rustc_trait_selection/solve/
delegate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
use std::ops::Deref;

use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::canonical::query_response::make_query_region_constraints;
use rustc_infer::infer::canonical::{
    Canonical, CanonicalExt as _, CanonicalVarInfo, CanonicalVarValues,
};
use rustc_infer::infer::{InferCtxt, RegionVariableOrigin, TyCtxtInferExt};
use rustc_infer::traits::solve::Goal;
use rustc_infer::traits::{ObligationCause, Reveal};
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt as _};
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span};
use rustc_type_ir::solve::{Certainty, NoSolution, SolverMode};
use tracing::trace;

use crate::traits::specialization_graph;

#[repr(transparent)]
pub struct SolverDelegate<'tcx>(InferCtxt<'tcx>);

impl<'a, 'tcx> From<&'a InferCtxt<'tcx>> for &'a SolverDelegate<'tcx> {
    fn from(infcx: &'a InferCtxt<'tcx>) -> Self {
        // SAFETY: `repr(transparent)`
        unsafe { std::mem::transmute(infcx) }
    }
}

impl<'tcx> Deref for SolverDelegate<'tcx> {
    type Target = InferCtxt<'tcx>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<'tcx> rustc_next_trait_solver::delegate::SolverDelegate for SolverDelegate<'tcx> {
    type Interner = TyCtxt<'tcx>;

    fn cx(&self) -> TyCtxt<'tcx> {
        self.0.tcx
    }

    type Span = Span;

    fn build_with_canonical<V>(
        interner: TyCtxt<'tcx>,
        solver_mode: SolverMode,
        canonical: &Canonical<'tcx, V>,
    ) -> (Self, V, CanonicalVarValues<'tcx>)
    where
        V: TypeFoldable<TyCtxt<'tcx>>,
    {
        let (infcx, value, vars) = interner
            .infer_ctxt()
            .with_next_trait_solver(true)
            .intercrate(match solver_mode {
                SolverMode::Normal => false,
                SolverMode::Coherence => true,
            })
            .build_with_canonical(DUMMY_SP, canonical);
        (SolverDelegate(infcx), value, vars)
    }

    fn fresh_var_for_kind_with_span(
        &self,
        arg: ty::GenericArg<'tcx>,
        span: Span,
    ) -> ty::GenericArg<'tcx> {
        match arg.unpack() {
            ty::GenericArgKind::Lifetime(_) => {
                self.next_region_var(RegionVariableOrigin::MiscVariable(span)).into()
            }
            ty::GenericArgKind::Type(_) => self.next_ty_var(span).into(),
            ty::GenericArgKind::Const(_) => self.next_const_var(span).into(),
        }
    }

    fn leak_check(&self, max_input_universe: ty::UniverseIndex) -> Result<(), NoSolution> {
        self.0.leak_check(max_input_universe, None).map_err(|_| NoSolution)
    }

    fn try_const_eval_resolve(
        &self,
        param_env: ty::ParamEnv<'tcx>,
        unevaluated: ty::UnevaluatedConst<'tcx>,
    ) -> Option<ty::Const<'tcx>> {
        use rustc_middle::mir::interpret::ErrorHandled;
        match self.const_eval_resolve(param_env, unevaluated, DUMMY_SP) {
            Ok(Ok(val)) => Some(ty::Const::new_value(
                self.tcx,
                val,
                self.tcx.type_of(unevaluated.def).instantiate(self.tcx, unevaluated.args),
            )),
            Ok(Err(_)) | Err(ErrorHandled::TooGeneric(_)) => None,
            Err(ErrorHandled::Reported(e, _)) => Some(ty::Const::new_error(self.tcx, e.into())),
        }
    }

    fn well_formed_goals(
        &self,
        param_env: ty::ParamEnv<'tcx>,
        arg: ty::GenericArg<'tcx>,
    ) -> Option<Vec<Goal<'tcx, ty::Predicate<'tcx>>>> {
        crate::traits::wf::unnormalized_obligations(&self.0, param_env, arg).map(|obligations| {
            obligations.into_iter().map(|obligation| obligation.into()).collect()
        })
    }

    fn clone_opaque_types_for_query_response(&self) -> Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)> {
        self.0.clone_opaque_types_for_query_response()
    }

    fn make_deduplicated_outlives_constraints(
        &self,
    ) -> Vec<ty::OutlivesPredicate<'tcx, ty::GenericArg<'tcx>>> {
        // Cannot use `take_registered_region_obligations` as we may compute the response
        // inside of a `probe` whenever we have multiple choices inside of the solver.
        let region_obligations = self.0.inner.borrow().region_obligations().to_owned();
        let region_constraints = self.0.with_region_constraints(|region_constraints| {
            make_query_region_constraints(
                self.tcx,
                region_obligations
                    .iter()
                    .map(|r_o| (r_o.sup_type, r_o.sub_region, r_o.origin.to_constraint_category())),
                region_constraints,
            )
        });

