rustc_trait_selection/error_reporting/traits/ambiguity.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
use std::ops::ControlFlow;
use rustc_errors::{
Applicability, Diag, E0283, E0284, E0790, MultiSpan, StashKey, struct_span_code_err,
};
use rustc_hir as hir;
use rustc_hir::LangItem;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::Visitor as _;
use rustc_infer::infer::{BoundRegionConversionTime, InferCtxt};
use rustc_infer::traits::util::elaborate;
use rustc_infer::traits::{
Obligation, ObligationCause, ObligationCauseCode, PolyTraitObligation, PredicateObligation,
};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitable as _, TypeVisitableExt as _};
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span};
use tracing::{debug, instrument};
use crate::error_reporting::TypeErrCtxt;
use crate::error_reporting::infer::need_type_info::TypeAnnotationNeeded;
use crate::error_reporting::traits::{FindExprBySpan, to_pretty_impl_header};
use crate::traits::ObligationCtxt;
use crate::traits::query::evaluate_obligation::InferCtxtExt;
#[derive(Debug)]
pub enum CandidateSource {
DefId(DefId),
ParamEnv(Span),
}
pub fn compute_applicable_impls_for_diagnostics<'tcx>(
infcx: &InferCtxt<'tcx>,
obligation: &PolyTraitObligation<'tcx>,
) -> Vec<CandidateSource> {
let tcx = infcx.tcx;
let param_env = obligation.param_env;
let predicate_polarity = obligation.predicate.skip_binder().polarity;
let impl_may_apply = |impl_def_id| {
let ocx = ObligationCtxt::new(infcx);
infcx.enter_forall(obligation.predicate, |placeholder_obligation| {
let obligation_trait_ref = ocx.normalize(
&ObligationCause::dummy(),
param_env,
placeholder_obligation.trait_ref,
);
let impl_args = infcx.fresh_args_for_item(DUMMY_SP, impl_def_id);
let impl_trait_ref =
tcx.impl_trait_ref(impl_def_id).unwrap().instantiate(tcx, impl_args);
let impl_trait_ref =
ocx.normalize(&ObligationCause::dummy(), param_env, impl_trait_ref);
if let Err(_) =
ocx.eq(&ObligationCause::dummy(), param_env, obligation_trait_ref, impl_trait_ref)
{
return false;
}
let impl_trait_header = tcx.impl_trait_header(impl_def_id).unwrap();
let impl_polarity = impl_trait_header.polarity;
match (impl_polarity, predicate_polarity) {
(ty::ImplPolarity::Positive, ty::PredicatePolarity::Positive)
| (ty::ImplPolarity::Negative, ty::PredicatePolarity::Negative) => {}
_ => return false,
}
let obligations = tcx
.predicates_of(impl_def_id)
.instantiate(tcx, impl_args)
.into_iter()
.map(|(predicate, _)| {
Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate)
})
// Kinda hacky, but let's just throw away obligations that overflow.
// This may reduce the accuracy of this check (if the obligation guides
// inference or it actually resulted in error after others are processed)
// ... but this is diagnostics code.
