rustc_mir_build/builder/matches/mod.rs
1//! Code related to match expressions. These are sufficiently complex to
2//! warrant their own module and submodules. :) This main module includes the
3//! high-level algorithm, the submodules contain the details.
4//!
5//! This also includes code for pattern bindings in `let` statements and
6//! function parameters.
7
8use rustc_abi::VariantIdx;
9use rustc_data_structures::fx::FxIndexMap;
10use rustc_data_structures::stack::ensure_sufficient_stack;
11use rustc_hir::{BindingMode, ByRef};
12use rustc_middle::bug;
13use rustc_middle::middle::region;
14use rustc_middle::mir::{self, *};
15use rustc_middle::thir::{self, *};
16use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty};
17use rustc_span::{BytePos, Pos, Span, Symbol};
18use tracing::{debug, instrument};
19
20use crate::builder::ForGuard::{self, OutsideGuard, RefWithinGuard};
21use crate::builder::expr::as_place::PlaceBuilder;
22use crate::builder::scope::DropKind;
23use crate::builder::{
24 BlockAnd, BlockAndExtension, Builder, GuardFrame, GuardFrameLocal, LocalsForNode,
25};
26
27// helper functions, broken out by category:
28mod match_pair;
29mod simplify;
30mod test;
31mod util;
32
33use std::assert_matches::assert_matches;
34use std::borrow::Borrow;
35use std::mem;
36use std::sync::Arc;
37
38/// Arguments to [`Builder::then_else_break_inner`] that are usually forwarded
39/// to recursive invocations.
40#[derive(Clone, Copy)]
41struct ThenElseArgs {
42 /// Used as the temp scope for lowering `expr`. If absent (for match guards),
43 /// `self.local_scope()` is used.
44 temp_scope_override: Option<region::Scope>,
45 variable_source_info: SourceInfo,
46 /// Determines how bindings should be handled when lowering `let` expressions.
47 ///
48 /// Forwarded to [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
49 declare_let_bindings: DeclareLetBindings,
50}
51
52/// Should lowering a `let` expression also declare its bindings?
53///
54/// Used by [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
55#[derive(Clone, Copy)]
56pub(crate) enum DeclareLetBindings {
57 /// Yes, declare `let` bindings as normal for `if` conditions.
58 Yes,
59 /// No, don't declare `let` bindings, because the caller declares them
60 /// separately due to special requirements.
61 ///
62 /// Used for match guards and let-else.
63 No,
64 /// Let expressions are not permitted in this context, so it is a bug to
65 /// try to lower one (e.g inside lazy-boolean-or or boolean-not).
66 LetNotPermitted,
67}
68
69/// Used by [`Builder::bind_matched_candidate_for_arm_body`] to determine
70/// whether or not to call [`Builder::storage_live_binding`] to emit
71/// [`StatementKind::StorageLive`].
72#[derive(Clone, Copy)]
73pub(crate) enum EmitStorageLive {
74 /// Yes, emit `StorageLive` as normal.
75 Yes,
76 /// No, don't emit `StorageLive`. The caller has taken responsibility for
77 /// emitting `StorageLive` as appropriate.
78 No,
79}
80
81/// Used by [`Builder::storage_live_binding`] and [`Builder::bind_matched_candidate_for_arm_body`]
82/// to decide whether to schedule drops.
83#[derive(Clone, Copy, Debug)]
84pub(crate) enum ScheduleDrops {
85 /// Yes, the relevant functions should also schedule drops as appropriate.
86 Yes,
87 /// No, don't schedule drops. The caller has taken responsibility for any
88 /// appropriate drops.
89 No,
90}
91
92impl<'a, 'tcx> Builder<'a, 'tcx> {
93 /// Lowers a condition in a way that ensures that variables bound in any let
94 /// expressions are definitely initialized in the if body.
95 ///
96 /// If `declare_let_bindings` is false then variables created in `let`
97 /// expressions will not be declared. This is for if let guards on arms with
98 /// an or pattern, where the guard is lowered multiple times.
