fn parse_item_kind(
&mut self,
attrs: &mut AttrVec,
macros_allowed: bool,
lo: Span,
vis: &Visibility,
def: &mut Defaultness,
fn_parse_mode: FnParseMode,
case: Case,
) -> PResult<'a, Option<ItemInfo>> {
let check_pub = def == &Defaultness::Final;
let mut def_ = || mem::replace(def, Defaultness::Final);
let info = if self.eat_keyword_case(kw::Use, case) {
self.parse_use_item()?
} else if self.check_fn_front_matter(check_pub, case) {
// FUNCTION ITEM
let (ident, sig, generics, body) =
self.parse_fn(attrs, fn_parse_mode, lo, vis, case)?;
(ident, ItemKind::Fn(Box::new(Fn { defaultness: def_(), sig, generics, body })))
} else if self.eat_keyword(kw::Extern) {
if self.eat_keyword(kw::Crate) {
// EXTERN CRATE
self.parse_item_extern_crate()?
} else {
// EXTERN BLOCK
self.parse_item_foreign_mod(attrs, Safety::Default)?
}
} else if self.is_unsafe_foreign_mod() {
// EXTERN BLOCK
let safety = self.parse_safety(Case::Sensitive);
self.expect_keyword(kw::Extern)?;
self.parse_item_foreign_mod(attrs, safety)?
} else if self.is_static_global() {
let safety = self.parse_safety(Case::Sensitive);
// STATIC ITEM
self.bump(); // `static`
let mutability = self.parse_mutability();
let (ident, item) = self.parse_static_item(safety, mutability)?;
(ident, ItemKind::Static(Box::new(item)))
} else if let Const::Yes(const_span) = self.parse_constness(Case::Sensitive) {
// CONST ITEM
if self.token.is_keyword(kw::Impl) {
// recover from `const impl`, suggest `impl const`
self.recover_const_impl(const_span, attrs, def_())?
} else {
self.recover_const_mut(const_span);
self.recover_missing_kw_before_item()?;
let (ident, generics, ty, expr) = self.parse_const_item()?;
(
ident,
ItemKind::Const(Box::new(ConstItem {
defaultness: def_(),
generics,
ty,
expr,
})),
)
}
} else if self.check_keyword(kw::Trait) || self.check_auto_or_unsafe_trait_item() {
// TRAIT ITEM
self.parse_item_trait(attrs, lo)?
} else if self.check_keyword(kw::Impl)
|| self.check_keyword(kw::Unsafe) && self.is_keyword_ahead(1, &[kw::Impl])
{
// IMPL ITEM
self.parse_item_impl(attrs, def_())?
} else if self.is_reuse_path_item() {
self.parse_item_delegation()?
} else if self.check_keyword(kw::Mod)
|| self.check_keyword(kw::Unsafe) && self.is_keyword_ahead(1, &[kw::Mod])
{
// MODULE ITEM
self.parse_item_mod(attrs)?
} else if self.eat_keyword(kw::Type) {
// TYPE ITEM
self.parse_type_alias(def_())?
} else if self.eat_keyword(kw::Enum) {
// ENUM ITEM
self.parse_item_enum()?
} else if self.eat_keyword(kw::Struct) {
// STRUCT ITEM
self.parse_item_struct()?
} else if self.is_kw_followed_by_ident(kw::Union) {
// UNION ITEM
self.bump(); // `union`
self.parse_item_union()?
} else if self.is_builtin() {
// BUILTIN# ITEM
return self.parse_item_builtin();
} else if self.eat_keyword(kw::Macro) {
// MACROS 2.0 ITEM
self.parse_item_decl_macro(lo)?
} else if let IsMacroRulesItem::Yes { has_bang } = self.is_macro_rules_item() {
// MACRO_RULES ITEM
self.parse_item_macro_rules(vis, has_bang)?
} else if self.isnt_macro_invocation()
&& (self.token.is_ident_named(sym::import)
|| self.token.is_ident_named(sym::using)
|| self.token.is_ident_named(sym::include)
|| self.token.is_ident_named(sym::require))
{
return self.recover_import_as_use();
} else if self.isnt_macro_invocation() && vis.kind.is_pub() {
self.recover_missing_kw_before_item()?;
return Ok(None);
} else if self.isnt_macro_invocation() && case == Case::Sensitive {
_ = def_;
// Recover wrong cased keywords
return self.parse_item_kind(
attrs,
macros_allowed,
lo,
vis,
def,
fn_parse_mode,
Case::Insensitive,
);
} else if macros_allowed && self.check_path() {
if self.isnt_macro_invocation() {
self.recover_missing_kw_before_item()?;
}
// MACRO INVOCATION ITEM
(Ident::empty(), ItemKind::MacCall(P(self.parse_item_macro(vis)?)))
} else {
return Ok(None);
};
Ok(Some(info))
}
fn recover_import_as_use(&mut self) -> PResult<'a, Option<ItemInfo>> {
let span = self.token.span;
let token_name = super::token_descr(&self.token);
let snapshot = self.create_snapshot_for_diagnostic();
self.bump();
match self.parse_use_item() {
Ok(u) => {
self.dcx().emit_err(errors::RecoverImportAsUse { span, token_name });
Ok(Some(u))
}
Err(e) => {
e.cancel();
self.restore_snapshot(snapshot);
Ok(None)
}
}
}
fn parse_use_item(&mut self) -> PResult<'a, ItemInfo> {
let tree = self.parse_use_tree()?;
if let Err(mut e) = self.expect_semi() {
match tree.kind {
UseTreeKind::Glob => {
e.note("the wildcard token must be last on the path");
}
UseTreeKind::Nested { .. } => {
e.note("glob-like brace syntax must be last on the path");
}
_ => (),
}
return Err(e);
}
Ok((Ident::empty(), ItemKind::Use(tree)))
}
/// When parsing a statement, would the start of a path be an item?
pub(super) fn is_path_start_item(&mut self) -> bool {
self.is_kw_followed_by_ident(kw::Union) // no: `union::b`, yes: `union U { .. }`
|| self.is_reuse_path_item()
|| self.check_auto_or_unsafe_trait_item() // no: `auto::b`, yes: `auto trait X { .. }`
|| self.is_async_fn() // no(2015): `async::b`, yes: `async fn`
|| matches!(self.is_macro_rules_item(), IsMacroRulesItem::Yes{..}) // no: `macro_rules::b`, yes: `macro_rules! mac`
}
fn is_reuse_path_item(&mut self) -> bool {
// no: `reuse ::path` for compatibility reasons with macro invocations
self.token.is_keyword(kw::Reuse)
&& self.look_ahead(1, |t| t.is_path_start() && *t != token::PathSep)
}
/// Are we sure this could not possibly be a macro invocation?
fn isnt_macro_invocation(&mut self) -> bool {
self.check_ident() && self.look_ahead(1, |t| *t != token::Not && *t != token::PathSep)
}
/// Recover on encountering a struct, enum, or method definition where the user
/// forgot to add the `struct`, `enum`, or `fn` keyword
fn recover_missing_kw_before_item(&mut self) -> PResult<'a, ()> {
let is_pub = self.prev_token.is_keyword(kw::Pub);
let is_const = self.prev_token.is_keyword(kw::Const);
let ident_span = self.token.span;
let span = if is_pub { self.prev_token.span.to(ident_span) } else { ident_span };
let insert_span = ident_span.shrink_to_lo();
let ident = if self.token.is_ident()
&& (!is_const || self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Parenthesis)))
&& self.look_ahead(1, |t| {
[
token::Lt,
token::OpenDelim(Delimiter::Brace),
token::OpenDelim(Delimiter::Parenthesis),
]
.contains(&t.kind)
}) {
self.parse_ident().unwrap()
} else {
return Ok(());
};
let mut found_generics = false;
if self.check(&token::Lt) {
found_generics = true;
self.eat_to_tokens(&[&token::Gt]);
self.bump(); // `>`
}
let err = if self.check(&token::OpenDelim(Delimiter::Brace)) {
// possible struct or enum definition where `struct` or `enum` was forgotten
if self.look_ahead(1, |t| *t == token::CloseDelim(Delimiter::Brace)) {
// `S {}` could be unit enum or struct
Some(errors::MissingKeywordForItemDefinition::EnumOrStruct { span })
} else if self.look_ahead(2, |t| *t == token::Colon)
|| self.look_ahead(3, |t| *t == token::Colon)
{
// `S { f:` or `S { pub f:`
Some(errors::MissingKeywordForItemDefinition::Struct { span, insert_span, ident })
} else {
Some(errors::MissingKeywordForItemDefinition::Enum { span, insert_span, ident })
}
} else if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
// possible function or tuple struct definition where `fn` or `struct` was forgotten
self.bump(); // `(`
let is_method = self.recover_self_param();
self.consume_block(Delimiter::Parenthesis, ConsumeClosingDelim::Yes);
let err = if self.check(&token::RArrow)
|| self.check(&token::OpenDelim(Delimiter::Brace))
{
self.eat_to_tokens(&[&token::OpenDelim(Delimiter::Brace)]);
self.bump(); // `{`
self.consume_block(Delimiter::Brace, ConsumeClosingDelim::Yes);
if is_method {
errors::MissingKeywordForItemDefinition::Method { span, insert_span, ident }
} else {
errors::MissingKeywordForItemDefinition::Function { span, insert_span, ident }
}
} else if is_pub && self.check(&token::Semi) {
errors::MissingKeywordForItemDefinition::Struct { span, insert_span, ident }
} else {
errors::MissingKeywordForItemDefinition::Ambiguous {
span,
subdiag: if found_generics {
None
} else if let Ok(snippet) = self.span_to_snippet(ident_span) {
Some(errors::AmbiguousMissingKwForItemSub::SuggestMacro {
span: ident_span,
snippet,
})
} else {
Some(errors::AmbiguousMissingKwForItemSub::HelpMacro)
},
}
};
Some(err)
} else if found_generics {
Some(errors::MissingKeywordForItemDefinition::Ambiguous { span, subdiag: None })
} else {
None
};
if let Some(err) = err { Err(self.dcx().create_err(err)) } else { Ok(()) }
}
fn parse_item_builtin(&mut self) -> PResult<'a, Option<ItemInfo>> {
// To be expanded
Ok(None)
}
/// Parses an item macro, e.g., `item!();`.
fn parse_item_macro(&mut self, vis: &Visibility) -> PResult<'a, MacCall> {
let path = self.parse_path(PathStyle::Mod)?; // `foo::bar`
self.expect(&token::Not)?; // `!`
match self.parse_delim_args() {
// `( .. )` or `[ .. ]` (followed by `;`), or `{ .. }`.
Ok(args) => {
self.eat_semi_for_macro_if_needed(&args);
self.complain_if_pub_macro(vis, false);
Ok(MacCall { path, args })
}
Err(mut err) => {
// Maybe the user misspelled `macro_rules` (issue #91227)
if self.token.is_ident()
&& let [segment] = path.segments.as_slice()
&& edit_distance("macro_rules", &segment.ident.to_string(), 2).is_some()
{
err.span_suggestion(
path.span,
"perhaps you meant to define a macro",
"macro_rules",
Applicability::MachineApplicable,
);
}
Err(err)
}
}
}
/// Recover if we parsed attributes and expected an item but there was none.
fn recover_attrs_no_item(&mut self, attrs: &[Attribute]) -> PResult<'a, ()> {
let ([start @ end] | [start, .., end]) = attrs else {
return Ok(());
};
let msg = if end.is_doc_comment() {
"expected item after doc comment"
} else {
"expected item after attributes"
};
let mut err = self.dcx().struct_span_err(end.span, msg);
if end.is_doc_comment() {
err.span_label(end.span, "this doc comment doesn't document anything");
} else if self.token == TokenKind::Semi {
err.span_suggestion_verbose(
self.token.span,
"consider removing this semicolon",
"",
Applicability::MaybeIncorrect,
);
}
if let [.., penultimate, _] = attrs {
err.span_label(start.span.to(penultimate.span), "other attributes here");
}
Err(err)
}
fn is_async_fn(&self) -> bool {
self.token.is_keyword(kw::Async) && self.is_keyword_ahead(1, &[kw::Fn])
}
fn parse_polarity(&mut self) -> ast::ImplPolarity {
// Disambiguate `impl !Trait for Type { ... }` and `impl ! { ... }` for the never type.
if self.check(&token::Not) && self.look_ahead(1, |t| t.can_begin_type()) {
self.bump(); // `!`
ast::ImplPolarity::Negative(self.prev_token.span)
} else {
ast::ImplPolarity::Positive
}
}
/// Parses an implementation item.