.filter(|obligation| {
infcx.next_trait_solver() || infcx.evaluate_obligation(obligation).is_ok()
});
ocx.register_obligations(obligations);
ocx.select_where_possible().is_empty()
})
};
let param_env_candidate_may_apply = |poly_trait_predicate: ty::PolyTraitPredicate<'tcx>| {
let ocx = ObligationCtxt::new(infcx);
infcx.enter_forall(obligation.predicate, |placeholder_obligation| {
let obligation_trait_ref = ocx.normalize(
&ObligationCause::dummy(),
param_env,
placeholder_obligation.trait_ref,
);
let param_env_predicate = infcx.instantiate_binder_with_fresh_vars(
DUMMY_SP,
BoundRegionConversionTime::HigherRankedType,
poly_trait_predicate,
);
let param_env_trait_ref =
ocx.normalize(&ObligationCause::dummy(), param_env, param_env_predicate.trait_ref);
if let Err(_) = ocx.eq(
&ObligationCause::dummy(),
param_env,
obligation_trait_ref,
param_env_trait_ref,
) {
return false;
}
ocx.select_where_possible().is_empty()
})
};
let mut ambiguities = Vec::new();
tcx.for_each_relevant_impl(
obligation.predicate.def_id(),
obligation.predicate.skip_binder().trait_ref.self_ty(),
|impl_def_id| {
if infcx.probe(|_| impl_may_apply(impl_def_id)) {
ambiguities.push(CandidateSource::DefId(impl_def_id))
}
},
);
let predicates =
tcx.predicates_of(obligation.cause.body_id.to_def_id()).instantiate_identity(tcx);
for (pred, span) in elaborate(tcx, predicates.into_iter()) {
let kind = pred.kind();
if let ty::ClauseKind::Trait(trait_pred) = kind.skip_binder()
&& param_env_candidate_may_apply(kind.rebind(trait_pred))
{
if kind.rebind(trait_pred.trait_ref)
== ty::Binder::dummy(ty::TraitRef::identity(tcx, trait_pred.def_id()))
{
ambiguities.push(CandidateSource::ParamEnv(tcx.def_span(trait_pred.def_id())))
} else {
ambiguities.push(CandidateSource::ParamEnv(span))
}
}
}
ambiguities
}
impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
#[instrument(skip(self), level = "debug")]
pub(super) fn maybe_report_ambiguity(
&self,
obligation: &PredicateObligation<'tcx>,
) -> ErrorGuaranteed {
// Unable to successfully determine, probably means
// insufficient type information, but could mean
// ambiguous impls. The latter *ought* to be a
// coherence violation, so we don't report it here.
let predicate = self.resolve_vars_if_possible(obligation.predicate);
let span = obligation.cause.span;
debug!(?predicate, obligation.cause.code = ?obligation.cause.code());
// Ambiguity errors are often caused as fallout from earlier errors.
// We ignore them if this `infcx` is tainted in some cases below.
let bound_predicate = predicate.kind();
let mut err = match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
let trait_ref = bound_predicate.rebind(data.trait_ref);
debug!(?trait_ref);
if let Err(e) = predicate.error_reported() {
return e;
}
if let Err(guar) = self.tcx.ensure().coherent_trait(trait_ref.def_id()) {
// Avoid bogus "type annotations needed `Foo: Bar`" errors on `impl Bar for Foo` in case
// other `Foo` impls are incoherent.
return guar;
}
// This is kind of a hack: it frequently happens that some earlier
// error prevents types from being fully inferred, and then we get
// a bunch of uninteresting errors saying something like "<generic
// #0> doesn't implement Sized". It may even be true that we
// could just skip over all checks where the self-ty is an
// inference variable, but I was afraid that there might be an
// inference variable created, registered as an obligation, and
// then never forced by writeback, and hence by skipping here we'd
// be ignoring the fact that we don't KNOW the type works
// out. Though even that would probably be harmless, given that
// we're only talking about builtin traits, which are known to be
// inhabited. We used to check for `self.tcx.sess.has_errors()` to
// avoid inundating the user with unnecessary errors, but we now
// check upstream for type errors and don't add the obligations to
// begin with in those cases.
if self.tcx.is_lang_item(trait_ref.def_id(), LangItem::Sized) {
match self.tainted_by_errors() {
None => {
let err = self.emit_inference_failure_err(
obligation.cause.body_id,
span,
trait_ref.self_ty().skip_binder().into(),
TypeAnnotationNeeded::E0282,
false,
);
return err.stash(span, StashKey::MaybeForgetReturn).unwrap();
}
Some(e) => return e,
}
}
// Typically, this ambiguity should only happen if
// there are unresolved type inference variables
// (otherwise it would suggest a coherence
// failure). But given #21974 that is not necessarily
// the case -- we can have multiple where clauses that
// are only distinguished by a region, which results
// in an ambiguity even when all types are fully
// known, since we don't dispatch based on region
// relationships.
// Pick the first generic parameter that still contains inference variables as the one
// we're going to emit an error for. If there are none (see above), fall back to
// a more general error.
let arg = data.trait_ref.args.iter().find(|s| s.has_non_region_infer());
let mut err = if let Some(arg) = arg {
self.emit_inference_failure_err(
obligation.cause.body_id,
span,
arg,
TypeAnnotationNeeded::E0283,
true,
)
} else {
struct_span_code_err!(
self.dcx(),
span,
E0283,
"type annotations needed: cannot satisfy `{}`",
predicate,
)
};
let mut ambiguities = compute_applicable_impls_for_diagnostics(
self.infcx,
&obligation.with(self.tcx, trait_ref),
);
let has_non_region_infer =
trait_ref.skip_binder().args.types().any(|t| !t.is_ty_or_numeric_infer());
// It doesn't make sense to talk about applicable impls if there are more than a
// handful of them. If there are a lot of them, but only a few of them have no type
// params, we only show those, as they are more likely to be useful/intended.