99 pub(crate) fn then_else_break(
100 &mut self,
101 block: BasicBlock,
102 expr_id: ExprId,
103 temp_scope_override: Option<region::Scope>,
104 variable_source_info: SourceInfo,
105 declare_let_bindings: DeclareLetBindings,
106 ) -> BlockAnd<()> {
107 self.then_else_break_inner(
108 block,
109 expr_id,
110 ThenElseArgs { temp_scope_override, variable_source_info, declare_let_bindings },
111 )
112 }
113
114 fn then_else_break_inner(
115 &mut self,
116 block: BasicBlock, // Block that the condition and branch will be lowered into
117 expr_id: ExprId, // Condition expression to lower
118 args: ThenElseArgs,
119 ) -> BlockAnd<()> {
120 let this = self;
121 let expr = &this.thir[expr_id];
122 let expr_span = expr.span;
123
124 match expr.kind {
125 ExprKind::LogicalOp { op: op @ LogicalOp::And, lhs, rhs } => {
126 this.visit_coverage_branch_operation(op, expr_span);
127 let lhs_then_block = this.then_else_break_inner(block, lhs, args).into_block();
128 let rhs_then_block =
129 this.then_else_break_inner(lhs_then_block, rhs, args).into_block();
130 rhs_then_block.unit()
131 }
132 ExprKind::LogicalOp { op: op @ LogicalOp::Or, lhs, rhs } => {
133 this.visit_coverage_branch_operation(op, expr_span);
134 let local_scope = this.local_scope();
135 let (lhs_success_block, failure_block) =
136 this.in_if_then_scope(local_scope, expr_span, |this| {
137 this.then_else_break_inner(
138 block,
139 lhs,
140 ThenElseArgs {
141 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
142 ..args
143 },
144 )
145 });
146 let rhs_success_block = this
147 .then_else_break_inner(
148 failure_block,
149 rhs,
150 ThenElseArgs {
151 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
152 ..args
153 },
154 )
155 .into_block();
156
157 // Make the LHS and RHS success arms converge to a common block.
158 // (We can't just make LHS goto RHS, because `rhs_success_block`
159 // might contain statements that we don't want on the LHS path.)
160 let success_block = this.cfg.start_new_block();
161 this.cfg.goto(lhs_success_block, args.variable_source_info, success_block);
162 this.cfg.goto(rhs_success_block, args.variable_source_info, success_block);
163 success_block.unit()
164 }
165 ExprKind::Unary { op: UnOp::Not, arg } => {
166 // Improve branch coverage instrumentation by noting conditions
167 // nested within one or more `!` expressions.
168 // (Skipped if branch coverage is not enabled.)
169 if let Some(coverage_info) = this.coverage_info.as_mut() {
170 coverage_info.visit_unary_not(this.thir, expr_id);
171 }
172
173 let local_scope = this.local_scope();
174 let (success_block, failure_block) =
175 this.in_if_then_scope(local_scope, expr_span, |this| {
176 // Help out coverage instrumentation by injecting a dummy statement with
177 // the original condition's span (including `!`). This fixes #115468.
178 if this.tcx.sess.instrument_coverage() {
179 this.cfg.push_coverage_span_marker(block, this.source_info(expr_span));
180 }
181 this.then_else_break_inner(
182 block,
183 arg,
184 ThenElseArgs {
185 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
186 ..args
187 },
188 )
189 });
190 this.break_for_else(success_block, args.variable_source_info);
191 failure_block.unit()
192 }
193 ExprKind::Scope { region_scope, lint_level, value } => {
194 let region_scope = (region_scope, this.source_info(expr_span));
195 this.in_scope(region_scope, lint_level, |this| {
196 this.then_else_break_inner(block, value, args)
197 })
198 }
199 ExprKind::Use { source } => this.then_else_break_inner(block, source, args),
200 ExprKind::Let { expr, ref pat } => this.lower_let_expr(
201 block,
202 expr,
203 pat,
204 Some(args.variable_source_info.scope),
205 args.variable_source_info.span,
206 args.declare_let_bindings,
207 EmitStorageLive::Yes,
208 ),
209 _ => {
210 let mut block = block;
211 let temp_scope = args.temp_scope_override.unwrap_or_else(|| this.local_scope());
212 let mutability = Mutability::Mut;
213
214 // Increment the decision depth, in case we encounter boolean expressions
215 // further down.