///
/// ```ignore (illustrative)
/// impl<'a, T> TYPE { /* impl items */ }
/// impl<'a, T> TRAIT for TYPE { /* impl items */ }
/// impl<'a, T> !TRAIT for TYPE { /* impl items */ }
/// impl<'a, T> const TRAIT for TYPE { /* impl items */ }
/// ```
///
/// We actually parse slightly more relaxed grammar for better error reporting and recovery.
/// ```ebnf
/// "impl" GENERICS "const"? "!"? TYPE "for"? (TYPE | "..") ("where" PREDICATES)? "{" BODY "}"
/// "impl" GENERICS "const"? "!"? TYPE ("where" PREDICATES)? "{" BODY "}"
/// ```
fn parse_item_impl(
&mut self,
attrs: &mut AttrVec,
defaultness: Defaultness,
) -> PResult<'a, ItemInfo> {
let safety = self.parse_safety(Case::Sensitive);
self.expect_keyword(kw::Impl)?;
// First, parse generic parameters if necessary.
let mut generics = if self.choose_generics_over_qpath(0) {
self.parse_generics()?
} else {
let mut generics = Generics::default();
// impl A for B {}
// /\ this is where `generics.span` should point when there are no type params.
generics.span = self.prev_token.span.shrink_to_hi();
generics
};
let constness = self.parse_constness(Case::Sensitive);
if let Const::Yes(span) = constness {
self.psess.gated_spans.gate(sym::const_trait_impl, span);
}
// Parse stray `impl async Trait`
if (self.token.uninterpolated_span().at_least_rust_2018()
&& self.token.is_keyword(kw::Async))
|| self.is_kw_followed_by_ident(kw::Async)
{
self.bump();
self.dcx().emit_err(errors::AsyncImpl { span: self.prev_token.span });
}
let polarity = self.parse_polarity();
// Parse both types and traits as a type, then reinterpret if necessary.
let err_path = |span| ast::Path::from_ident(Ident::new(kw::Empty, span));
let ty_first = if self.token.is_keyword(kw::For) && self.look_ahead(1, |t| t != &token::Lt)
{
let span = self.prev_token.span.between(self.token.span);
self.dcx().emit_err(errors::MissingTraitInTraitImpl {
span,
for_span: span.to(self.token.span),
});
P(Ty {
kind: TyKind::Path(None, err_path(span)),
span,
id: DUMMY_NODE_ID,
tokens: None,
})
} else {
self.parse_ty_with_generics_recovery(&generics)?
};
// If `for` is missing we try to recover.
let has_for = self.eat_keyword(kw::For);
let missing_for_span = self.prev_token.span.between(self.token.span);
let ty_second = if self.token == token::DotDot {
// We need to report this error after `cfg` expansion for compatibility reasons
self.bump(); // `..`, do not add it to expected tokens
// AST validation later detects this `TyKind::Dummy` and emits an
// error. (#121072 will hopefully remove all this special handling
// of the obsolete `impl Trait for ..` and then this can go away.)
Some(self.mk_ty(self.prev_token.span, TyKind::Dummy))
} else if has_for || self.token.can_begin_type() {
Some(self.parse_ty()?)
} else {
None
};
generics.where_clause = self.parse_where_clause()?;
let impl_items = self.parse_item_list(attrs, |p| p.parse_impl_item(ForceCollect::No))?;
let item_kind = match ty_second {
Some(ty_second) => {
// impl Trait for Type
if !has_for {
self.dcx().emit_err(errors::MissingForInTraitImpl { span: missing_for_span });
}
let ty_first = ty_first.into_inner();
let path = match ty_first.kind {
// This notably includes paths passed through `ty` macro fragments (#46438).
TyKind::Path(None, path) => path,
other => {
if let TyKind::ImplTrait(_, bounds) = other
&& let [bound] = bounds.as_slice()
{
// Suggest removing extra `impl` keyword:
// `impl<T: Default> impl Default for Wrapper<T>`
// ^^^^^
let extra_impl_kw = ty_first.span.until(bound.span());
self.dcx().emit_err(errors::ExtraImplKeywordInTraitImpl {
extra_impl_kw,
impl_trait_span: ty_first.span,
});
} else {
self.dcx().emit_err(errors::ExpectedTraitInTraitImplFoundType {
span: ty_first.span,
});
}
err_path(ty_first.span)
}
};
let trait_ref = TraitRef { path, ref_id: ty_first.id };
ItemKind::Impl(Box::new(Impl {
safety,
polarity,
defaultness,
constness,
generics,
of_trait: Some(trait_ref),
self_ty: ty_second,
items: impl_items,
}))
}
None => {
// impl Type
ItemKind::Impl(Box::new(Impl {
safety,
polarity,
defaultness,
constness,
generics,
of_trait: None,
self_ty: ty_first,
items: impl_items,
}))
}
};
Ok((Ident::empty(), item_kind))
}
fn parse_item_delegation(&mut self) -> PResult<'a, ItemInfo> {
let span = self.token.span;
self.expect_keyword(kw::Reuse)?;
let (qself, path) = if self.eat_lt() {
let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
(Some(qself), path)
} else {
(None, self.parse_path(PathStyle::Expr)?)
};
let rename = |this: &mut Self| {
Ok(if this.eat_keyword(kw::As) { Some(this.parse_ident()?) } else { None })
};
let body = |this: &mut Self| {
Ok(if this.check(&token::OpenDelim(Delimiter::Brace)) {
Some(this.parse_block()?)
} else {
this.expect(&token::Semi)?;
None
})
};
let (ident, item_kind) = if self.eat_path_sep() {
let suffixes = if self.eat(&token::BinOp(token::Star)) {
None
} else {
let parse_suffix = |p: &mut Self| Ok((p.parse_path_segment_ident()?, rename(p)?));
Some(self.parse_delim_comma_seq(Delimiter::Brace, parse_suffix)?.0)
};
let deleg = DelegationMac { qself, prefix: path, suffixes, body: body(self)? };
(Ident::empty(), ItemKind::DelegationMac(Box::new(deleg)))
} else {
let rename = rename(self)?;
let ident = rename.unwrap_or_else(|| path.segments.last().unwrap().ident);
let deleg = Delegation {
id: DUMMY_NODE_ID,
qself,
path,
rename,
body: body(self)?,
from_glob: false,
};
(ident, ItemKind::Delegation(Box::new(deleg)))
};
let span = span.to(self.prev_token.span);
self.psess.gated_spans.gate(sym::fn_delegation, span);
Ok((ident, item_kind))
}
fn parse_item_list<T>(
&mut self,
attrs: &mut AttrVec,
mut parse_item: impl FnMut(&mut Parser<'a>) -> PResult<'a, Option<Option<T>>>,
) -> PResult<'a, ThinVec<T>> {
let open_brace_span = self.token.span;
// Recover `impl Ty;` instead of `impl Ty {}`
if self.token == TokenKind::Semi {
self.dcx().emit_err(errors::UseEmptyBlockNotSemi { span: self.token.span });
self.bump();
return Ok(ThinVec::new());
}
self.expect(&token::OpenDelim(Delimiter::Brace))?;
attrs.extend(self.parse_inner_attributes()?);
let mut items = ThinVec::new();
while !self.eat(&token::CloseDelim(Delimiter::Brace)) {
if self.recover_doc_comment_before_brace() {
continue;
}
self.recover_vcs_conflict_marker();
match parse_item(self) {
Ok(None) => {
let mut is_unnecessary_semicolon = !items.is_empty()
// When the close delim is `)` in a case like the following, `token.kind` is expected to be `token::CloseDelim(Delimiter::Parenthesis)`,
// but the actual `token.kind` is `token::CloseDelim(Delimiter::Brace)`.
// This is because the `token.kind` of the close delim is treated as the same as
// that of the open delim in `TokenTreesReader::parse_token_tree`, even if the delimiters of them are different.
// Therefore, `token.kind` should not be compared here.
//
// issue-60075.rs
// ```
// trait T {
// fn qux() -> Option<usize> {
// let _ = if true {
// });
// ^ this close delim
// Some(4)
// }
// ```
&& self
.span_to_snippet(self.prev_token.span)
.is_ok_and(|snippet| snippet == "}")
&& self.token == token::Semi;
let mut semicolon_span = self.token.span;
if !is_unnecessary_semicolon {
// #105369, Detect spurious `;` before assoc fn body
is_unnecessary_semicolon = self.token == token::OpenDelim(Delimiter::Brace)
&& self.prev_token == token::Semi;
semicolon_span = self.prev_token.span;
}
// We have to bail or we'll potentially never make progress.
let non_item_span = self.token.span;
let is_let = self.token.is_keyword(kw::Let);
let mut err =
self.dcx().struct_span_err(non_item_span, "non-item in item list");
self.consume_block(Delimiter::Brace, ConsumeClosingDelim::Yes);
if is_let {
err.span_suggestion_verbose(
non_item_span,
"consider using `const` instead of `let` for associated const",
"const",
Applicability::MachineApplicable,
);
} else {
err.span_label(open_brace_span, "item list starts here")
.span_label(non_item_span, "non-item starts here")
.span_label(self.prev_token.span, "item list ends here");
}
if is_unnecessary_semicolon {
err.span_suggestion(
semicolon_span,
"consider removing this semicolon",
"",
Applicability::MaybeIncorrect,
);
}
err.emit();
break;
}
Ok(Some(item)) => items.extend(item),
Err(err) => {
self.consume_block(Delimiter::Brace, ConsumeClosingDelim::Yes);
err.with_span_label(
open_brace_span,
"while parsing this item list starting here",
)
.with_span_label(self.prev_token.span, "the item list ends here")
.emit();
break;
}
}
}
Ok(items)
}
/// Recover on a doc comment before `}`.
fn recover_doc_comment_before_brace(&mut self) -> bool {
if let token::DocComment(..) = self.token.kind {
if self.look_ahead(1, |tok| tok == &token::CloseDelim(Delimiter::Brace)) {
// FIXME: merge with `DocCommentDoesNotDocumentAnything` (E0585)
struct_span_code_err!(
self.dcx(),
self.token.span,
E0584,
"found a documentation comment that doesn't document anything",
)
.with_span_label(self.token.span, "this doc comment doesn't document anything")
.with_help(
"doc comments must come before what they document, if a comment was \
intended use `//`",
)
.emit();
self.bump();
return true;
}
}
false
}
/// Parses defaultness (i.e., `default` or nothing).
fn parse_defaultness(&mut self) -> Defaultness {
// We are interested in `default` followed by another identifier.
// However, we must avoid keywords that occur as binary operators.