if ambiguities.len() > 5 {
let infcx = self.infcx;
if !ambiguities.iter().all(|option| match option {
CandidateSource::DefId(did) => infcx.tcx.generics_of(*did).count() == 0,
CandidateSource::ParamEnv(_) => true,
}) {
// If not all are blanket impls, we filter blanked impls out.
ambiguities.retain(|option| match option {
CandidateSource::DefId(did) => infcx.tcx.generics_of(*did).count() == 0,
CandidateSource::ParamEnv(_) => true,
});
}
}
if ambiguities.len() > 1 && ambiguities.len() < 10 && has_non_region_infer {
if let Some(e) = self.tainted_by_errors()
&& arg.is_none()
{
// If `arg.is_none()`, then this is probably two param-env
// candidates or impl candidates that are equal modulo lifetimes.
// Therefore, if we've already emitted an error, just skip this
// one, since it's not particularly actionable.
err.cancel();
return e;
}
self.annotate_source_of_ambiguity(&mut err, &ambiguities, predicate);
} else {
if let Some(e) = self.tainted_by_errors() {
err.cancel();
return e;
}
err.note(format!("cannot satisfy `{predicate}`"));
let impl_candidates =
self.find_similar_impl_candidates(predicate.as_trait_clause().unwrap());
if impl_candidates.len() < 40 {
self.report_similar_impl_candidates(
impl_candidates.as_slice(),
trait_ref,
obligation.cause.body_id,
&mut err,
false,
obligation.param_env,
);
}
}
if let ObligationCauseCode::WhereClause(def_id, _)
| ObligationCauseCode::WhereClauseInExpr(def_id, ..) = *obligation.cause.code()
{
self.suggest_fully_qualified_path(&mut err, def_id, span, trait_ref.def_id());
}
if let Some(ty::GenericArgKind::Type(_)) = arg.map(|arg| arg.unpack())
&& let Some(body) = self.tcx.hir().maybe_body_owned_by(obligation.cause.body_id)
{
let mut expr_finder = FindExprBySpan::new(span, self.tcx);
expr_finder.visit_expr(&body.value);
if let Some(hir::Expr {
kind:
hir::ExprKind::Call(
hir::Expr {
kind: hir::ExprKind::Path(hir::QPath::Resolved(None, path)),
..
},
_,
)
| hir::ExprKind::Path(hir::QPath::Resolved(None, path)),
..
}) = expr_finder.result
&& let [
..,
trait_path_segment @ hir::PathSegment {
res: Res::Def(DefKind::Trait, trait_id),
..
},
hir::PathSegment {
ident: assoc_item_name,
res: Res::Def(_, item_id),
..
},
] = path.segments
&& data.trait_ref.def_id == *trait_id
&& self.tcx.trait_of_item(*item_id) == Some(*trait_id)
&& let None = self.tainted_by_errors()
{
let (verb, noun) = match self.tcx.associated_item(item_id).kind {
ty::AssocKind::Const => ("refer to the", "constant"),
ty::AssocKind::Fn => ("call", "function"),
// This is already covered by E0223, but this following single match
// arm doesn't hurt here.
ty::AssocKind::Type => ("refer to the", "type"),
};
// Replace the more general E0283 with a more specific error
err.cancel();
err = self.dcx().struct_span_err(
span,
format!(
"cannot {verb} associated {noun} on trait without specifying the \
corresponding `impl` type",
),
);
err.code(E0790);
if let Some(local_def_id) = data.trait_ref.def_id.as_local()
&& let hir::Node::Item(hir::Item {
ident: trait_name,
kind: hir::ItemKind::Trait(_, _, _, _, trait_item_refs),
..
}) = self.tcx.hir_node_by_def_id(local_def_id)
&& let Some(method_ref) = trait_item_refs
.iter()
.find(|item_ref| item_ref.ident == *assoc_item_name)
{
err.span_label(
method_ref.span,
format!("`{trait_name}::{assoc_item_name}` defined here"),
);
}
err.span_label(span, format!("cannot {verb} associated {noun} of trait"));
let trait_impls = self.tcx.trait_impls_of(data.trait_ref.def_id);
if let Some(impl_def_id) =
trait_impls.non_blanket_impls().values().flatten().next()
{
let non_blanket_impl_count =
trait_impls.non_blanket_impls().values().flatten().count();
// If there is only one implementation of the trait, suggest using it.