216 this.mcdc_increment_depth_if_enabled();
217 let place = unpack!(
218 block = this.as_temp(
219 block,
220 TempLifetime {
221 temp_lifetime: Some(temp_scope),
222 backwards_incompatible: None
223 },
224 expr_id,
225 mutability
226 )
227 );
228 this.mcdc_decrement_depth_if_enabled();
229
230 let operand = Operand::Move(Place::from(place));
231
232 let then_block = this.cfg.start_new_block();
233 let else_block = this.cfg.start_new_block();
234 let term = TerminatorKind::if_(operand, then_block, else_block);
235
236 // Record branch coverage info for this condition.
237 // (Does nothing if branch coverage is not enabled.)
238 this.visit_coverage_branch_condition(expr_id, then_block, else_block);
239
240 let source_info = this.source_info(expr_span);
241 this.cfg.terminate(block, source_info, term);
242 this.break_for_else(else_block, source_info);
243
244 then_block.unit()
245 }
246 }
247 }
248
249 /// Generates MIR for a `match` expression.
250 ///
251 /// The MIR that we generate for a match looks like this.
252 ///
253 /// ```text
254 /// [ 0. Pre-match ]
255 /// |
256 /// [ 1. Evaluate Scrutinee (expression being matched on) ]
257 /// [ (PlaceMention of scrutinee) ]
258 /// |
259 /// [ 2. Decision tree -- check discriminants ] <--------+
260 /// | |
261 /// | (once a specific arm is chosen) |
262 /// | |
263 /// [pre_binding_block] [otherwise_block]
264 /// | |
265 /// [ 3. Create "guard bindings" for arm ] |
266 /// [ (create fake borrows) ] |
267 /// | |
268 /// [ 4. Execute guard code ] |
269 /// [ (read fake borrows) ] --(guard is false)-----------+
270 /// |
271 /// | (guard results in true)
272 /// |
273 /// [ 5. Create real bindings and execute arm ]
274 /// |
275 /// [ Exit match ]
276 /// ```
277 ///
278 /// All of the different arms have been stacked on top of each other to
279 /// simplify the diagram. For an arm with no guard the blocks marked 3 and
280 /// 4 and the fake borrows are omitted.
281 ///
282 /// We generate MIR in the following steps:
283 ///
284 /// 1. Evaluate the scrutinee and add the PlaceMention of it ([Builder::lower_scrutinee]).
285 /// 2. Create the decision tree ([Builder::lower_match_tree]).
286 /// 3. Determine the fake borrows that are needed from the places that were
287 /// matched against and create the required temporaries for them
288 /// ([util::collect_fake_borrows]).
289 /// 4. Create everything else: the guards and the arms ([Builder::lower_match_arms]).
290 ///
291 /// ## False edges
292 ///
293 /// We don't want to have the exact structure of the decision tree be visible through borrow
294 /// checking. Specifically we want borrowck to think that:
295 /// - at any point, any or none of the patterns and guards seen so far may have been tested;
296 /// - after the match, any of the patterns may have matched.
297 ///
298 /// For example, all of these would fail to error if borrowck could see the real CFG (examples
299 /// taken from `tests/ui/nll/match-cfg-fake-edges.rs`):
300 /// ```ignore (too many errors, this is already in the test suite)
301 /// let x = String::new();
302 /// let _ = match true {
303 /// _ => {},
304 /// _ => drop(x),
305 /// };
306 /// // Borrowck must not know the second arm is never run.
307 /// drop(x); //~ ERROR use of moved value
308 ///
309 /// let x;
310 /// # let y = true;
311 /// match y {
312 /// _ if { x = 2; true } => {},
313 /// // Borrowck must not know the guard is always run.