// Currently, the only applicable keyword is `as` (`default as Ty`).
if self.check_keyword(kw::Default)
&& self.look_ahead(1, |t| t.is_non_raw_ident_where(|i| i.name != kw::As))
{
self.bump(); // `default`
Defaultness::Default(self.prev_token.uninterpolated_span())
} else {
Defaultness::Final
}
}
/// Is this an `(unsafe auto? | auto) trait` item?
fn check_auto_or_unsafe_trait_item(&mut self) -> bool {
// auto trait
self.check_keyword(kw::Auto) && self.is_keyword_ahead(1, &[kw::Trait])
// unsafe auto trait
|| self.check_keyword(kw::Unsafe) && self.is_keyword_ahead(1, &[kw::Trait, kw::Auto])
}
/// Parses `unsafe? auto? trait Foo { ... }` or `trait Foo = Bar;`.
fn parse_item_trait(&mut self, attrs: &mut AttrVec, lo: Span) -> PResult<'a, ItemInfo> {
let safety = self.parse_safety(Case::Sensitive);
// Parse optional `auto` prefix.
let is_auto = if self.eat_keyword(kw::Auto) {
self.psess.gated_spans.gate(sym::auto_traits, self.prev_token.span);
IsAuto::Yes
} else {
IsAuto::No
};
self.expect_keyword(kw::Trait)?;
let ident = self.parse_ident()?;
let mut generics = self.parse_generics()?;
// Parse optional colon and supertrait bounds.
let had_colon = self.eat(&token::Colon);
let span_at_colon = self.prev_token.span;
let bounds = if had_colon { self.parse_generic_bounds()? } else { Vec::new() };
let span_before_eq = self.prev_token.span;
if self.eat(&token::Eq) {
// It's a trait alias.
if had_colon {
let span = span_at_colon.to(span_before_eq);
self.dcx().emit_err(errors::BoundsNotAllowedOnTraitAliases { span });
}
let bounds = self.parse_generic_bounds()?;
generics.where_clause = self.parse_where_clause()?;
self.expect_semi()?;
let whole_span = lo.to(self.prev_token.span);
if is_auto == IsAuto::Yes {
self.dcx().emit_err(errors::TraitAliasCannotBeAuto { span: whole_span });
}
if let Safety::Unsafe(_) = safety {
self.dcx().emit_err(errors::TraitAliasCannotBeUnsafe { span: whole_span });
}
self.psess.gated_spans.gate(sym::trait_alias, whole_span);
Ok((ident, ItemKind::TraitAlias(generics, bounds)))
} else {
// It's a normal trait.
generics.where_clause = self.parse_where_clause()?;
let items = self.parse_item_list(attrs, |p| p.parse_trait_item(ForceCollect::No))?;
Ok((
ident,
ItemKind::Trait(Box::new(Trait { is_auto, safety, generics, bounds, items })),
))
}
}
pub fn parse_impl_item(
&mut self,
force_collect: ForceCollect,
) -> PResult<'a, Option<Option<P<AssocItem>>>> {
let fn_parse_mode = FnParseMode { req_name: |_| true, req_body: true };
self.parse_assoc_item(fn_parse_mode, force_collect)
}
pub fn parse_trait_item(
&mut self,
force_collect: ForceCollect,
) -> PResult<'a, Option<Option<P<AssocItem>>>> {
let fn_parse_mode =
FnParseMode { req_name: |edition| edition >= Edition::Edition2018, req_body: false };
self.parse_assoc_item(fn_parse_mode, force_collect)
}
/// Parses associated items.
fn parse_assoc_item(
&mut self,
fn_parse_mode: FnParseMode,
force_collect: ForceCollect,
) -> PResult<'a, Option<Option<P<AssocItem>>>> {
Ok(self.parse_item_(fn_parse_mode, force_collect)?.map(
|Item { attrs, id, span, vis, ident, kind, tokens }| {
let kind = match AssocItemKind::try_from(kind) {
Ok(kind) => kind,
Err(kind) => match kind {
ItemKind::Static(box StaticItem { ty, safety: _, mutability: _, expr }) => {
self.dcx().emit_err(errors::AssociatedStaticItemNotAllowed { span });
AssocItemKind::Const(Box::new(ConstItem {
defaultness: Defaultness::Final,
generics: Generics::default(),
ty,
expr,
}))
}
_ => return self.error_bad_item_kind(span, &kind, "`trait`s or `impl`s"),
},
};
Some(P(Item { attrs, id, span, vis, ident, kind, tokens }))
},
))
}
/// Parses a `type` alias with the following grammar:
/// ```ebnf
/// TypeAlias = "type" Ident Generics (":" GenericBounds)? WhereClause ("=" Ty)? WhereClause ";" ;
/// ```
/// The `"type"` has already been eaten.
fn parse_type_alias(&mut self, defaultness: Defaultness) -> PResult<'a, ItemInfo> {
let ident = self.parse_ident()?;
let mut generics = self.parse_generics()?;
// Parse optional colon and param bounds.
let bounds =
if self.eat(&token::Colon) { self.parse_generic_bounds()? } else { Vec::new() };
let before_where_clause = self.parse_where_clause()?;
let ty = if self.eat(&token::Eq) { Some(self.parse_ty()?) } else { None };
let after_where_clause = self.parse_where_clause()?;
let where_clauses = TyAliasWhereClauses {
before: TyAliasWhereClause {
has_where_token: before_where_clause.has_where_token,
span: before_where_clause.span,
},
after: TyAliasWhereClause {
has_where_token: after_where_clause.has_where_token,
span: after_where_clause.span,
},
split: before_where_clause.predicates.len(),
};
let mut predicates = before_where_clause.predicates;
predicates.extend(after_where_clause.predicates);
let where_clause = WhereClause {
has_where_token: before_where_clause.has_where_token
|| after_where_clause.has_where_token,
predicates,
span: DUMMY_SP,
};
generics.where_clause = where_clause;
self.expect_semi()?;
Ok((
ident,
ItemKind::TyAlias(Box::new(TyAlias {
defaultness,
generics,
where_clauses,
bounds,
ty,
})),
))
}
/// Parses a `UseTree`.
///
/// ```text
/// USE_TREE = [`::`] `*` |
/// [`::`] `{` USE_TREE_LIST `}` |
/// PATH `::` `*` |
/// PATH `::` `{` USE_TREE_LIST `}` |
/// PATH [`as` IDENT]
/// ```
fn parse_use_tree(&mut self) -> PResult<'a, UseTree> {
let lo = self.token.span;
let mut prefix =
ast::Path { segments: ThinVec::new(), span: lo.shrink_to_lo(), tokens: None };
let kind = if self.check(&token::OpenDelim(Delimiter::Brace))
|| self.check(&token::BinOp(token::Star))
|| self.is_import_coupler()
{
// `use *;` or `use ::*;` or `use {...};` or `use ::{...};`
let mod_sep_ctxt = self.token.span.ctxt();
if self.eat_path_sep() {
prefix
.segments
.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
}
self.parse_use_tree_glob_or_nested()?
} else {
// `use path::*;` or `use path::{...};` or `use path;` or `use path as bar;`
prefix = self.parse_path(PathStyle::Mod)?;
if self.eat_path_sep() {
self.parse_use_tree_glob_or_nested()?
} else {
// Recover from using a colon as path separator.
while self.eat_noexpect(&token::Colon) {
self.dcx()
.emit_err(errors::SingleColonImportPath { span: self.prev_token.span });
// We parse the rest of the path and append it to the original prefix.
self.parse_path_segments(&mut prefix.segments, PathStyle::Mod, None)?;
prefix.span = lo.to(self.prev_token.span);
}
UseTreeKind::Simple(self.parse_rename()?)
}
};
Ok(UseTree { prefix, kind, span: lo.to(self.prev_token.span) })
}
/// Parses `*` or `{...}`.
fn parse_use_tree_glob_or_nested(&mut self) -> PResult<'a, UseTreeKind> {
Ok(if self.eat(&token::BinOp(token::Star)) {
UseTreeKind::Glob
} else {
let lo = self.token.span;
UseTreeKind::Nested {
items: self.parse_use_tree_list()?,
span: lo.to(self.prev_token.span),
}
})
}
/// Parses a `UseTreeKind::Nested(list)`.
///
/// ```text
/// USE_TREE_LIST = ∅ | (USE_TREE `,`)* USE_TREE [`,`]
/// ```
fn parse_use_tree_list(&mut self) -> PResult<'a, ThinVec<(UseTree, ast::NodeId)>> {
self.parse_delim_comma_seq(Delimiter::Brace, |p| {
p.recover_vcs_conflict_marker();
Ok((p.parse_use_tree()?, DUMMY_NODE_ID))
})
.map(|(r, _)| r)
}
fn parse_rename(&mut self) -> PResult<'a, Option<Ident>> {
if self.eat_keyword(kw::As) { self.parse_ident_or_underscore().map(Some) } else { Ok(None) }
}
fn parse_ident_or_underscore(&mut self) -> PResult<'a, Ident> {
match self.token.ident() {
Some((ident @ Ident { name: kw::Underscore, .. }, IdentIsRaw::No)) => {
self.bump();
Ok(ident)
}
_ => self.parse_ident(),
}
}
/// Parses `extern crate` links.
///
/// # Examples
///
/// ```ignore (illustrative)
/// extern crate foo;
/// extern crate bar as foo;
/// ```
fn parse_item_extern_crate(&mut self) -> PResult<'a, ItemInfo> {
// Accept `extern crate name-like-this` for better diagnostics
let orig_name = self.parse_crate_name_with_dashes()?;
let (item_name, orig_name) = if let Some(rename) = self.parse_rename()? {
(rename, Some(orig_name.name))
} else {
(orig_name, None)
};
self.expect_semi()?;
Ok((item_name, ItemKind::ExternCrate(orig_name)))
}
fn parse_crate_name_with_dashes(&mut self) -> PResult<'a, Ident> {
let ident = if self.token.is_keyword(kw::SelfLower) {
self.parse_path_segment_ident()
} else {
self.parse_ident()
}?;
let dash = token::BinOp(token::BinOpToken::Minus);
if self.token != dash {
return Ok(ident);
}
// Accept `extern crate name-like-this` for better diagnostics.
let mut dashes = vec![];
let mut idents = vec![];
while self.eat(&dash) {
dashes.push(self.prev_token.span);
idents.push(self.parse_ident()?);
}
let fixed_name_sp = ident.span.to(idents.last().unwrap().span);
let mut fixed_name = ident.name.to_string();
for part in idents {
write!(fixed_name, "_{}", part.name).unwrap();
}
self.dcx().emit_err(errors::ExternCrateNameWithDashes {
span: fixed_name_sp,
sugg: errors::ExternCrateNameWithDashesSugg { dashes },
});
Ok(Ident::from_str_and_span(&fixed_name, fixed_name_sp))
}
/// Parses `extern` for foreign ABIs modules.
///
/// `extern` is expected to have been consumed before calling this method.
///
/// # Examples
///
/// ```ignore (only-for-syntax-highlight)
/// extern "C" {}
/// extern {}
/// ```
fn parse_item_foreign_mod(
&mut self,
attrs: &mut AttrVec,
mut safety: Safety,
) -> PResult<'a, ItemInfo> {
let extern_span = self.prev_token.uninterpolated_span();
let abi = self.parse_abi(); // ABI?
// FIXME: This recovery should be tested better.
if safety == Safety::Default
&& self.token.is_keyword(kw::Unsafe)
&& self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace))
{
self.expect(&token::OpenDelim(Delimiter::Brace)).unwrap_err().emit();
safety = Safety::Unsafe(self.token.span);
let _ = self.eat_keyword(kw::Unsafe);
}
let module = ast::ForeignMod {
extern_span,
safety,
abi,
items: self.parse_item_list(attrs, |p| p.parse_foreign_item(ForceCollect::No))?,
};
Ok((Ident::empty(), ItemKind::ForeignMod(module)))
}
/// Parses a foreign item (one in an `extern { ... }` block).
pub fn parse_foreign_item(
&mut self,
force_collect: ForceCollect,
) -> PResult<'a, Option<Option<P<ForeignItem>>>> {
let fn_parse_mode = FnParseMode { req_name: |_| true, req_body: false };
Ok(self.parse_item_(fn_parse_mode, force_collect)?.map(
|Item { attrs, id, span, vis, ident, kind, tokens }| {
let kind = match ForeignItemKind::try_from(kind) {
Ok(kind) => kind,
Err(kind) => match kind {
ItemKind::Const(box ConstItem { ty, expr, .. }) => {
let const_span = Some(span.with_hi(ident.span.lo()))
.filter(|span| span.can_be_used_for_suggestions());
self.dcx().emit_err(errors::ExternItemCannotBeConst {
ident_span: ident.span,
const_span,
});
ForeignItemKind::Static(Box::new(StaticItem {
ty,
mutability: Mutability::Not,
expr,
safety: Safety::Default,
}))
}
_ => return self.error_bad_item_kind(span, &kind, "`extern` blocks"),
},
};
Some(P(Item { attrs, id, span, vis, ident, kind, tokens }))
},
))
}
fn error_bad_item_kind<T>(&self, span: Span, kind: &ItemKind, ctx: &'static str) -> Option<T> {
// FIXME(#100717): needs variant for each `ItemKind` (instead of using `ItemKind::descr()`)
let span = self.psess.source_map().guess_head_span(span);
let descr = kind.descr();
let help = match kind {
ItemKind::DelegationMac(deleg) if deleg.suffixes.is_none() => false,
_ => true,
};
self.dcx().emit_err(errors::BadItemKind { span, descr, ctx, help });
None
}
fn is_unsafe_foreign_mod(&self) -> bool {
self.token.is_keyword(kw::Unsafe)
&& self.is_keyword_ahead(1, &[kw::Extern])
&& self.look_ahead(
2 + self.look_ahead(2, |t| t.can_begin_string_literal() as usize),
|t| *t == token::OpenDelim(Delimiter::Brace),
)
}
fn is_static_global(&mut self) -> bool {
if self.check_keyword(kw::Static) {
// Check if this could be a closure.