// Otherwise, use a placeholder comment for the implementation.
let (message, self_types) = if non_blanket_impl_count == 1 {
(
"use the fully-qualified path to the only available \
implementation",
vec![format!(
"{}",
self.tcx.type_of(impl_def_id).instantiate_identity()
)],
)
} else if non_blanket_impl_count < 20 {
(
"use a fully-qualified path to one of the available \
implementations",
trait_impls
.non_blanket_impls()
.values()
.flatten()
.map(|id| {
format!(
"{}",
self.tcx.type_of(id).instantiate_identity()
)
})
.collect::<Vec<String>>(),
)
} else {
(
"use a fully-qualified path to a specific available \
implementation",
vec!["/* self type */".to_string()],
)
};
let suggestions: Vec<_> = self_types
.into_iter()
.map(|self_type| {
let mut suggestions = vec![(
path.span.shrink_to_lo(),
format!("<{self_type} as "),
)];
if let Some(generic_arg) = trait_path_segment.args {
let between_span = trait_path_segment
.ident
.span
.between(generic_arg.span_ext);
// get rid of :: between Trait and <type>
// must be '::' between them, otherwise the parser won't accept the code
suggestions.push((between_span, "".to_string()));
suggestions.push((
generic_arg.span_ext.shrink_to_hi(),
">".to_string(),
));
} else {
suggestions.push((
trait_path_segment.ident.span.shrink_to_hi(),
">".to_string(),
));
}
suggestions
})
.collect();
err.multipart_suggestions(
message,
suggestions,
Applicability::MaybeIncorrect,
);
}
}
};
err
}
ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
// Same hacky approach as above to avoid deluging user
// with error messages.
if let Err(e) = arg.error_reported() {
return e;
}
if let Some(e) = self.tainted_by_errors() {
return e;
}
self.emit_inference_failure_err(
obligation.cause.body_id,
span,
arg,
TypeAnnotationNeeded::E0282,
false,
)
}
ty::PredicateKind::Subtype(data) => {
if let Err(e) = data.error_reported() {
return e;
}
if let Some(e) = self.tainted_by_errors() {
return e;
}
let ty::SubtypePredicate { a_is_expected: _, a, b } = data;
// both must be type variables, or the other would've been instantiated
assert!(a.is_ty_var() && b.is_ty_var());
self.emit_inference_failure_err(
obligation.cause.body_id,
span,
a.into(),
TypeAnnotationNeeded::E0282,
true,
)
}
ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
if let Err(e) = predicate.error_reported() {
return e;
}
if let Some(e) = self.tainted_by_errors() {
return e;
}
if let Err(guar) =
self.tcx.ensure().coherent_trait(self.tcx.parent(data.projection_term.def_id))
{
// Avoid bogus "type annotations needed `Foo: Bar`" errors on `impl Bar for Foo` in case
// other `Foo` impls are incoherent.