314 /// _ => drop(x), //~ ERROR used binding `x` is possibly-uninitialized
315 /// };
316 ///
317 /// let x = String::new();
318 /// # let y = true;
319 /// match y {
320 /// false if { drop(x); true } => {},
321 /// // Borrowck must not know the guard is not run in the `true` case.
322 /// true => drop(x), //~ ERROR use of moved value: `x`
323 /// false => {},
324 /// };
325 ///
326 /// # let mut y = (true, true);
327 /// let r = &mut y.1;
328 /// match y {
329 /// //~^ ERROR cannot use `y.1` because it was mutably borrowed
330 /// (false, true) => {}
331 /// // Borrowck must not know we don't test `y.1` when `y.0` is `true`.
332 /// (true, _) => drop(r),
333 /// (false, _) => {}
334 /// };
335 /// ```
336 ///
337 /// We add false edges to act as if we were naively matching each arm in order. What we need is
338 /// a (fake) path from each candidate to the next, specifically from candidate C's pre-binding
339 /// block to next candidate D's pre-binding block. For maximum precision (needed for deref
340 /// patterns), we choose the earliest node on D's success path that doesn't also lead to C (to
341 /// avoid loops).
342 ///
343 /// This turns out to be easy to compute: that block is the `start_block` of the first call to
344 /// `match_candidates` where D is the first candidate in the list.
345 ///
346 /// For example:
347 /// ```rust
348 /// # let (x, y) = (true, true);
349 /// match (x, y) {
350 /// (true, true) => 1,
351 /// (false, true) => 2,
352 /// (true, false) => 3,
353 /// _ => 4,
354 /// }
355 /// # ;
356 /// ```
357 /// In this example, the pre-binding block of arm 1 has a false edge to the block for result
358 /// `false` of the first test on `x`. The other arms have false edges to the pre-binding blocks
359 /// of the next arm.
360 ///
361 /// On top of this, we also add a false edge from the otherwise_block of each guard to the
362 /// aforementioned start block of the next candidate, to ensure borrock doesn't rely on which
363 /// guards may have run.
364 #[instrument(level = "debug", skip(self, arms))]
365 pub(crate) fn match_expr(
366 &mut self,
367 destination: Place<'tcx>,
368 mut block: BasicBlock,
369 scrutinee_id: ExprId,
370 arms: &[ArmId],
371 span: Span,
372 scrutinee_span: Span,
373 ) -> BlockAnd<()> {
374 let scrutinee_place =
375 unpack!(block = self.lower_scrutinee(block, scrutinee_id, scrutinee_span));
376
377 let match_start_span = span.shrink_to_lo().to(scrutinee_span);
378 let patterns = arms
379 .iter()
380 .map(|&arm| {
381 let arm = &self.thir[arm];
382 let has_match_guard =
383 if arm.guard.is_some() { HasMatchGuard::Yes } else { HasMatchGuard::No };
384 (&*arm.pattern, has_match_guard)
385 })
386 .collect();
387 let built_tree = self.lower_match_tree(
388 block,
389 scrutinee_span,
390 &scrutinee_place,
391 match_start_span,
392 patterns,
393 false,
394 );
395
396 self.lower_match_arms(
397 destination,
398 scrutinee_place,
399 scrutinee_span,
400 arms,
401 built_tree,
402 self.source_info(span),
403 )
404 }
405
406 /// Evaluate the scrutinee and add the PlaceMention for it.
407 fn lower_scrutinee(
408 &mut self,
409 mut block: BasicBlock,
410 scrutinee_id: ExprId,
411 scrutinee_span: Span,
412 ) -> BlockAnd<PlaceBuilder<'tcx>> {
413 let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee_id));
414 if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
415 let source_info = self.source_info(scrutinee_span);
416 self.cfg.push_place_mention(block, source_info, scrutinee_place);
417 }
418
419 block.and(scrutinee_place_builder)
420 }
421
422 /// Lower the bindings, guards and arm bodies of a `match` expression.
423 ///
424 /// The decision tree should have already been created
425 /// (by [Builder::lower_match_tree]).
426 ///
427 /// `outer_source_info` is the SourceInfo for the whole match.