!self.look_ahead(1, |token| {
if token.is_keyword(kw::Move) {
return true;
}
matches!(token.kind, token::BinOp(token::Or) | token::OrOr)
})
} else {
let quals: &[Symbol] = &[kw::Unsafe, kw::Safe];
// `$qual static`
quals.iter().any(|&kw| self.check_keyword(kw))
&& self.look_ahead(1, |t| t.is_keyword(kw::Static))
}
}
/// Recover on `const mut` with `const` already eaten.
fn recover_const_mut(&mut self, const_span: Span) {
if self.eat_keyword(kw::Mut) {
let span = self.prev_token.span;
self.dcx()
.emit_err(errors::ConstGlobalCannotBeMutable { ident_span: span, const_span });
} else if self.eat_keyword(kw::Let) {
let span = self.prev_token.span;
self.dcx().emit_err(errors::ConstLetMutuallyExclusive { span: const_span.to(span) });
}
}
/// Recover on `const impl` with `const` already eaten.
fn recover_const_impl(
&mut self,
const_span: Span,
attrs: &mut AttrVec,
defaultness: Defaultness,
) -> PResult<'a, ItemInfo> {
let impl_span = self.token.span;
let err = self.expected_ident_found_err();
// Only try to recover if this is implementing a trait for a type
let mut impl_info = match self.parse_item_impl(attrs, defaultness) {
Ok(impl_info) => impl_info,
Err(recovery_error) => {
// Recovery failed, raise the "expected identifier" error
recovery_error.cancel();
return Err(err);
}
};
match &mut impl_info.1 {
ItemKind::Impl(box Impl { of_trait: Some(trai), constness, .. }) => {
*constness = Const::Yes(const_span);
let before_trait = trai.path.span.shrink_to_lo();
let const_up_to_impl = const_span.with_hi(impl_span.lo());
err.with_multipart_suggestion(
"you might have meant to write a const trait impl",
vec![(const_up_to_impl, "".to_owned()), (before_trait, "const ".to_owned())],
Applicability::MaybeIncorrect,
)
.emit();
}
ItemKind::Impl { .. } => return Err(err),
_ => unreachable!(),
}
Ok(impl_info)
}
/// Parse a static item with the prefix `"static" "mut"?` already parsed and stored in `mutability`.
///
/// ```ebnf
/// Static = "static" "mut"? $ident ":" $ty (= $expr)? ";" ;
/// ```
fn parse_static_item(
&mut self,
safety: Safety,
mutability: Mutability,
) -> PResult<'a, (Ident, StaticItem)> {
let ident = self.parse_ident()?;
if self.token == TokenKind::Lt && self.may_recover() {
let generics = self.parse_generics()?;
self.dcx().emit_err(errors::StaticWithGenerics { span: generics.span });
}
// Parse the type of a static item. That is, the `":" $ty` fragment.
// FIXME: This could maybe benefit from `.may_recover()`?
let ty = match (self.eat(&token::Colon), self.check(&token::Eq) | self.check(&token::Semi))
{
(true, false) => self.parse_ty()?,
// If there wasn't a `:` or the colon was followed by a `=` or `;`, recover a missing type.
(colon, _) => self.recover_missing_global_item_type(colon, Some(mutability)),
};
let expr = if self.eat(&token::Eq) { Some(self.parse_expr()?) } else { None };
self.expect_semi()?;
Ok((ident, StaticItem { ty, safety, mutability, expr }))
}
/// Parse a constant item with the prefix `"const"` already parsed.
///
/// ```ebnf
/// Const = "const" ($ident | "_") Generics ":" $ty (= $expr)? WhereClause ";" ;
/// ```
fn parse_const_item(&mut self) -> PResult<'a, (Ident, Generics, P<Ty>, Option<P<ast::Expr>>)> {
let ident = self.parse_ident_or_underscore()?;
let mut generics = self.parse_generics()?;
// Check the span for emptiness instead of the list of parameters in order to correctly
// recognize and subsequently flag empty parameter lists (`<>`) as unstable.
if !generics.span.is_empty() {
self.psess.gated_spans.gate(sym::generic_const_items, generics.span);
}
// Parse the type of a constant item. That is, the `":" $ty` fragment.
// FIXME: This could maybe benefit from `.may_recover()`?
let ty = match (
self.eat(&token::Colon),
self.check(&token::Eq) | self.check(&token::Semi) | self.check_keyword(kw::Where),
) {
(true, false) => self.parse_ty()?,
// If there wasn't a `:` or the colon was followed by a `=`, `;` or `where`, recover a missing type.
(colon, _) => self.recover_missing_global_item_type(colon, None),
};
// Proactively parse a where-clause to be able to provide a good error message in case we
// encounter the item body following it.
let before_where_clause =
if self.may_recover() { self.parse_where_clause()? } else { WhereClause::default() };
let expr = if self.eat(&token::Eq) { Some(self.parse_expr()?) } else { None };
let after_where_clause = self.parse_where_clause()?;
// Provide a nice error message if the user placed a where-clause before the item body.
// Users may be tempted to write such code if they are still used to the deprecated
// where-clause location on type aliases and associated types. See also #89122.
if before_where_clause.has_where_token
&& let Some(expr) = &expr
{
self.dcx().emit_err(errors::WhereClauseBeforeConstBody {
span: before_where_clause.span,
name: ident.span,
body: expr.span,
sugg: if !after_where_clause.has_where_token {
self.psess.source_map().span_to_snippet(expr.span).ok().map(|body| {
errors::WhereClauseBeforeConstBodySugg {
left: before_where_clause.span.shrink_to_lo(),
snippet: body,
right: before_where_clause.span.shrink_to_hi().to(expr.span),
}
})
} else {
// FIXME(generic_const_items): Provide a structured suggestion to merge the first
// where-clause into the second one.
None
},
});
}
// Merge the predicates of both where-clauses since either one can be relevant.
// If we didn't parse a body (which is valid for associated consts in traits) and we were
// allowed to recover, `before_where_clause` contains the predicates, otherwise they are
// in `after_where_clause`. Further, both of them might contain predicates iff two
// where-clauses were provided which is syntactically ill-formed but we want to recover from
// it and treat them as one large where-clause.
let mut predicates = before_where_clause.predicates;
predicates.extend(after_where_clause.predicates);
let where_clause = WhereClause {
has_where_token: before_where_clause.has_where_token
|| after_where_clause.has_where_token,
predicates,
span: if after_where_clause.has_where_token {
after_where_clause.span
} else {
before_where_clause.span
},
};
if where_clause.has_where_token {
self.psess.gated_spans.gate(sym::generic_const_items, where_clause.span);
}
generics.where_clause = where_clause;
self.expect_semi()?;
Ok((ident, generics, ty, expr))
}
/// We were supposed to parse `":" $ty` but the `:` or the type was missing.
/// This means that the type is missing.
fn recover_missing_global_item_type(
&mut self,
colon_present: bool,
m: Option<Mutability>,
) -> P<Ty> {
// Construct the error and stash it away with the hope
// that typeck will later enrich the error with a type.
let kind = match m {
Some(Mutability::Mut) => "static mut",
Some(Mutability::Not) => "static",
None => "const",
};
let colon = match colon_present {
true => "",
false => ":",
};
let span = self.prev_token.span.shrink_to_hi();
let err = self.dcx().create_err(errors::MissingConstType { span, colon, kind });
err.stash(span, StashKey::ItemNoType);
// The user intended that the type be inferred,
// so treat this as if the user wrote e.g. `const A: _ = expr;`.
P(Ty { kind: TyKind::Infer, span, id: ast::DUMMY_NODE_ID, tokens: None })
}
/// Parses an enum declaration.
fn parse_item_enum(&mut self) -> PResult<'a, ItemInfo> {
if self.token.is_keyword(kw::Struct) {
let span = self.prev_token.span.to(self.token.span);
let err = errors::EnumStructMutuallyExclusive { span };
if self.look_ahead(1, |t| t.is_ident()) {
self.bump();
self.dcx().emit_err(err);
} else {
return Err(self.dcx().create_err(err));
}
}
let prev_span = self.prev_token.span;
let id = self.parse_ident()?;
let mut generics = self.parse_generics()?;
generics.where_clause = self.parse_where_clause()?;
// Possibly recover `enum Foo;` instead of `enum Foo {}`
let (variants, _) = if self.token == TokenKind::Semi {
self.dcx().emit_err(errors::UseEmptyBlockNotSemi { span: self.token.span });
self.bump();
(thin_vec![], Trailing::No)
} else {
self.parse_delim_comma_seq(Delimiter::Brace, |p| p.parse_enum_variant(id.span))
.map_err(|mut err| {
err.span_label(id.span, "while parsing this enum");
if self.token == token::Colon {
let snapshot = self.create_snapshot_for_diagnostic();
self.bump();
match self.parse_ty() {
Ok(_) => {
err.span_suggestion_verbose(
prev_span,
"perhaps you meant to use `struct` here",
"struct",
Applicability::MaybeIncorrect,
);
}
Err(e) => {
e.cancel();
}
}
self.restore_snapshot(snapshot);
}
self.eat_to_tokens(&[&token::CloseDelim(Delimiter::Brace)]);
self.bump(); // }
err
})?
};
let enum_definition = EnumDef { variants: variants.into_iter().flatten().collect() };
Ok((id, ItemKind::Enum(enum_definition, generics)))
}
fn parse_enum_variant(&mut self, span: Span) -> PResult<'a, Option<Variant>> {
self.recover_vcs_conflict_marker();
let variant_attrs = self.parse_outer_attributes()?;
self.recover_vcs_conflict_marker();
let help = "enum variants can be `Variant`, `Variant = <integer>`, \
`Variant(Type, ..., TypeN)` or `Variant { fields: Types }`";
self.collect_tokens(None, variant_attrs, ForceCollect::No, |this, variant_attrs| {
let vlo = this.token.span;
let vis = this.parse_visibility(FollowedByType::No)?;
if !this.recover_nested_adt_item(kw::Enum)? {
return Ok((None, Trailing::No, UsePreAttrPos::No));
}
let ident = this.parse_field_ident("enum", vlo)?;
if this.token == token::Not {
if let Err(err) = this.unexpected() {
err.with_note(fluent::parse_macro_expands_to_enum_variant).emit();
}
this.bump();
this.parse_delim_args()?;
return Ok((None, Trailing::from(this.token == token::Comma), UsePreAttrPos::No));
}
let struct_def = if this.check(&token::OpenDelim(Delimiter::Brace)) {
// Parse a struct variant.
let (fields, recovered) =
match this.parse_record_struct_body("struct", ident.span, false) {
Ok((fields, recovered)) => (fields, recovered),
Err(mut err) => {
if this.token == token::Colon {
// We handle `enum` to `struct` suggestion in the caller.
return Err(err);
}
this.eat_to_tokens(&[&token::CloseDelim(Delimiter::Brace)]);
this.bump(); // }
err.span_label(span, "while parsing this enum");
err.help(help);
let guar = err.emit();
(thin_vec![], Recovered::Yes(guar))
}
};
VariantData::Struct { fields, recovered }
} else if this.check(&token::OpenDelim(Delimiter::Parenthesis)) {
let body = match this.parse_tuple_struct_body() {
Ok(body) => body,
Err(mut err) => {
if this.token == token::Colon {
// We handle `enum` to `struct` suggestion in the caller.
return Err(err);
}
this.eat_to_tokens(&[&token::CloseDelim(Delimiter::Parenthesis)]);
this.bump(); // )
err.span_label(span, "while parsing this enum");
err.help(help);
err.emit();
thin_vec![]
}
};
VariantData::Tuple(body, DUMMY_NODE_ID)
} else {
VariantData::Unit(DUMMY_NODE_ID)
};
let disr_expr =
if this.eat(&token::Eq) { Some(this.parse_expr_anon_const()?) } else { None };
let vr = ast::Variant {
ident,
vis,
id: DUMMY_NODE_ID,
attrs: variant_attrs,
data: struct_def,
disr_expr,
span: vlo.to(this.prev_token.span),
is_placeholder: false,
};
Ok((Some(vr), Trailing::from(this.token == token::Comma), UsePreAttrPos::No))
})
.map_err(|mut err| {
err.help(help);
err
})
}
/// Parses `struct Foo { ... }`.
fn parse_item_struct(&mut self) -> PResult<'a, ItemInfo> {
let class_name = self.parse_ident()?;
let mut generics = self.parse_generics()?;
// There is a special case worth noting here, as reported in issue #17904.
