cargo/util/context/
de.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
//! Support for deserializing configuration via `serde`

use crate::util::context::value;
use crate::util::context::{ConfigError, ConfigKey, GlobalContext};
use crate::util::context::{ConfigValue as CV, Definition, Value};
use serde::{de, de::IntoDeserializer};
use std::collections::HashSet;
use std::vec;

/// Serde deserializer used to convert config values to a target type using
/// [`GlobalContext::get`].
#[derive(Clone)]
pub(super) struct Deserializer<'gctx> {
    pub(super) gctx: &'gctx GlobalContext,
    /// The current key being deserialized.
    pub(super) key: ConfigKey,
    /// Whether or not this key part is allowed to be an inner table. For
    /// example, `profile.dev.build-override` needs to check if
    /// CARGO_PROFILE_DEV_BUILD_OVERRIDE_ prefixes exist. But
    /// CARGO_BUILD_TARGET should not check for prefixes because it would
    /// collide with CARGO_BUILD_TARGET_DIR. See `ConfigMapAccess` for
    /// details.
    pub(super) env_prefix_ok: bool,
}

macro_rules! deserialize_method {
    ($method:ident, $visit:ident, $getter:ident) => {
        fn $method<V>(self, visitor: V) -> Result<V::Value, Self::Error>
        where
            V: de::Visitor<'de>,
        {
            let v = self
                .gctx
                .$getter(&self.key)?
                .ok_or_else(|| ConfigError::missing(&self.key))?;
            let Value { val, definition } = v;
            let res: Result<V::Value, ConfigError> = visitor.$visit(val);
            res.map_err(|e| e.with_key_context(&self.key, Some(definition)))
        }
    };
}

impl<'de, 'gctx> de::Deserializer<'de> for Deserializer<'gctx> {
    type Error = ConfigError;

    fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        let cv = self.gctx.get_cv_with_env(&self.key)?;
        if let Some(cv) = cv {
            let res: (Result<V::Value, ConfigError>, Definition) = match cv {
                CV::Integer(i, def) => (visitor.visit_i64(i), def),
                CV::String(s, def) => (visitor.visit_string(s), def),
                CV::List(_, def) => (visitor.visit_seq(ConfigSeqAccess::new(self.clone())?), def),
                CV::Table(_, def) => (
                    visitor.visit_map(ConfigMapAccess::new_map(self.clone())?),
                    def,
                ),
                CV::Boolean(b, def) => (visitor.visit_bool(b), def),
            };
            let (res, def) = res;
            return res.map_err(|e| e.with_key_context(&self.key, Some(def)));
        }

        // The effect here is the same as in `deserialize_option`.
        if self.gctx.has_key(&self.key, self.env_prefix_ok)? {
            return visitor.visit_some(self);
        }

        Err(ConfigError::missing(&self.key))
    }

    deserialize_method!(deserialize_bool, visit_bool, get_bool);
    deserialize_method!(deserialize_i8, visit_i64, get_integer);
    deserialize_method!(deserialize_i16, visit_i64, get_integer);
    deserialize_method!(deserialize_i32, visit_i64, get_integer);
    deserialize_method!(deserialize_i64, visit_i64, get_integer);
    deserialize_method!(deserialize_u8, visit_i64, get_integer);
    deserialize_method!(deserialize_u16, visit_i64, get_integer);
    deserialize_method!(deserialize_u32, visit_i64, get_integer);
    deserialize_method!(deserialize_u64, visit_i64, get_integer);
    deserialize_method!(deserialize_string, visit_string, get_string_priv);

    fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        if self.gctx.has_key(&self.key, self.env_prefix_ok)? {
            visitor.visit_some(self)
        } else {
            // Treat missing values as `None`.
            visitor.visit_none()
        }
    }

    fn deserialize_struct<V>(
        self,
        name: &'static str,
        fields: &'static [&'static str],
        visitor: V,
    ) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        // Match on the magical struct name/field names that are passed in to
        // detect when we're deserializing `Value<T>`.
        //
        // See more comments in `value.rs` for the protocol used here.
        if name == value::NAME && fields == value::FIELDS {
            return visitor.visit_map(ValueDeserializer::new(self)?);
        }
        visitor.visit_map(ConfigMapAccess::new_struct(self, fields)?)
    }

    fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        visitor.visit_map(ConfigMapAccess::new_map(self)?)
    }

    fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        visitor.visit_seq(ConfigSeqAccess::new(self)?)
    }

    fn deserialize_tuple<V>(self, _len: usize, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        visitor.visit_seq(ConfigSeqAccess::new(self)?)
    }

    fn deserialize_tuple_struct<V>(
        self,
        _name: &'static str,
        _len: usize,
        visitor: V,
    ) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        visitor.visit_seq(ConfigSeqAccess::new(self)?)
    }

    fn deserialize_newtype_struct<V>(
        self,
        name: &'static str,
        visitor: V,
    ) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        let merge = if name == "StringList" {
            true
        } else if name == "UnmergedStringList" {
            false
        } else {
            return visitor.visit_newtype_struct(self);
        };

        let vals = self.gctx.get_list_or_string(&self.key, merge)?;
        let vals: Vec<String> = vals.into_iter().map(|vd| vd.0).collect();
        visitor.visit_newtype_struct(vals.into_deserializer())
    }

    fn deserialize_enum<V>(
        self,
        _name: &'static str,
        _variants: &'static [&'static str],
        visitor: V,
    ) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        let value = self
            .gctx
            .get_string_priv(&self.key)?
            .ok_or_else(|| ConfigError::missing(&self.key))?;

        let Value { val, definition } = value;
        visitor
            .visit_enum(val.into_deserializer())
            .map_err(|e: ConfigError| e.with_key_context(&self.key, Some(definition)))
    }

    // These aren't really supported, yet.
    serde::forward_to_deserialize_any! {
        f32 f64 char str bytes
        byte_buf unit unit_struct
        identifier ignored_any
    }
}

struct ConfigMapAccess<'gctx> {
    de: Deserializer<'gctx>,
    /// The fields that this map should deserialize.
    fields: Vec<KeyKind>,
    /// Current field being deserialized.
    field_index: usize,
}

#[derive(Debug, PartialEq, Eq, Hash)]
enum KeyKind {
    Normal(String),
    CaseSensitive(String),
}

impl<'gctx> ConfigMapAccess<'gctx> {
    fn new_map(de: Deserializer<'gctx>) -> Result<ConfigMapAccess<'gctx>, ConfigError> {
        let mut fields = Vec::new();
        if let Some(mut v) = de.gctx.get_table(&de.key)? {
            // `v: Value<HashMap<String, CV>>`
            for (key, _value) in v.val.drain() {
                fields.push(KeyKind::CaseSensitive(key));
            }
        }
        if de.gctx.cli_unstable().advanced_env {
            // `CARGO_PROFILE_DEV_PACKAGE_`
            let env_prefix = format!("{}_", de.key.as_env_key());
            for env_key in de.gctx.env_keys() {
                // `CARGO_PROFILE_DEV_PACKAGE_bar_OPT_LEVEL = 3`
                if let Some(rest) = env_key.strip_prefix(&env_prefix) {
                    // `rest = bar_OPT_LEVEL`
                    let part = rest.splitn(2, '_').next().unwrap();
                    // `part = "bar"`
                    fields.push(KeyKind::CaseSensitive(part.to_string()));
                }
            }
        }
        Ok(ConfigMapAccess {
            de,
            fields,
            field_index: 0,
        })
    }

    fn new_struct(
        de: Deserializer<'gctx>,
        given_fields: &'static [&'static str],
    ) -> Result<ConfigMapAccess<'gctx>, ConfigError> {
        let table = de.gctx.get_table(&de.key)?;