428 fn lower_match_arms(
429 &mut self,
430 destination: Place<'tcx>,
431 scrutinee_place_builder: PlaceBuilder<'tcx>,
432 scrutinee_span: Span,
433 arms: &[ArmId],
434 built_match_tree: BuiltMatchTree<'tcx>,
435 outer_source_info: SourceInfo,
436 ) -> BlockAnd<()> {
437 let arm_end_blocks: Vec<BasicBlock> = arms
438 .iter()
439 .map(|&arm| &self.thir[arm])
440 .zip(built_match_tree.branches)
441 .map(|(arm, branch)| {
442 debug!("lowering arm {:?}\ncorresponding branch = {:?}", arm, branch);
443
444 let arm_source_info = self.source_info(arm.span);
445 let arm_scope = (arm.scope, arm_source_info);
446 let match_scope = self.local_scope();
447 self.in_scope(arm_scope, arm.lint_level, |this| {
448 let old_dedup_scope =
449 mem::replace(&mut this.fixed_temps_scope, Some(arm.scope));
450
451 // `try_to_place` may fail if it is unable to resolve the given
452 // `PlaceBuilder` inside a closure. In this case, we don't want to include
453 // a scrutinee place. `scrutinee_place_builder` will fail to be resolved
454 // if the only match arm is a wildcard (`_`).
455 // Example:
456 // ```
457 // let foo = (0, 1);
458 // let c = || {
459 // match foo { _ => () };
460 // };
461 // ```
462 let scrutinee_place = scrutinee_place_builder.try_to_place(this);
463 let opt_scrutinee_place =
464 scrutinee_place.as_ref().map(|place| (Some(place), scrutinee_span));
465 let scope = this.declare_bindings(
466 None,
467 arm.span,
468 &arm.pattern,
469 arm.guard,
470 opt_scrutinee_place,
471 );
472
473 let arm_block = this.bind_pattern(
474 outer_source_info,
475 branch,
476 &built_match_tree.fake_borrow_temps,
477 scrutinee_span,
478 Some((arm, match_scope)),
479 EmitStorageLive::Yes,
480 );
481
482 this.fixed_temps_scope = old_dedup_scope;
483
484 if let Some(source_scope) = scope {
485 this.source_scope = source_scope;
486 }
487
488 this.expr_into_dest(destination, arm_block, arm.body)
489 })
490 .into_block()
491 })
492 .collect();
493
494 // all the arm blocks will rejoin here
495 let end_block = self.cfg.start_new_block();
496
497 let end_brace = self.source_info(
498 outer_source_info.span.with_lo(outer_source_info.span.hi() - BytePos::from_usize(1)),
499 );
500 for arm_block in arm_end_blocks {
501 let block = &self.cfg.basic_blocks[arm_block];
502 let last_location = block.statements.last().map(|s| s.source_info);
503
504 self.cfg.goto(arm_block, last_location.unwrap_or(end_brace), end_block);
505 }
506
507 self.source_scope = outer_source_info.scope;
508
509 end_block.unit()
510 }
511
512 /// For a top-level `match` arm or a `let` binding, binds the variables and
513 /// ascribes types, and also checks the match arm guard (if present).
514 ///
515 /// `arm_scope` should be `Some` if and only if this is called for a
516 /// `match` arm.
517 ///
518 /// In the presence of or-patterns, a match arm might have multiple
519 /// sub-branches representing different ways to match, with each sub-branch
520 /// requiring its own bindings and its own copy of the guard. This method
521 /// handles those sub-branches individually, and then has them jump together
522 /// to a common block.
523 ///
524 /// Returns a single block that the match arm can be lowered into.
525 /// (For `let` bindings, this is the code that can use the bindings.)
526 fn bind_pattern(
527 &mut self,
528 outer_source_info: SourceInfo,
529 branch: MatchTreeBranch<'tcx>,
530 fake_borrow_temps: &[(Place<'tcx>, Local, FakeBorrowKind)],
531 scrutinee_span: Span,
532 arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
533 emit_storage_live: EmitStorageLive,
534 ) -> BasicBlock {
535 if branch.sub_branches.len() == 1 {
536 let [sub_branch] = branch.sub_branches.try_into().unwrap();
537 // Avoid generating another `BasicBlock` when we only have one sub branch.