// If we are parsing a tuple struct it is the case that the where clause
// should follow the field list. Like so:
//
// struct Foo<T>(T) where T: Copy;
//
// If we are parsing a normal record-style struct it is the case
// that the where clause comes before the body, and after the generics.
// So if we look ahead and see a brace or a where-clause we begin
// parsing a record style struct.
//
// Otherwise if we look ahead and see a paren we parse a tuple-style
// struct.
let vdata = if self.token.is_keyword(kw::Where) {
let tuple_struct_body;
(generics.where_clause, tuple_struct_body) =
self.parse_struct_where_clause(class_name, generics.span)?;
if let Some(body) = tuple_struct_body {
// If we see a misplaced tuple struct body: `struct Foo<T> where T: Copy, (T);`
let body = VariantData::Tuple(body, DUMMY_NODE_ID);
self.expect_semi()?;
body
} else if self.eat(&token::Semi) {
// If we see a: `struct Foo<T> where T: Copy;` style decl.
VariantData::Unit(DUMMY_NODE_ID)
} else {
// If we see: `struct Foo<T> where T: Copy { ... }`
let (fields, recovered) = self.parse_record_struct_body(
"struct",
class_name.span,
generics.where_clause.has_where_token,
)?;
VariantData::Struct { fields, recovered }
}
// No `where` so: `struct Foo<T>;`
} else if self.eat(&token::Semi) {
VariantData::Unit(DUMMY_NODE_ID)
// Record-style struct definition
} else if self.token == token::OpenDelim(Delimiter::Brace) {
let (fields, recovered) = self.parse_record_struct_body(
"struct",
class_name.span,
generics.where_clause.has_where_token,
)?;
VariantData::Struct { fields, recovered }
// Tuple-style struct definition with optional where-clause.
} else if self.token == token::OpenDelim(Delimiter::Parenthesis) {
let body = VariantData::Tuple(self.parse_tuple_struct_body()?, DUMMY_NODE_ID);
generics.where_clause = self.parse_where_clause()?;
self.expect_semi()?;
body
} else {
let err =
errors::UnexpectedTokenAfterStructName::new(self.token.span, self.token.clone());
return Err(self.dcx().create_err(err));
};
Ok((class_name, ItemKind::Struct(vdata, generics)))
}
/// Parses `union Foo { ... }`.
fn parse_item_union(&mut self) -> PResult<'a, ItemInfo> {
let class_name = self.parse_ident()?;
let mut generics = self.parse_generics()?;
let vdata = if self.token.is_keyword(kw::Where) {
generics.where_clause = self.parse_where_clause()?;
let (fields, recovered) = self.parse_record_struct_body(
"union",
class_name.span,
generics.where_clause.has_where_token,
)?;
VariantData::Struct { fields, recovered }
} else if self.token == token::OpenDelim(Delimiter::Brace) {
let (fields, recovered) = self.parse_record_struct_body(
"union",
class_name.span,
generics.where_clause.has_where_token,
)?;
VariantData::Struct { fields, recovered }
} else {
let token_str = super::token_descr(&self.token);
let msg = format!("expected `where` or `{{` after union name, found {token_str}");
let mut err = self.dcx().struct_span_err(self.token.span, msg);
err.span_label(self.token.span, "expected `where` or `{` after union name");
return Err(err);
};
Ok((class_name, ItemKind::Union(vdata, generics)))
}
/// This function parses the fields of record structs:
///
/// - `struct S { ... }`
/// - `enum E { Variant { ... } }`
pub(crate) fn parse_record_struct_body(
&mut self,
adt_ty: &str,
ident_span: Span,
parsed_where: bool,
) -> PResult<'a, (ThinVec<FieldDef>, Recovered)> {
let mut fields = ThinVec::new();
let mut recovered = Recovered::No;
if self.eat(&token::OpenDelim(Delimiter::Brace)) {
while self.token != token::CloseDelim(Delimiter::Brace) {
match self.parse_field_def(adt_ty) {
Ok(field) => {
fields.push(field);
}
Err(mut err) => {
self.consume_block(Delimiter::Brace, ConsumeClosingDelim::No);
err.span_label(ident_span, format!("while parsing this {adt_ty}"));
let guar = err.emit();
recovered = Recovered::Yes(guar);
break;
}
}
}
self.expect(&token::CloseDelim(Delimiter::Brace))?;
} else {
let token_str = super::token_descr(&self.token);
let where_str = if parsed_where { "" } else { "`where`, or " };
let msg = format!("expected {where_str}`{{` after struct name, found {token_str}");
let mut err = self.dcx().struct_span_err(self.token.span, msg);
err.span_label(self.token.span, format!("expected {where_str}`{{` after struct name",));
return Err(err);
}
Ok((fields, recovered))
}
pub(super) fn parse_tuple_struct_body(&mut self) -> PResult<'a, ThinVec<FieldDef>> {
// This is the case where we find `struct Foo<T>(T) where T: Copy;`
// Unit like structs are handled in parse_item_struct function
self.parse_paren_comma_seq(|p| {
let attrs = p.parse_outer_attributes()?;
p.collect_tokens(None, attrs, ForceCollect::No, |p, attrs| {
let mut snapshot = None;
if p.is_vcs_conflict_marker(&TokenKind::BinOp(token::Shl), &TokenKind::Lt) {
// Account for `<<<<<<<` diff markers. We can't proactively error here because
// that can be a valid type start, so we snapshot and reparse only we've
// encountered another parse error.
snapshot = Some(p.create_snapshot_for_diagnostic());
}
let lo = p.token.span;
let vis = match p.parse_visibility(FollowedByType::Yes) {
Ok(vis) => vis,
Err(err) => {
if let Some(ref mut snapshot) = snapshot {
snapshot.recover_vcs_conflict_marker();
}
return Err(err);
}
};
let ty = match p.parse_ty() {
Ok(ty) => ty,
Err(err) => {
if let Some(ref mut snapshot) = snapshot {
snapshot.recover_vcs_conflict_marker();
}
return Err(err);
}
};
Ok((
FieldDef {
span: lo.to(ty.span),
vis,
ident: None,
id: DUMMY_NODE_ID,
ty,
attrs,
is_placeholder: false,
},
Trailing::from(p.token == token::Comma),
UsePreAttrPos::No,
))
})
})
.map(|(r, _)| r)
}
/// Parses an element of a struct declaration.
fn parse_field_def(&mut self, adt_ty: &str) -> PResult<'a, FieldDef> {
self.recover_vcs_conflict_marker();
let attrs = self.parse_outer_attributes()?;
self.recover_vcs_conflict_marker();
self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
let lo = this.token.span;
let vis = this.parse_visibility(FollowedByType::No)?;
this.parse_single_struct_field(adt_ty, lo, vis, attrs)
.map(|field| (field, Trailing::No, UsePreAttrPos::No))
})
}
/// Parses a structure field declaration.
fn parse_single_struct_field(
&mut self,
adt_ty: &str,
lo: Span,
vis: Visibility,
attrs: AttrVec,
) -> PResult<'a, FieldDef> {
let mut seen_comma: bool = false;
let a_var = self.parse_name_and_ty(adt_ty, lo, vis, attrs)?;
if self.token == token::Comma {
seen_comma = true;
}
if self.eat(&token::Semi) {
let sp = self.prev_token.span;
let mut err =
self.dcx().struct_span_err(sp, format!("{adt_ty} fields are separated by `,`"));
err.span_suggestion_short(
sp,
"replace `;` with `,`",
",",
Applicability::MachineApplicable,
);
return Err(err);
}
match self.token.kind {
token::Comma => {
self.bump();
}
token::CloseDelim(Delimiter::Brace) => {}
token::DocComment(..) => {
let previous_span = self.prev_token.span;
let mut err = errors::DocCommentDoesNotDocumentAnything {
span: self.token.span,
missing_comma: None,
};
self.bump(); // consume the doc comment
let comma_after_doc_seen = self.eat(&token::Comma);
// `seen_comma` is always false, because we are inside doc block
// condition is here to make code more readable
if !seen_comma && comma_after_doc_seen {
seen_comma = true;
}
if comma_after_doc_seen || self.token == token::CloseDelim(Delimiter::Brace) {
self.dcx().emit_err(err);
} else {
if !seen_comma {
let sp = previous_span.shrink_to_hi();
err.missing_comma = Some(sp);
}
return Err(self.dcx().create_err(err));
}
}
_ => {
let sp = self.prev_token.span.shrink_to_hi();
let msg =
format!("expected `,`, or `}}`, found {}", super::token_descr(&self.token));
// Try to recover extra trailing angle brackets
if let TyKind::Path(_, Path { segments, .. }) = &a_var.ty.kind {
if let Some(last_segment) = segments.last() {
let guar = self.check_trailing_angle_brackets(last_segment, &[
&token::Comma,
&token::CloseDelim(Delimiter::Brace),
]);
if let Some(_guar) = guar {
// Handle a case like `Vec<u8>>,` where we can continue parsing fields
// after the comma
let _ = self.eat(&token::Comma);
// `check_trailing_angle_brackets` already emitted a nicer error, as
// proven by the presence of `_guar`. We can continue parsing.
return Ok(a_var);
}
}
}
let mut err = self.dcx().struct_span_err(sp, msg);
if self.token.is_ident()
|| (self.token == TokenKind::Pound
&& (self.look_ahead(1, |t| t == &token::OpenDelim(Delimiter::Bracket))))
{
// This is likely another field, TokenKind::Pound is used for `#[..]`
// attribute for next field. Emit the diagnostic and continue parsing.
err.span_suggestion(
sp,
"try adding a comma",
",",
Applicability::MachineApplicable,
);
err.emit();
} else {
return Err(err);
}
}
}
Ok(a_var)
}
fn expect_field_ty_separator(&mut self) -> PResult<'a, ()> {
if let Err(err) = self.expect(&token::Colon) {
let sm = self.psess.source_map();
let eq_typo = self.token == token::Eq && self.look_ahead(1, |t| t.is_path_start());
let semi_typo = self.token == token::Semi
&& self.look_ahead(1, |t| {
t.is_path_start()
// We check that we are in a situation like `foo; bar` to avoid bad suggestions
// when there's no type and `;` was used instead of a comma.