return guar;
}
let arg = data
.projection_term
.args
.iter()
.chain(Some(data.term.into_arg()))
.find(|g| g.has_non_region_infer());
if let Some(arg) = arg {
self.emit_inference_failure_err(
obligation.cause.body_id,
span,
arg,
TypeAnnotationNeeded::E0284,
true,
)
.with_note(format!("cannot satisfy `{predicate}`"))
} else {
// If we can't find a generic parameter, just print a generic error
struct_span_code_err!(
self.dcx(),
span,
E0284,
"type annotations needed: cannot satisfy `{}`",
predicate,
)
.with_span_label(span, format!("cannot satisfy `{predicate}`"))
}
}
ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(data)) => {
if let Err(e) = predicate.error_reported() {
return e;
}
if let Some(e) = self.tainted_by_errors() {
return e;
}
let arg = data.walk().find(|g| g.is_non_region_infer());
if let Some(arg) = arg {
let err = self.emit_inference_failure_err(
obligation.cause.body_id,
span,
arg,
TypeAnnotationNeeded::E0284,
true,
);
err
} else {
// If we can't find a generic parameter, just print a generic error
struct_span_code_err!(
self.dcx(),
span,
E0284,
"type annotations needed: cannot satisfy `{}`",
predicate,
)
.with_span_label(span, format!("cannot satisfy `{predicate}`"))
}
}
ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ..)) => self
.emit_inference_failure_err(
obligation.cause.body_id,
span,
ct.into(),
TypeAnnotationNeeded::E0284,
true,
),
ty::PredicateKind::NormalizesTo(ty::NormalizesTo { alias, term })
if term.is_infer() =>
{
if let Some(e) = self.tainted_by_errors() {
return e;
}
struct_span_code_err!(
self.dcx(),
span,
E0284,
"type annotations needed: cannot normalize `{alias}`",
)
.with_span_label(span, format!("cannot normalize `{alias}`"))
}
_ => {
if let Some(e) = self.tainted_by_errors() {
return e;
}
struct_span_code_err!(
self.dcx(),
span,
E0284,
"type annotations needed: cannot satisfy `{}`",
predicate,
)
.with_span_label(span, format!("cannot satisfy `{predicate}`"))
}
};
self.note_obligation_cause(&mut err, obligation);
err.emit()
}
fn annotate_source_of_ambiguity(
&self,
err: &mut Diag<'_>,
ambiguities: &[CandidateSource],
predicate: ty::Predicate<'tcx>,
) {
let mut spans = vec![];
let mut crates = vec![];
let mut post = vec![];
let mut has_param_env = false;
for ambiguity in ambiguities {
match ambiguity {
CandidateSource::DefId(impl_def_id) => match self.tcx.span_of_impl(*impl_def_id) {
Ok(span) => spans.push(span),
Err(name) => {
crates.push(name);
if let Some(header) = to_pretty_impl_header(self.tcx, *impl_def_id) {
post.push(header);
}
}
},
CandidateSource::ParamEnv(span) => {
has_param_env = true;
spans.push(*span);
}
}
}
let mut crate_names: Vec<_> = crates.iter().map(|n| format!("`{n}`")).collect();
crate_names.sort();
crate_names.dedup();
post.sort();
post.dedup();
if self.tainted_by_errors().is_some()
&& (crate_names.len() == 1
&& spans.len() == 0
&& ["`core`", "`alloc`", "`std`"].contains(&crate_names[0].as_str())
|| predicate.visit_with(&mut HasNumericInferVisitor).is_break())
{
// Avoid complaining about other inference issues for expressions like
// `42 >> 1`, where the types are still `{integer}`, but we want to
// Do we need `trait_ref.skip_binder().self_ty().is_numeric() &&` too?
// NOTE(eddyb) this was `.cancel()`, but `err`
// is borrowed, so we can't fully defuse it.
err.downgrade_to_delayed_bug();
return;
}
let msg = format!(
"multiple `impl`s{} satisfying `{}` found",
if has_param_env { " or `where` clauses" } else { "" },
predicate
);
let post = if post.len() > 1 || (post.len() == 1 && post[0].contains('\n')) {
format!(":\n{}", post.iter().map(|p| format!("- {p}")).collect::<Vec<_>>().join("\n"),)
} else if post.len() == 1 {
format!(": `{}`", post[0])
} else {
String::new()
};
match (spans.len(), crates.len(), crate_names.len()) {
(0, 0, 0) => {
err.note(format!("cannot satisfy `{predicate}`"));
}
(0, _, 1) => {
err.note(format!("{} in the `{}` crate{}", msg, crates[0], post,));
}
(0, _, _) => {
err.note(format!(
"{} in the following crates: {}{}",
msg,
crate_names.join(", "),
post,
));
}
(_, 0, 0) => {
let span: MultiSpan = spans.into();
err.span_note(span, msg);
}
(_, 1, 1) => {
let span: MultiSpan = spans.into();
err.span_note(span, msg);
err.note(format!("and another `impl` found in the `{}` crate{}", crates[0], post,));
}
_ => {
let span: MultiSpan = spans.into();
err.span_note(span, msg);
err.note(format!(
"and more `impl`s found in the following crates: {}{}",
crate_names.join(", "),
post,
));
}
}
}
}
struct HasNumericInferVisitor;
impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for HasNumericInferVisitor {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
if matches!(ty.kind(), ty::Infer(ty::FloatVar(_) | ty::IntVar(_))) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
}
}