538 self.bind_and_guard_matched_candidate(
539 sub_branch,
540 fake_borrow_temps,
541 scrutinee_span,
542 arm_match_scope,
543 ScheduleDrops::Yes,
544 emit_storage_live,
545 )
546 } else {
547 // It's helpful to avoid scheduling drops multiple times to save
548 // drop elaboration from having to clean up the extra drops.
549 //
550 // If we are in a `let` then we only schedule drops for the first
551 // candidate.
552 //
553 // If we're in a `match` arm then we could have a case like so:
554 //
555 // Ok(x) | Err(x) if return => { /* ... */ }
556 //
557 // In this case we don't want a drop of `x` scheduled when we
558 // return: it isn't bound by move until right before enter the arm.
559 // To handle this we instead unschedule it's drop after each time
560 // we lower the guard.
561 let target_block = self.cfg.start_new_block();
562 let mut schedule_drops = ScheduleDrops::Yes;
563 let arm = arm_match_scope.unzip().0;
564 // We keep a stack of all of the bindings and type ascriptions
565 // from the parent candidates that we visit, that also need to
566 // be bound for each candidate.
567 for sub_branch in branch.sub_branches {
568 if let Some(arm) = arm {
569 self.clear_top_scope(arm.scope);
570 }
571 let binding_end = self.bind_and_guard_matched_candidate(
572 sub_branch,
573 fake_borrow_temps,
574 scrutinee_span,
575 arm_match_scope,
576 schedule_drops,
577 emit_storage_live,
578 );
579 if arm.is_none() {
580 schedule_drops = ScheduleDrops::No;
581 }
582 self.cfg.goto(binding_end, outer_source_info, target_block);
583 }
584
585 target_block
586 }
587 }
588
589 pub(super) fn expr_into_pattern(
590 &mut self,
591 mut block: BasicBlock,
592 irrefutable_pat: &Pat<'tcx>,
593 initializer_id: ExprId,
594 ) -> BlockAnd<()> {
595 match irrefutable_pat.kind {
596 // Optimize the case of `let x = ...` to write directly into `x`
597 PatKind::Binding { mode: BindingMode(ByRef::No, _), var, subpattern: None, .. } => {
598 let place = self.storage_live_binding(
599 block,
600 var,
601 irrefutable_pat.span,
602 OutsideGuard,
603 ScheduleDrops::Yes,
604 );
605 block = self.expr_into_dest(place, block, initializer_id).into_block();
606
607 // Inject a fake read, see comments on `FakeReadCause::ForLet`.
608 let source_info = self.source_info(irrefutable_pat.span);
609 self.cfg.push_fake_read(block, source_info, FakeReadCause::ForLet(None), place);
610
611 self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
612 block.unit()
613 }
614
615 // Optimize the case of `let x: T = ...` to write directly
616 // into `x` and then require that `T == typeof(x)`.
617 PatKind::AscribeUserType {
618 ref subpattern,
619 ascription: thir::Ascription { ref annotation, variance: _ },
620 } if let PatKind::Binding {
621 mode: BindingMode(ByRef::No, _),
622 var,
623 subpattern: None,
624 ..
625 } = subpattern.kind =>
626 {
627 let place = self.storage_live_binding(
628 block,
629 var,
630 irrefutable_pat.span,
631 OutsideGuard,
632 ScheduleDrops::Yes,
633 );
634 block = self.expr_into_dest(place, block, initializer_id).into_block();
635
636 // Inject a fake read, see comments on `FakeReadCause::ForLet`.