&& match (sm.lookup_line(self.token.span.hi()), sm.lookup_line(t.span.lo())) {
(Ok(l), Ok(r)) => l.line == r.line,
_ => true,
}
});
if eq_typo || semi_typo {
self.bump();
// Gracefully handle small typos.
err.with_span_suggestion_short(
self.prev_token.span,
"field names and their types are separated with `:`",
":",
Applicability::MachineApplicable,
)
.emit();
} else {
return Err(err);
}
}
Ok(())
}
/// Parses a structure field.
fn parse_name_and_ty(
&mut self,
adt_ty: &str,
lo: Span,
vis: Visibility,
attrs: AttrVec,
) -> PResult<'a, FieldDef> {
let name = self.parse_field_ident(adt_ty, lo)?;
if self.token == token::Not {
if let Err(mut err) = self.unexpected() {
// Encounter the macro invocation
err.subdiagnostic(MacroExpandsToAdtField { adt_ty });
return Err(err);
}
}
self.expect_field_ty_separator()?;
let ty = self.parse_ty()?;
if self.token == token::Colon && self.look_ahead(1, |t| *t != token::Colon) {
self.dcx().emit_err(errors::SingleColonStructType { span: self.token.span });
}
if self.token == token::Eq {
self.bump();
let const_expr = self.parse_expr_anon_const()?;
let sp = ty.span.shrink_to_hi().to(const_expr.value.span);
self.dcx().emit_err(errors::EqualsStructDefault { span: sp });
}
Ok(FieldDef {
span: lo.to(self.prev_token.span),
ident: Some(name),
vis,
id: DUMMY_NODE_ID,
ty,
attrs,
is_placeholder: false,
})
}
/// Parses a field identifier. Specialized version of `parse_ident_common`
/// for better diagnostics and suggestions.
fn parse_field_ident(&mut self, adt_ty: &str, lo: Span) -> PResult<'a, Ident> {
let (ident, is_raw) = self.ident_or_err(true)?;
if matches!(is_raw, IdentIsRaw::No) && ident.is_reserved() {
let snapshot = self.create_snapshot_for_diagnostic();
let err = if self.check_fn_front_matter(false, Case::Sensitive) {
let inherited_vis =
Visibility { span: DUMMY_SP, kind: VisibilityKind::Inherited, tokens: None };
// We use `parse_fn` to get a span for the function
let fn_parse_mode = FnParseMode { req_name: |_| true, req_body: true };
match self.parse_fn(
&mut AttrVec::new(),
fn_parse_mode,
lo,
&inherited_vis,
Case::Insensitive,
) {
Ok(_) => {
self.dcx().struct_span_err(
lo.to(self.prev_token.span),
format!("functions are not allowed in {adt_ty} definitions"),
)
.with_help(
"unlike in C++, Java, and C#, functions are declared in `impl` blocks",
)
.with_help("see https://doc.rust-lang.org/book/ch05-03-method-syntax.html for more information")
}
Err(err) => {
err.cancel();
self.restore_snapshot(snapshot);
self.expected_ident_found_err()
}
}
} else if self.eat_keyword(kw::Struct) {
match self.parse_item_struct() {
Ok((ident, _)) => self
.dcx()
.struct_span_err(
lo.with_hi(ident.span.hi()),
format!("structs are not allowed in {adt_ty} definitions"),
)
.with_help(
"consider creating a new `struct` definition instead of nesting",
),
Err(err) => {
err.cancel();
self.restore_snapshot(snapshot);
self.expected_ident_found_err()
}
}
} else {
let mut err = self.expected_ident_found_err();
if self.eat_keyword_noexpect(kw::Let)
&& let removal_span = self.prev_token.span.until(self.token.span)
&& let Ok(ident) = self
.parse_ident_common(false)
// Cancel this error, we don't need it.
.map_err(|err| err.cancel())
&& self.token == TokenKind::Colon
{
err.span_suggestion(
removal_span,
"remove this `let` keyword",
String::new(),
Applicability::MachineApplicable,
);
err.note("the `let` keyword is not allowed in `struct` fields");
err.note("see <https://doc.rust-lang.org/book/ch05-01-defining-structs.html> for more information");
err.emit();
return Ok(ident);
} else {
self.restore_snapshot(snapshot);
}
err
};
return Err(err);
}
self.bump();
Ok(ident)
}
/// Parses a declarative macro 2.0 definition.
/// The `macro` keyword has already been parsed.
/// ```ebnf
/// MacBody = "{" TOKEN_STREAM "}" ;
/// MacParams = "(" TOKEN_STREAM ")" ;
/// DeclMac = "macro" Ident MacParams? MacBody ;
/// ```
fn parse_item_decl_macro(&mut self, lo: Span) -> PResult<'a, ItemInfo> {
let ident = self.parse_ident()?;
let body = if self.check(&token::OpenDelim(Delimiter::Brace)) {
self.parse_delim_args()? // `MacBody`
} else if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
let params = self.parse_token_tree(); // `MacParams`
let pspan = params.span();
if !self.check(&token::OpenDelim(Delimiter::Brace)) {
self.unexpected()?;
}
let body = self.parse_token_tree(); // `MacBody`
// Convert `MacParams MacBody` into `{ MacParams => MacBody }`.
let bspan = body.span();
let arrow = TokenTree::token_alone(token::FatArrow, pspan.between(bspan)); // `=>`
let tokens = TokenStream::new(vec![params, arrow, body]);
let dspan = DelimSpan::from_pair(pspan.shrink_to_lo(), bspan.shrink_to_hi());
P(DelimArgs { dspan, delim: Delimiter::Brace, tokens })
} else {
self.unexpected_any()?
};
self.psess.gated_spans.gate(sym::decl_macro, lo.to(self.prev_token.span));
Ok((ident, ItemKind::MacroDef(ast::MacroDef { body, macro_rules: false })))
}
/// Is this a possibly malformed start of a `macro_rules! foo` item definition?
fn is_macro_rules_item(&mut self) -> IsMacroRulesItem {
if self.check_keyword(kw::MacroRules) {
let macro_rules_span = self.token.span;
if self.look_ahead(1, |t| *t == token::Not) && self.look_ahead(2, |t| t.is_ident()) {
return IsMacroRulesItem::Yes { has_bang: true };
} else if self.look_ahead(1, |t| (t.is_ident())) {
// macro_rules foo
self.dcx().emit_err(errors::MacroRulesMissingBang {
span: macro_rules_span,
hi: macro_rules_span.shrink_to_hi(),
});
return IsMacroRulesItem::Yes { has_bang: false };
}
}
IsMacroRulesItem::No
}
/// Parses a `macro_rules! foo { ... }` declarative macro.
fn parse_item_macro_rules(
&mut self,
vis: &Visibility,
has_bang: bool,
) -> PResult<'a, ItemInfo> {
self.expect_keyword(kw::MacroRules)?; // `macro_rules`
if has_bang {
self.expect(&token::Not)?; // `!`
}
let ident = self.parse_ident()?;
if self.eat(&token::Not) {
// Handle macro_rules! foo!
let span = self.prev_token.span;
self.dcx().emit_err(errors::MacroNameRemoveBang { span });
}
let body = self.parse_delim_args()?;
self.eat_semi_for_macro_if_needed(&body);
self.complain_if_pub_macro(vis, true);
Ok((ident, ItemKind::MacroDef(ast::MacroDef { body, macro_rules: true })))
}
/// Item macro invocations or `macro_rules!` definitions need inherited visibility.
/// If that's not the case, emit an error.
fn complain_if_pub_macro(&self, vis: &Visibility, macro_rules: bool) {
if let VisibilityKind::Inherited = vis.kind {
return;
}
let vstr = pprust::vis_to_string(vis);
let vstr = vstr.trim_end();
if macro_rules {
self.dcx().emit_err(errors::MacroRulesVisibility { span: vis.span, vis: vstr });
} else {
self.dcx().emit_err(errors::MacroInvocationVisibility { span: vis.span, vis: vstr });
}
}
fn eat_semi_for_macro_if_needed(&mut self, args: &DelimArgs) {
if args.need_semicolon() && !self.eat(&token::Semi) {
self.report_invalid_macro_expansion_item(args);
}
}
fn report_invalid_macro_expansion_item(&self, args: &DelimArgs) {
let span = args.dspan.entire();
let mut err = self.dcx().struct_span_err(
span,
"macros that expand to items must be delimited with braces or followed by a semicolon",
);
// FIXME: This will make us not emit the help even for declarative
// macros within the same crate (that we can fix), which is sad.
if !span.from_expansion() {
let DelimSpan { open, close } = args.dspan;
err.multipart_suggestion(
"change the delimiters to curly braces",
vec![(open, "{".to_string()), (close, '}'.to_string())],
Applicability::MaybeIncorrect,
);
err.span_suggestion(
span.with_neighbor(self.token.span).shrink_to_hi(),
"add a semicolon",
';',
Applicability::MaybeIncorrect,
);
}
err.emit();
}
/// Checks if current token is one of tokens which cannot be nested like `kw::Enum`. In case
/// it is, we try to parse the item and report error about nested types.
fn recover_nested_adt_item(&mut self, keyword: Symbol) -> PResult<'a, bool> {
if (self.token.is_keyword(kw::Enum)
|| self.token.is_keyword(kw::Struct)
|| self.token.is_keyword(kw::Union))
&& self.look_ahead(1, |t| t.is_ident())
{
let kw_token = self.token.clone();
let kw_str = pprust::token_to_string(&kw_token);
let item = self.parse_item(ForceCollect::No)?;
let mut item = item.unwrap().span;
if self.token == token::Comma {
item = item.to(self.token.span);
}
self.dcx().emit_err(errors::NestedAdt {
span: kw_token.span,
item,
kw_str,
keyword: keyword.as_str(),
});
// We successfully parsed the item but we must inform the caller about nested problem.
return Ok(false);
}
Ok(true)
}
}
/// The parsing configuration used to parse a parameter list (see `parse_fn_params`).
///
/// The function decides if, per-parameter `p`, `p` must have a pattern or just a type.
///
/// This function pointer accepts an edition, because in edition 2015, trait declarations
/// were allowed to omit parameter names. In 2018, they became required.
type ReqName = fn(Edition) -> bool;
/// Parsing configuration for functions.
///
/// The syntax of function items is slightly different within trait definitions,
/// impl blocks, and modules. It is still parsed using the same code, just with
/// different flags set, so that even when the input is wrong and produces a parse
/// error, it still gets into the AST and the rest of the parser and
/// type checker can run.
#[derive(Clone, Copy)]
pub(crate) struct FnParseMode {
/// A function pointer that decides if, per-parameter `p`, `p` must have a
/// pattern or just a type. This field affects parsing of the parameters list.
///
/// ```text
/// fn foo(alef: A) -> X { X::new() }
/// -----^^ affects parsing this part of the function signature
/// |
/// if req_name returns false, then this name is optional
///
/// fn bar(A) -> X;
/// ^
/// |
/// if req_name returns true, this is an error
/// ```
///
/// Calling this function pointer should only return false if:
///
/// * The item is being parsed inside of a trait definition.
/// Within an impl block or a module, it should always evaluate
/// to true.
/// * The span is from Edition 2015. In particular, you can get a
/// 2015 span inside a 2021 crate using macros.
pub(super) req_name: ReqName,
/// If this flag is set to `true`, then plain, semicolon-terminated function
/// prototypes are not allowed here.
///
/// ```text
/// fn foo(alef: A) -> X { X::new() }
/// ^^^^^^^^^^^^
/// |
/// this is always allowed
///
/// fn bar(alef: A, bet: B) -> X;
/// ^
/// |
/// if req_body is set to true, this is an error
/// ```
///
/// This field should only be set to false if the item is inside of a trait
/// definition or extern block. Within an impl block or a module, it should
/// always be set to true.
pub(super) req_body: bool,
}
/// Parsing of functions and methods.
impl<'a> Parser<'a> {
/// Parse a function starting from the front matter (`const ...`) to the body `{ ... }` or `;`.
fn parse_fn(
&mut self,
attrs: &mut AttrVec,
fn_parse_mode: FnParseMode,
sig_lo: Span,
vis: &Visibility,
case: Case,
) -> PResult<'a, (Ident, FnSig, Generics, Option<P<Block>>)> {
let fn_span = self.token.span;
let header = self.parse_fn_front_matter(vis, case)?; // `const ... fn`
let ident = self.parse_ident()?; // `foo`
let mut generics = self.parse_generics()?; // `<'a, T, ...>`
let decl = match self.parse_fn_decl(
fn_parse_mode.req_name,
AllowPlus::Yes,
RecoverReturnSign::Yes,
) {
Ok(decl) => decl,
Err(old_err) => {
// If we see `for Ty ...` then user probably meant `impl` item.
if self.token.is_keyword(kw::For) {
old_err.cancel();
return Err(self.dcx().create_err(errors::FnTypoWithImpl { fn_span }));
} else {
return Err(old_err);
}
}
};
// Store the end of function parameters to give better diagnostics
// inside `parse_fn_body()`.
let fn_params_end = self.prev_token.span.shrink_to_hi();
generics.where_clause = self.parse_where_clause()?; // `where T: Ord`
// `fn_params_end` is needed only when it's followed by a where clause.
let fn_params_end =
if generics.where_clause.has_where_token { Some(fn_params_end) } else { None };
let mut sig_hi = self.prev_token.span;
// Either `;` or `{ ... }`.
let body =
self.parse_fn_body(attrs, &ident, &mut sig_hi, fn_parse_mode.req_body, fn_params_end)?;
let fn_sig_span = sig_lo.to(sig_hi);
Ok((ident, FnSig { header, decl, span: fn_sig_span }, generics, body))
}
/// Provide diagnostics when function body is not found
fn error_fn_body_not_found(
&mut self,
ident_span: Span,
req_body: bool,
fn_params_end: Option<Span>,
) -> PResult<'a, ErrorGuaranteed> {
let expected = if req_body {
&[token::OpenDelim(Delimiter::Brace)][..]