        // Assume that if we're deserializing a struct it exhaustively lists all
        // possible fields on this key that we're *supposed* to use, so take
        // this opportunity to warn about any keys that aren't recognized as
        // fields and warn about them.
        if let Some(v) = table.as_ref() {
            let unused_keys = v
                .val
                .iter()
                .filter(|(k, _v)| !given_fields.iter().any(|gk| gk == k));
            for (unused_key, unused_value) in unused_keys {
                de.gctx.shell().warn(format!(
                    "unused config key `{}.{}` in `{}`",
                    de.key,
                    unused_key,
                    unused_value.definition()
                ))?;
            }
        }

        let mut fields = HashSet::new();

        // If the caller is interested in a field which we can provide from
        // the environment, get it from there.
        for field in given_fields {
            let mut field_key = de.key.clone();
            field_key.push(field);
            for env_key in de.gctx.env_keys() {
                let Some(nested_field) = env_key.strip_prefix(field_key.as_env_key()) else {
                    continue;
                };
                // This distinguishes fields that share the same prefix.
                // For example, when env_key is UNSTABLE_GITOXIDE_FETCH
                // and field_key is UNSTABLE_GIT, the field shouldn't be
                // added because `unstable.gitoxide.fetch` doesn't
                // belong to `unstable.git` struct.
                if nested_field.is_empty() || nested_field.starts_with('_') {
                    fields.insert(KeyKind::Normal(field.to_string()));
                }
            }
        }

        // Add everything from the config table we're interested in that we
        // haven't already provided via an environment variable
        if let Some(v) = table {
            for key in v.val.keys() {
                fields.insert(KeyKind::Normal(key.clone()));
            }
        }

        Ok(ConfigMapAccess {
            de,
            fields: fields.into_iter().collect(),
            field_index: 0,
        })
    }
}

impl<'de, 'gctx> de::MapAccess<'de> for ConfigMapAccess<'gctx> {
    type Error = ConfigError;

    fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
    where
        K: de::DeserializeSeed<'de>,
    {
        if self.field_index >= self.fields.len() {
            return Ok(None);
        }
        let field = match &self.fields[self.field_index] {
            KeyKind::Normal(s) | KeyKind::CaseSensitive(s) => s.as_str(),
        };
        seed.deserialize(field.into_deserializer()).map(Some)
    }

    fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
    where
        V: de::DeserializeSeed<'de>,
    {
        let field = &self.fields[self.field_index];
        self.field_index += 1;
        // Set this as the current key in the deserializer.
        let field = match field {
            KeyKind::Normal(field) => {
                self.de.key.push(field);
                field
            }
            KeyKind::CaseSensitive(field) => {
                self.de.key.push_sensitive(field);
                field
            }
        };
        // Env vars that are a prefix of another with a dash/underscore cannot
        // be supported by our serde implementation, so check for them here.
        // Example:
        //     CARGO_BUILD_TARGET
        //     CARGO_BUILD_TARGET_DIR
        // or
        //     CARGO_PROFILE_DEV_DEBUG
        //     CARGO_PROFILE_DEV_DEBUG_ASSERTIONS
        // The `deserialize_option` method does not know the type of the field.
        // If the type is an Option<struct> (like
        // `profile.dev.build-override`), then it needs to check for env vars
        // starting with CARGO_FOO_BAR_. This is a problem for keys like
        // CARGO_BUILD_TARGET because checking for a prefix would incorrectly
        // match CARGO_BUILD_TARGET_DIR. `deserialize_option` would have no
        // choice but to call `visit_some()` which would then fail if
        // CARGO_BUILD_TARGET isn't set. So we check for these prefixes and
        // disallow them here.
        let env_prefix = format!("{}_", field).replace('-', "_");
        let env_prefix_ok = !self.fields.iter().any(|field| {
            let field = match field {
                KeyKind::Normal(s) | KeyKind::CaseSensitive(s) => s.as_str(),
            };
            field.replace('-', "_").starts_with(&env_prefix)
        });

        let result = seed
            .deserialize(Deserializer {
                gctx: self.de.gctx,
                key: self.de.key.clone(),
                env_prefix_ok,
            })
            .map_err(|e| {
                if !e.is_missing_field() {
                    return e;
                }
                e.with_key_context(
                    &self.de.key,
                    self.de
                        .gctx
                        .get_cv_with_env(&self.de.key)
                        .ok()
                        .and_then(|cv| cv.map(|cv| cv.get_definition().clone())),
                )
            });
        self.de.key.pop();
        result
    }
}