        assert_eq!(region_constraints.member_constraints, vec![]);

        let mut seen = FxHashSet::default();
        region_constraints
            .outlives
            .into_iter()
            .filter(|&(outlives, _)| seen.insert(outlives))
            .map(|(outlives, _)| outlives)
            .collect()
    }

    fn instantiate_canonical<V>(
        &self,
        canonical: Canonical<'tcx, V>,
        values: CanonicalVarValues<'tcx>,
    ) -> V
    where
        V: TypeFoldable<TyCtxt<'tcx>>,
    {
        canonical.instantiate(self.tcx, &values)
    }

    fn instantiate_canonical_var_with_infer(
        &self,
        cv_info: CanonicalVarInfo<'tcx>,
        universe_map: impl Fn(ty::UniverseIndex) -> ty::UniverseIndex,
    ) -> ty::GenericArg<'tcx> {
        self.0.instantiate_canonical_var(DUMMY_SP, cv_info, universe_map)
    }

    fn insert_hidden_type(
        &self,
        opaque_type_key: ty::OpaqueTypeKey<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        hidden_ty: Ty<'tcx>,
        goals: &mut Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
    ) -> Result<(), NoSolution> {
        self.0
            .insert_hidden_type(opaque_type_key, DUMMY_SP, param_env, hidden_ty, goals)
            .map_err(|_| NoSolution)
    }

    fn add_item_bounds_for_hidden_type(
        &self,
        def_id: DefId,
        args: ty::GenericArgsRef<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        hidden_ty: Ty<'tcx>,
        goals: &mut Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
    ) {
        self.0.add_item_bounds_for_hidden_type(def_id, args, param_env, hidden_ty, goals);
    }

    fn inject_new_hidden_type_unchecked(&self, key: ty::OpaqueTypeKey<'tcx>, hidden_ty: Ty<'tcx>) {
        self.0.inject_new_hidden_type_unchecked(key, ty::OpaqueHiddenType {
            ty: hidden_ty,
            span: DUMMY_SP,
        })
    }

    fn reset_opaque_types(&self) {
        let _ = self.take_opaque_types();
    }

    fn fetch_eligible_assoc_item(
        &self,
        param_env: ty::ParamEnv<'tcx>,
        goal_trait_ref: ty::TraitRef<'tcx>,
        trait_assoc_def_id: DefId,
        impl_def_id: DefId,
    ) -> Result<Option<DefId>, NoSolution> {
        let node_item = specialization_graph::assoc_def(self.tcx, impl_def_id, trait_assoc_def_id)
            .map_err(|ErrorGuaranteed { .. }| NoSolution)?;

        let eligible = if node_item.is_final() {
            // Non-specializable items are always projectable.
            true
        } else {
            // Only reveal a specializable default if we're past type-checking
            // and the obligation is monomorphic, otherwise passes such as
            // transmute checking and polymorphic MIR optimizations could
            // get a result which isn't correct for all monomorphizations.
            if param_env.reveal() == Reveal::All {
                let poly_trait_ref = self.resolve_vars_if_possible(goal_trait_ref);
                !poly_trait_ref.still_further_specializable()
            } else {
                trace!(?node_item.item.def_id, "not eligible due to default");
                false
            }
        };

        // FIXME: Check for defaultness here may cause diagnostics problems.
        if eligible { Ok(Some(node_item.item.def_id)) } else { Ok(None) }
    }

    // FIXME: This actually should destructure the `Result` we get from transmutability and
    // register candidates. We probably need to register >1 since we may have an OR of ANDs.
    fn is_transmutable(
        &self,
        param_env: ty::ParamEnv<'tcx>,
        dst: Ty<'tcx>,
        src: Ty<'tcx>,
        assume: ty::Const<'tcx>,
    ) -> Result<Certainty, NoSolution> {
        // Erase regions because we compute layouts in `rustc_transmute`,
        // which will ICE for region vars.
        let (dst, src) = self.tcx.erase_regions((dst, src));

        let Some(assume) = rustc_transmute::Assume::from_const(self.tcx, param_env, assume) else {
            return Err(NoSolution);
        };

        // FIXME(transmutability): This really should be returning nested goals for `Answer::If*`
        match rustc_transmute::TransmuteTypeEnv::new(&self.0).is_transmutable(
            ObligationCause::dummy(),
            rustc_transmute::Types { src, dst },
            assume,
        ) {
            rustc_transmute::Answer::Yes => Ok(Certainty::Yes),
            rustc_transmute::Answer::No(_) | rustc_transmute::Answer::If(_) => Err(NoSolution),
        }
    }
}