} else {
&[token::Semi, token::OpenDelim(Delimiter::Brace)]
};
match self.expected_one_of_not_found(&[], expected) {
Ok(error_guaranteed) => Ok(error_guaranteed),
Err(mut err) => {
if self.token == token::CloseDelim(Delimiter::Brace) {
// The enclosing `mod`, `trait` or `impl` is being closed, so keep the `fn` in
// the AST for typechecking.
err.span_label(ident_span, "while parsing this `fn`");
Ok(err.emit())
} else if self.token == token::RArrow
&& let Some(fn_params_end) = fn_params_end
{
// Instead of a function body, the parser has encountered a right arrow
// preceded by a where clause.
// Find whether token behind the right arrow is a function trait and
// store its span.
let fn_trait_span =
[sym::FnOnce, sym::FnMut, sym::Fn].into_iter().find_map(|symbol| {
if self.prev_token.is_ident_named(symbol) {
Some(self.prev_token.span)
} else {
None
}
});
// Parse the return type (along with the right arrow) and store its span.
// If there's a parse error, cancel it and return the existing error
// as we are primarily concerned with the
// expected-function-body-but-found-something-else error here.
let arrow_span = self.token.span;
let ty_span = match self.parse_ret_ty(
AllowPlus::Yes,
RecoverQPath::Yes,
RecoverReturnSign::Yes,
) {
Ok(ty_span) => ty_span.span().shrink_to_hi(),
Err(parse_error) => {
parse_error.cancel();
return Err(err);
}
};
let ret_ty_span = arrow_span.to(ty_span);
if let Some(fn_trait_span) = fn_trait_span {
// Typo'd Fn* trait bounds such as
// fn foo<F>() where F: FnOnce -> () {}
err.subdiagnostic(errors::FnTraitMissingParen { span: fn_trait_span });
} else if let Ok(snippet) = self.psess.source_map().span_to_snippet(ret_ty_span)
{
// If token behind right arrow is not a Fn* trait, the programmer
// probably misplaced the return type after the where clause like
// `fn foo<T>() where T: Default -> u8 {}`
err.primary_message(
"return type should be specified after the function parameters",
);
err.subdiagnostic(errors::MisplacedReturnType {
fn_params_end,
snippet,
ret_ty_span,
});
}
Err(err)
} else {
Err(err)
}
}
}
}
/// Parse the "body" of a function.
/// This can either be `;` when there's no body,
/// or e.g. a block when the function is a provided one.
fn parse_fn_body(
&mut self,
attrs: &mut AttrVec,
ident: &Ident,
sig_hi: &mut Span,
req_body: bool,
fn_params_end: Option<Span>,
) -> PResult<'a, Option<P<Block>>> {
let has_semi = if req_body {
self.token == TokenKind::Semi
} else {
// Only include `;` in list of expected tokens if body is not required
self.check(&TokenKind::Semi)
};
let (inner_attrs, body) = if has_semi {
// Include the trailing semicolon in the span of the signature
self.expect_semi()?;
*sig_hi = self.prev_token.span;
(AttrVec::new(), None)
} else if self.check(&token::OpenDelim(Delimiter::Brace)) || self.token.is_whole_block() {
self.parse_block_common(self.token.span, BlockCheckMode::Default, false)
.map(|(attrs, body)| (attrs, Some(body)))?
} else if self.token == token::Eq {
// Recover `fn foo() = $expr;`.
self.bump(); // `=`
let eq_sp = self.prev_token.span;
let _ = self.parse_expr()?;
self.expect_semi()?; // `;`
let span = eq_sp.to(self.prev_token.span);
let guar = self.dcx().emit_err(errors::FunctionBodyEqualsExpr {
span,
sugg: errors::FunctionBodyEqualsExprSugg { eq: eq_sp, semi: self.prev_token.span },
});
(AttrVec::new(), Some(self.mk_block_err(span, guar)))
} else {
self.error_fn_body_not_found(ident.span, req_body, fn_params_end)?;
(AttrVec::new(), None)
};
attrs.extend(inner_attrs);
Ok(body)
}
/// Is the current token the start of an `FnHeader` / not a valid parse?
///
/// `check_pub` adds additional `pub` to the checks in case users place it
/// wrongly, can be used to ensure `pub` never comes after `default`.
pub(super) fn check_fn_front_matter(&mut self, check_pub: bool, case: Case) -> bool {
const ALL_QUALS: &[Symbol] =
&[kw::Pub, kw::Gen, kw::Const, kw::Async, kw::Unsafe, kw::Safe, kw::Extern];
// We use an over-approximation here.
// `const const`, `fn const` won't parse, but we're not stepping over other syntax either.
// `pub` is added in case users got confused with the ordering like `async pub fn`,
// only if it wasn't preceded by `default` as `default pub` is invalid.
let quals: &[Symbol] = if check_pub {
ALL_QUALS
} else {
&[kw::Gen, kw::Const, kw::Async, kw::Unsafe, kw::Safe, kw::Extern]
};
self.check_keyword_case(kw::Fn, case) // Definitely an `fn`.
// `$qual fn` or `$qual $qual`:
|| quals.iter().any(|&kw| self.check_keyword_case(kw, case))
&& self.look_ahead(1, |t| {
// `$qual fn`, e.g. `const fn` or `async fn`.
t.is_keyword_case(kw::Fn, case)
// Two qualifiers `$qual $qual` is enough, e.g. `async unsafe`.
|| (
(
t.is_non_raw_ident_where(|i|
quals.contains(&i.name)
// Rule out 2015 `const async: T = val`.
&& i.is_reserved()
)
|| case == Case::Insensitive
&& t.is_non_raw_ident_where(|i| quals.iter().any(|qual| qual.as_str() == i.name.as_str().to_lowercase()))
)
// Rule out `unsafe extern {`.
&& !self.is_unsafe_foreign_mod()
// Rule out `async gen {` and `async gen move {`
&& !self.is_async_gen_block())
})
// `extern ABI fn`
|| self.check_keyword_case(kw::Extern, case)
&& self.look_ahead(1, |t| t.can_begin_string_literal())
&& (self.look_ahead(2, |t| t.is_keyword_case(kw::Fn, case)) ||
// this branch is only for better diagnostics; `pub`, `unsafe`, etc. are not allowed here
(self.may_recover()
&& self.look_ahead(2, |t| ALL_QUALS.iter().any(|&kw| t.is_keyword(kw)))
&& self.look_ahead(3, |t| t.is_keyword_case(kw::Fn, case))))
}
/// Parses all the "front matter" (or "qualifiers") for a `fn` declaration,
/// up to and including the `fn` keyword. The formal grammar is:
///
/// ```text
/// Extern = "extern" StringLit? ;
/// FnQual = "const"? "async"? "unsafe"? Extern? ;
/// FnFrontMatter = FnQual "fn" ;
/// ```
///
/// `vis` represents the visibility that was already parsed, if any. Use
/// `Visibility::Inherited` when no visibility is known.
pub(super) fn parse_fn_front_matter(
&mut self,
orig_vis: &Visibility,
case: Case,
) -> PResult<'a, FnHeader> {
let sp_start = self.token.span;
let constness = self.parse_constness(case);
let async_start_sp = self.token.span;
let coroutine_kind = self.parse_coroutine_kind(case);
let unsafe_start_sp = self.token.span;
let safety = self.parse_safety(case);
let ext_start_sp = self.token.span;
let ext = self.parse_extern(case);
if let Some(CoroutineKind::Async { span, .. }) = coroutine_kind {
if span.is_rust_2015() {
self.dcx().emit_err(errors::AsyncFnIn2015 {
span,
help: errors::HelpUseLatestEdition::new(),
});
}
}
match coroutine_kind {
Some(CoroutineKind::Gen { span, .. }) | Some(CoroutineKind::AsyncGen { span, .. }) => {
self.psess.gated_spans.gate(sym::gen_blocks, span);
}
Some(CoroutineKind::Async { .. }) | None => {}
}
if !self.eat_keyword_case(kw::Fn, case) {
// It is possible for `expect_one_of` to recover given the contents of
// `self.expected_tokens`, therefore, do not use `self.unexpected()` which doesn't
// account for this.
match self.expect_one_of(&[], &[]) {
Ok(Recovered::Yes(_)) => {}
Ok(Recovered::No) => unreachable!(),
Err(mut err) => {
// Qualifier keywords ordering check
enum WrongKw {
Duplicated(Span),
Misplaced(Span),
}
// We may be able to recover
let mut recover_constness = constness;
let mut recover_coroutine_kind = coroutine_kind;
let mut recover_safety = safety;
// This will allow the machine fix to directly place the keyword in the correct place or to indicate
// that the keyword is already present and the second instance should be removed.
let wrong_kw = if self.check_keyword(kw::Const) {
match constness {
Const::Yes(sp) => Some(WrongKw::Duplicated(sp)),
Const::No => {
recover_constness = Const::Yes(self.token.span);
Some(WrongKw::Misplaced(async_start_sp))
}
}
} else if self.check_keyword(kw::Async) {
match coroutine_kind {
Some(CoroutineKind::Async { span, .. }) => {
Some(WrongKw::Duplicated(span))
}
Some(CoroutineKind::AsyncGen { span, .. }) => {
Some(WrongKw::Duplicated(span))
}
Some(CoroutineKind::Gen { .. }) => {
recover_coroutine_kind = Some(CoroutineKind::AsyncGen {
span: self.token.span,
closure_id: DUMMY_NODE_ID,
return_impl_trait_id: DUMMY_NODE_ID,
});
// FIXME(gen_blocks): This span is wrong, didn't want to think about it.