637 let pattern_source_info = self.source_info(irrefutable_pat.span);
638 let cause_let = FakeReadCause::ForLet(None);
639 self.cfg.push_fake_read(block, pattern_source_info, cause_let, place);
640
641 let ty_source_info = self.source_info(annotation.span);
642
643 let base = self.canonical_user_type_annotations.push(annotation.clone());
644 self.cfg.push(
645 block,
646 Statement {
647 source_info: ty_source_info,
648 kind: StatementKind::AscribeUserType(
649 Box::new((place, UserTypeProjection { base, projs: Vec::new() })),
650 // We always use invariant as the variance here. This is because the
651 // variance field from the ascription refers to the variance to use
652 // when applying the type to the value being matched, but this
653 // ascription applies rather to the type of the binding. e.g., in this
654 // example:
655 //
656 // ```
657 // let x: T = <expr>
658 // ```
659 //
660 // We are creating an ascription that defines the type of `x` to be
661 // exactly `T` (i.e., with invariance). The variance field, in
662 // contrast, is intended to be used to relate `T` to the type of
663 // `<expr>`.
664 ty::Invariant,
665 ),
666 },
667 );
668
669 self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
670 block.unit()
671 }
672
673 _ => {
674 let initializer = &self.thir[initializer_id];
675 let place_builder =
676 unpack!(block = self.lower_scrutinee(block, initializer_id, initializer.span));
677 self.place_into_pattern(block, irrefutable_pat, place_builder, true)
678 }
679 }
680 }
681
682 pub(crate) fn place_into_pattern(
683 &mut self,
684 block: BasicBlock,
685 irrefutable_pat: &Pat<'tcx>,
686 initializer: PlaceBuilder<'tcx>,
687 set_match_place: bool,
688 ) -> BlockAnd<()> {
689 let built_tree = self.lower_match_tree(
690 block,
691 irrefutable_pat.span,
692 &initializer,
693 irrefutable_pat.span,
694 vec![(irrefutable_pat, HasMatchGuard::No)],
695 false,
696 );
697 let [branch] = built_tree.branches.try_into().unwrap();
698
699 // For matches and function arguments, the place that is being matched
700 // can be set when creating the variables. But the place for
701 // let PATTERN = ... might not even exist until we do the assignment.
702 // so we set it here instead.
703 if set_match_place {
704 // `try_to_place` may fail if it is unable to resolve the given `PlaceBuilder` inside a
705 // closure. In this case, we don't want to include a scrutinee place.
706 // `scrutinee_place_builder` will fail for destructured assignments. This is because a
707 // closure only captures the precise places that it will read and as a result a closure
708 // may not capture the entire tuple/struct and rather have individual places that will
709 // be read in the final MIR.
710 // Example:
711 // ```
712 // let foo = (0, 1);
713 // let c = || {
714 // let (v1, v2) = foo;
715 // };
716 // ```
717 if let Some(place) = initializer.try_to_place(self) {
718 // Because or-alternatives bind the same variables, we only explore the first one.
719 let first_sub_branch = branch.sub_branches.first().unwrap();
720 for binding in &first_sub_branch.bindings {
721 let local = self.var_local_id(binding.var_id, OutsideGuard);
722 if let LocalInfo::User(BindingForm::Var(VarBindingForm {
723 opt_match_place: Some((ref mut match_place, _)),
724 ..
725 })) = **self.local_decls[local].local_info.as_mut().assert_crate_local()
726 {
727 *match_place = Some(place);
728 } else {
729 bug!("Let binding to non-user variable.")
730 };
731 }
732 }
733 }
734
735 self.bind_pattern(
736 self.source_info(irrefutable_pat.span),
737 branch,
738 &[],
739 irrefutable_pat.span,
740 None,
741 EmitStorageLive::Yes,
742 )
743 .unit()
744 }
745
746 /// Declares the bindings of the given patterns and returns the visibility
747 /// scope for the bindings in these patterns, if such a scope had to be
748 /// created. NOTE: Declaring the bindings should always be done in their
749 /// drop scope.