struct ConfigSeqAccess {
    list_iter: vec::IntoIter<(String, Definition)>,
}

impl ConfigSeqAccess {
    fn new(de: Deserializer<'_>) -> Result<ConfigSeqAccess, ConfigError> {
        let mut res = Vec::new();
        if let Some(v) = de.gctx._get_list(&de.key)? {
            res.extend(v.val);
        }

        de.gctx.get_env_list(&de.key, &mut res)?;

        Ok(ConfigSeqAccess {
            list_iter: res.into_iter(),
        })
    }
}

impl<'de> de::SeqAccess<'de> for ConfigSeqAccess {
    type Error = ConfigError;

    fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
    where
        T: de::DeserializeSeed<'de>,
    {
        match self.list_iter.next() {
            // TODO: add `def` to error?
            Some((value, def)) => {
                // This might be a String or a Value<String>.
                // ValueDeserializer will handle figuring out which one it is.
                let maybe_value_de = ValueDeserializer::new_with_string(value, def);
                seed.deserialize(maybe_value_de).map(Some)
            }
            None => Ok(None),
        }
    }
}

/// This is a deserializer that deserializes into a `Value<T>` for
/// configuration.
///
/// This is a special deserializer because it deserializes one of its struct
/// fields into the location that this configuration value was defined in.
///
/// See more comments in `value.rs` for the protocol used here.
struct ValueDeserializer<'gctx> {
    hits: u32,
    definition: Definition,
    /// The deserializer, used to actually deserialize a Value struct.
    /// This is `None` if deserializing a string.
    de: Option<Deserializer<'gctx>>,
    /// A string value to deserialize.
    ///
    /// This is used for situations where you can't address a string via a
    /// TOML key, such as a string inside an array. The `ConfigSeqAccess`
    /// doesn't know if the type it should deserialize to is a `String` or
    /// `Value<String>`, so `ValueDeserializer` needs to be able to handle
    /// both.
    str_value: Option<String>,
}

impl<'gctx> ValueDeserializer<'gctx> {
    fn new(de: Deserializer<'gctx>) -> Result<ValueDeserializer<'gctx>, ConfigError> {
        // Figure out where this key is defined.
        let definition = {
            let env = de.key.as_env_key();
            let env_def = Definition::Environment(env.to_string());
            match (de.gctx.env.contains_key(env), de.gctx.get_cv(&de.key)?) {
                (true, Some(cv)) => {
                    // Both, pick highest priority.
                    if env_def.is_higher_priority(cv.definition()) {
                        env_def
                    } else {
                        cv.definition().clone()
                    }
                }
                (false, Some(cv)) => cv.definition().clone(),
                // Assume it is an environment, even if the key is not set.
                // This can happen for intermediate tables, like
                // CARGO_FOO_BAR_* where `CARGO_FOO_BAR` is not set.
                (_, None) => env_def,
            }
        };
        Ok(ValueDeserializer {
            hits: 0,
            definition,
            de: Some(de),
            str_value: None,
        })
    }

    fn new_with_string(s: String, definition: Definition) -> ValueDeserializer<'gctx> {
        ValueDeserializer {
            hits: 0,
            definition,
            de: None,
            str_value: Some(s),
        }
    }
}

impl<'de, 'gctx> de::MapAccess<'de> for ValueDeserializer<'gctx> {
    type Error = ConfigError;

    fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
    where
        K: de::DeserializeSeed<'de>,
    {
        self.hits += 1;
        match self.hits {
            1 => seed
                .deserialize(value::VALUE_FIELD.into_deserializer())
                .map(Some),
            2 => seed
                .deserialize(value::DEFINITION_FIELD.into_deserializer())
                .map(Some),
            _ => Ok(None),
        }
    }

    fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
    where
        V: de::DeserializeSeed<'de>,
    {
        // If this is the first time around we deserialize the `value` field
        // which is the actual deserializer
        if self.hits == 1 {
            if let Some(de) = &self.de {
                return seed
                    .deserialize(de.clone())
                    .map_err(|e| e.with_key_context(&de.key, Some(self.definition.clone())));
            } else {
                return seed
                    .deserialize(self.str_value.as_ref().unwrap().clone().into_deserializer());
            }
        }