Some(WrongKw::Misplaced(unsafe_start_sp))
}
None => {
recover_coroutine_kind = Some(CoroutineKind::Async {
span: self.token.span,
closure_id: DUMMY_NODE_ID,
return_impl_trait_id: DUMMY_NODE_ID,
});
Some(WrongKw::Misplaced(unsafe_start_sp))
}
}
} else if self.check_keyword(kw::Unsafe) {
match safety {
Safety::Unsafe(sp) => Some(WrongKw::Duplicated(sp)),
Safety::Safe(sp) => {
recover_safety = Safety::Unsafe(self.token.span);
Some(WrongKw::Misplaced(sp))
}
Safety::Default => {
recover_safety = Safety::Unsafe(self.token.span);
Some(WrongKw::Misplaced(ext_start_sp))
}
}
} else if self.check_keyword(kw::Safe) {
match safety {
Safety::Safe(sp) => Some(WrongKw::Duplicated(sp)),
Safety::Unsafe(sp) => {
recover_safety = Safety::Safe(self.token.span);
Some(WrongKw::Misplaced(sp))
}
Safety::Default => {
recover_safety = Safety::Safe(self.token.span);
Some(WrongKw::Misplaced(ext_start_sp))
}
}
} else {
None
};
// The keyword is already present, suggest removal of the second instance
if let Some(WrongKw::Duplicated(original_sp)) = wrong_kw {
let original_kw = self
.span_to_snippet(original_sp)
.expect("Span extracted directly from keyword should always work");
err.span_suggestion(
self.token.uninterpolated_span(),
format!("`{original_kw}` already used earlier, remove this one"),
"",
Applicability::MachineApplicable,
)
.span_note(original_sp, format!("`{original_kw}` first seen here"));
}
// The keyword has not been seen yet, suggest correct placement in the function front matter
else if let Some(WrongKw::Misplaced(correct_pos_sp)) = wrong_kw {
let correct_pos_sp = correct_pos_sp.to(self.prev_token.span);
if let Ok(current_qual) = self.span_to_snippet(correct_pos_sp) {
let misplaced_qual_sp = self.token.uninterpolated_span();
let misplaced_qual = self.span_to_snippet(misplaced_qual_sp).unwrap();
err.span_suggestion(
correct_pos_sp.to(misplaced_qual_sp),
format!("`{misplaced_qual}` must come before `{current_qual}`"),
format!("{misplaced_qual} {current_qual}"),
Applicability::MachineApplicable,
).note("keyword order for functions declaration is `pub`, `default`, `const`, `async`, `unsafe`, `extern`");
}
}
// Recover incorrect visibility order such as `async pub`
else if self.check_keyword(kw::Pub) {
let sp = sp_start.to(self.prev_token.span);
if let Ok(snippet) = self.span_to_snippet(sp) {
let current_vis = match self.parse_visibility(FollowedByType::No) {
Ok(v) => v,
Err(d) => {
d.cancel();
return Err(err);
}
};
let vs = pprust::vis_to_string(¤t_vis);
let vs = vs.trim_end();
// There was no explicit visibility
if matches!(orig_vis.kind, VisibilityKind::Inherited) {
err.span_suggestion(
sp_start.to(self.prev_token.span),
format!("visibility `{vs}` must come before `{snippet}`"),
format!("{vs} {snippet}"),
Applicability::MachineApplicable,
);
}
// There was an explicit visibility
else {
err.span_suggestion(
current_vis.span,
"there is already a visibility modifier, remove one",
"",
Applicability::MachineApplicable,
)
.span_note(orig_vis.span, "explicit visibility first seen here");
}
}
}
// FIXME(gen_blocks): add keyword recovery logic for genness
if wrong_kw.is_some()
&& self.may_recover()
&& self.look_ahead(1, |tok| tok.is_keyword_case(kw::Fn, case))
{
// Advance past the misplaced keyword and `fn`
self.bump();
self.bump();
err.emit();
return Ok(FnHeader {
constness: recover_constness,
safety: recover_safety,
coroutine_kind: recover_coroutine_kind,
ext,
});
}
return Err(err);
}
}
}
Ok(FnHeader { constness, safety, coroutine_kind, ext })
}
/// Parses the parameter list and result type of a function declaration.
pub(super) fn parse_fn_decl(
&mut self,
req_name: ReqName,
ret_allow_plus: AllowPlus,
recover_return_sign: RecoverReturnSign,
) -> PResult<'a, P<FnDecl>> {
Ok(P(FnDecl {
inputs: self.parse_fn_params(req_name)?,
output: self.parse_ret_ty(ret_allow_plus, RecoverQPath::Yes, recover_return_sign)?,
}))
}
/// Parses the parameter list of a function, including the `(` and `)` delimiters.
pub(super) fn parse_fn_params(&mut self, req_name: ReqName) -> PResult<'a, ThinVec<Param>> {
let mut first_param = true;
// Parse the arguments, starting out with `self` being allowed...
if self.token != TokenKind::OpenDelim(Delimiter::Parenthesis)
// might be typo'd trait impl, handled elsewhere
&& !self.token.is_keyword(kw::For)
{
// recover from missing argument list, e.g. `fn main -> () {}`
self.dcx()
.emit_err(errors::MissingFnParams { span: self.prev_token.span.shrink_to_hi() });
return Ok(ThinVec::new());
}
let (mut params, _) = self.parse_paren_comma_seq(|p| {
p.recover_vcs_conflict_marker();
let snapshot = p.create_snapshot_for_diagnostic();
let param = p.parse_param_general(req_name, first_param).or_else(|e| {
let guar = e.emit();
// When parsing a param failed, we should check to make the span of the param
// not contain '(' before it.
// For example when parsing `*mut Self` in function `fn oof(*mut Self)`.
let lo = if let TokenKind::OpenDelim(Delimiter::Parenthesis) = p.prev_token.kind {
p.prev_token.span.shrink_to_hi()
} else {
p.prev_token.span
};
p.restore_snapshot(snapshot);
// Skip every token until next possible arg or end.
p.eat_to_tokens(&[&token::Comma, &token::CloseDelim(Delimiter::Parenthesis)]);
// Create a placeholder argument for proper arg count (issue #34264).
Ok(dummy_arg(Ident::new(kw::Empty, lo.to(p.prev_token.span)), guar))
});
// ...now that we've parsed the first argument, `self` is no longer allowed.
first_param = false;
param
})?;
// Replace duplicated recovered params with `_` pattern to avoid unnecessary errors.
self.deduplicate_recovered_params_names(&mut params);
Ok(params)
}
/// Parses a single function parameter.
///
/// - `self` is syntactically allowed when `first_param` holds.
fn parse_param_general(&mut self, req_name: ReqName, first_param: bool) -> PResult<'a, Param> {
let lo = self.token.span;
let attrs = self.parse_outer_attributes()?;
self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
// Possibly parse `self`. Recover if we parsed it and it wasn't allowed here.
if let Some(mut param) = this.parse_self_param()? {
param.attrs = attrs;
let res = if first_param { Ok(param) } else { this.recover_bad_self_param(param) };
return Ok((res?, Trailing::No, UsePreAttrPos::No));
}
let is_name_required = match this.token.kind {
token::DotDotDot => false,
_ => req_name(this.token.span.with_neighbor(this.prev_token.span).edition()),
};
let (pat, ty) = if is_name_required || this.is_named_param() {
debug!("parse_param_general parse_pat (is_name_required:{})", is_name_required);
let (pat, colon) = this.parse_fn_param_pat_colon()?;
if !colon {
let mut err = this.unexpected().unwrap_err();
return if let Some(ident) =
this.parameter_without_type(&mut err, pat, is_name_required, first_param)
{
let guar = err.emit();
Ok((dummy_arg(ident, guar), Trailing::No, UsePreAttrPos::No))
} else {
Err(err)
};
}
this.eat_incorrect_doc_comment_for_param_type();
(pat, this.parse_ty_for_param()?)
} else {
debug!("parse_param_general ident_to_pat");
let parser_snapshot_before_ty = this.create_snapshot_for_diagnostic();
this.eat_incorrect_doc_comment_for_param_type();
let mut ty = this.parse_ty_for_param();
if ty.is_ok()
&& this.token != token::Comma
&& this.token != token::CloseDelim(Delimiter::Parenthesis)
{
// This wasn't actually a type, but a pattern looking like a type,
// so we are going to rollback and re-parse for recovery.
ty = this.unexpected_any();
}
match ty {
Ok(ty) => {
let ident = Ident::new(kw::Empty, this.prev_token.span);
let bm = BindingMode::NONE;
let pat = this.mk_pat_ident(ty.span, bm, ident);
(pat, ty)
}
// If this is a C-variadic argument and we hit an error, return the error.
Err(err) if this.token == token::DotDotDot => return Err(err),
// Recover from attempting to parse the argument as a type without pattern.
Err(err) => {
err.cancel();
this.restore_snapshot(parser_snapshot_before_ty);
this.recover_arg_parse()?
}
}
};
let span = lo.to(this.prev_token.span);
Ok((
Param { attrs, id: ast::DUMMY_NODE_ID, is_placeholder: false, pat, span, ty },
Trailing::No,
UsePreAttrPos::No,
))
})
}
/// Returns the parsed optional self parameter and whether a self shortcut was used.
fn parse_self_param(&mut self) -> PResult<'a, Option<Param>> {
// Extract an identifier *after* having confirmed that the token is one.
let expect_self_ident = |this: &mut Self| match this.token.ident() {
Some((ident, IdentIsRaw::No)) => {
this.bump();
ident
}
_ => unreachable!(),
};
// Is `self` `n` tokens ahead?
let is_isolated_self = |this: &Self, n| {
this.is_keyword_ahead(n, &[kw::SelfLower])
&& this.look_ahead(n + 1, |t| t != &token::PathSep)
};
// Is `mut self` `n` tokens ahead?
let is_isolated_mut_self =
|this: &Self, n| this.is_keyword_ahead(n, &[kw::Mut]) && is_isolated_self(this, n + 1);
// Parse `self` or `self: TYPE`. We already know the current token is `self`.
let parse_self_possibly_typed = |this: &mut Self, m| {
let eself_ident = expect_self_ident(this);
let eself_hi = this.prev_token.span;
let eself = if this.eat(&token::Colon) {
SelfKind::Explicit(this.parse_ty()?, m)
} else {
SelfKind::Value(m)
};
Ok((eself, eself_ident, eself_hi))
};
// Recover for the grammar `*self`, `*const self`, and `*mut self`.
let recover_self_ptr = |this: &mut Self| {
this.dcx().emit_err(errors::SelfArgumentPointer { span: this.token.span });
Ok((SelfKind::Value(Mutability::Not), expect_self_ident(this), this.prev_token.span))
};
// Parse optional `self` parameter of a method.
// Only a limited set of initial token sequences is considered `self` parameters; anything
// else is parsed as a normal function parameter list, so some lookahead is required.
let eself_lo = self.token.span;
let (eself, eself_ident, eself_hi) = match self.token.uninterpolate().kind {
token::BinOp(token::And) => {
let eself = if is_isolated_self(self, 1) {
// `&self`
self.bump();
SelfKind::Region(None, Mutability::Not)
} else if is_isolated_mut_self(self, 1) {
// `&mut self`
self.bump();
self.bump();
SelfKind::Region(None, Mutability::Mut)
} else if self.look_ahead(1, |t| t.is_lifetime()) && is_isolated_self(self, 2) {
// `&'lt self`
self.bump();
let lt = self.expect_lifetime();
SelfKind::Region(Some(lt), Mutability::Not)
} else if self.look_ahead(1, |t| t.is_lifetime()) && is_isolated_mut_self(self, 2) {
// `&'lt mut self`
self.bump();
let lt = self.expect_lifetime();
self.bump();
SelfKind::Region(Some(lt), Mutability::Mut)
} else {
// `¬_self`
return Ok(None);
};
(eself, expect_self_ident(self), self.prev_token.span)
}
// `*self`
token::BinOp(token::Star) if is_isolated_self(self, 1) => {
self.bump();
recover_self_ptr(self)?
}
// `*mut self` and `*const self`
token::BinOp(token::Star)
if self.look_ahead(1, |t| t.is_mutability()) && is_isolated_self(self, 2) =>
{
self.bump();
self.bump();
recover_self_ptr(self)?
}
// `self` and `self: TYPE`
token::Ident(..) if is_isolated_self(self, 0) => {
parse_self_possibly_typed(self, Mutability::Not)?
}
// `mut self` and `mut self: TYPE`
token::Ident(..) if is_isolated_mut_self(self, 0) => {
self.bump();
parse_self_possibly_typed(self, Mutability::Mut)?
}
_ => return Ok(None),
};
let eself = source_map::respan(eself_lo.to(eself_hi), eself);
Ok(Some(Param::from_self(AttrVec::default(), eself, eself_ident)))
}
fn is_named_param(&self) -> bool {
let offset = match &self.token.kind {
token::Interpolated(nt) => match &**nt {
token::NtPat(..) => return self.look_ahead(1, |t| t == &token::Colon),
_ => 0,
},
token::BinOp(token::And) | token::AndAnd => 1,
_ if self.token.is_keyword(kw::Mut) => 1,
_ => 0,
};
self.look_ahead(offset, |t| t.is_ident())
&& self.look_ahead(offset + 1, |t| t == &token::Colon)
}
fn recover_self_param(&mut self) -> bool {
matches!(
self.parse_outer_attributes()
.and_then(|_| self.parse_self_param())
.map_err(|e| e.cancel()),
Ok(Some(_))
)
}
}
enum IsMacroRulesItem {
Yes { has_bang: bool },
No,
}