        // ... otherwise we're deserializing the `definition` field, so we need
        // to figure out where the field we just deserialized was defined at.
        match &self.definition {
            Definition::Path(path) => {
                seed.deserialize(Tuple2Deserializer(0i32, path.to_string_lossy()))
            }
            Definition::Environment(env) => {
                seed.deserialize(Tuple2Deserializer(1i32, env.as_str()))
            }
            Definition::Cli(path) => {
                let str = path
                    .as_ref()
                    .map(|p| p.to_string_lossy())
                    .unwrap_or_default();
                seed.deserialize(Tuple2Deserializer(2i32, str))
            }
        }
    }
}

// Deserializer is only implemented to handle deserializing a String inside a
// sequence (like `Vec<String>` or `Vec<Value<String>>`). `Value<String>` is
// handled by deserialize_struct, and the plain `String` is handled by all the
// other functions here.
impl<'de, 'gctx> de::Deserializer<'de> for ValueDeserializer<'gctx> {
    type Error = ConfigError;

    fn deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        visitor.visit_str(&self.str_value.expect("string expected"))
    }

    fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        visitor.visit_string(self.str_value.expect("string expected"))
    }

    fn deserialize_struct<V>(
        self,
        name: &'static str,
        fields: &'static [&'static str],
        visitor: V,
    ) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        // Match on the magical struct name/field names that are passed in to
        // detect when we're deserializing `Value<T>`.
        //
        // See more comments in `value.rs` for the protocol used here.
        if name == value::NAME && fields == value::FIELDS {
            return visitor.visit_map(self);
        }
        unimplemented!("only strings and Value can be deserialized from a sequence");
    }

    fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        visitor.visit_string(self.str_value.expect("string expected"))
    }

    fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: de::Visitor<'de>,
    {
        visitor.visit_unit()
    }

    serde::forward_to_deserialize_any! {
        i8 i16 i32 i64
        u8 u16 u32 u64
        option
        newtype_struct seq tuple tuple_struct map enum bool
        f32 f64 char bytes
        byte_buf unit unit_struct
        identifier
    }
}

/// A deserializer which takes two values and deserializes into a tuple of those
/// two values. This is similar to types like `StrDeserializer` in upstream
/// serde itself.
struct Tuple2Deserializer<T, U>(T, U);

impl<'de, T, U> de::Deserializer<'de> for Tuple2Deserializer<T, U>
where
    T: IntoDeserializer<'de, ConfigError>,
    U: IntoDeserializer<'de, ConfigError>,
{
    type Error = ConfigError;

    fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, ConfigError>
    where
        V: de::Visitor<'de>,
    {
        struct SeqVisitor<T, U> {
            first: Option<T>,
            second: Option<U>,
        }
        impl<'de, T, U> de::SeqAccess<'de> for SeqVisitor<T, U>
        where
            T: IntoDeserializer<'de, ConfigError>,
            U: IntoDeserializer<'de, ConfigError>,
        {
            type Error = ConfigError;
            fn next_element_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
            where
                K: de::DeserializeSeed<'de>,
            {
                if let Some(first) = self.first.take() {
                    return seed.deserialize(first.into_deserializer()).map(Some);
                }
                if let Some(second) = self.second.take() {
                    return seed.deserialize(second.into_deserializer()).map(Some);
                }
                Ok(None)
            }
        }

        visitor.visit_seq(SeqVisitor {
            first: Some(self.0),
            second: Some(self.1),
        })
    }

    serde::forward_to_deserialize_any! {
        bool u8 u16 u32 u64 i8 i16 i32 i64 f32 f64 char str string seq
        bytes byte_buf map struct option unit newtype_struct
        ignored_any unit_struct tuple_struct tuple enum identifier
    }
}