750 #[instrument(skip(self), level = "debug")]
751 pub(crate) fn declare_bindings(
752 &mut self,
753 mut visibility_scope: Option<SourceScope>,
754 scope_span: Span,
755 pattern: &Pat<'tcx>,
756 guard: Option<ExprId>,
757 opt_match_place: Option<(Option<&Place<'tcx>>, Span)>,
758 ) -> Option<SourceScope> {
759 self.visit_primary_bindings(
760 pattern,
761 UserTypeProjections::none(),
762 &mut |this, name, mode, var, span, ty, user_ty| {
763 if visibility_scope.is_none() {
764 visibility_scope =
765 Some(this.new_source_scope(scope_span, LintLevel::Inherited));
766 }
767 let source_info = SourceInfo { span, scope: this.source_scope };
768 let visibility_scope = visibility_scope.unwrap();
769 this.declare_binding(
770 source_info,
771 visibility_scope,
772 name,
773 mode,
774 var,
775 ty,
776 user_ty,
777 ArmHasGuard(guard.is_some()),
778 opt_match_place.map(|(x, y)| (x.cloned(), y)),
779 pattern.span,
780 );
781 },
782 );
783 if let Some(guard_expr) = guard {
784 self.declare_guard_bindings(guard_expr, scope_span, visibility_scope);
785 }
786 visibility_scope
787 }
788
789 /// Declare bindings in a guard. This has to be done when declaring bindings
790 /// for an arm to ensure that or patterns only have one version of each
791 /// variable.
792 pub(crate) fn declare_guard_bindings(
793 &mut self,
794 guard_expr: ExprId,
795 scope_span: Span,
796 visibility_scope: Option<SourceScope>,
797 ) {
798 match self.thir.exprs[guard_expr].kind {
799 ExprKind::Let { expr: _, pat: ref guard_pat } => {
800 // FIXME: pass a proper `opt_match_place`
801 self.declare_bindings(visibility_scope, scope_span, guard_pat, None, None);
802 }
803 ExprKind::Scope { value, .. } => {
804 self.declare_guard_bindings(value, scope_span, visibility_scope);
805 }
806 ExprKind::Use { source } => {
807 self.declare_guard_bindings(source, scope_span, visibility_scope);
808 }
809 ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
810 self.declare_guard_bindings(lhs, scope_span, visibility_scope);
811 self.declare_guard_bindings(rhs, scope_span, visibility_scope);
812 }
813 _ => {}
814 }
815 }
816
817 /// Emits a [`StatementKind::StorageLive`] for the given var, and also
818 /// schedules a drop if requested (and possible).
819 pub(crate) fn storage_live_binding(
820 &mut self,
821 block: BasicBlock,
822 var: LocalVarId,
823 span: Span,
824 for_guard: ForGuard,
825 schedule_drop: ScheduleDrops,
826 ) -> Place<'tcx> {
827 let local_id = self.var_local_id(var, for_guard);
828 let source_info = self.source_info(span);
829 self.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(local_id) });
830 // Although there is almost always scope for given variable in corner cases
831 // like #92893 we might get variable with no scope.
832 if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id)
833 && matches!(schedule_drop, ScheduleDrops::Yes)
834 {
835 self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
836 }
837 Place::from(local_id)
838 }
839
840 pub(crate) fn schedule_drop_for_binding(
841 &mut self,
842 var: LocalVarId,
843 span: Span,
844 for_guard: ForGuard,
845 ) {
846 let local_id = self.var_local_id(var, for_guard);
847 if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) {
848 self.schedule_drop(span, region_scope, local_id, DropKind::Value);
849 }
850 }
851
852 /// Visit all of the primary bindings in a patterns, that is, visit the
853 /// leftmost occurrence of each variable bound in a pattern. A variable
854 /// will occur more than once in an or-pattern.
855 pub(super) fn visit_primary_bindings(
856 &mut self,
857 pattern: &Pat<'tcx>,
858 pattern_user_ty: UserTypeProjections,
859 f: &mut impl FnMut(
860 &mut Self,
861 Symbol,
862 BindingMode,
863 LocalVarId,
864 Span,
865 Ty<'tcx>,
866 UserTypeProjections,
867 ),
868 ) {
869 debug!(
870 "visit_primary_bindings: pattern={:?} pattern_user_ty={:?}",
871 pattern, pattern_user_ty
872 );
873 match pattern.kind {
874 PatKind::Binding { name, mode, var, ty, ref subpattern, is_primary, .. } => {
875 if is_primary {
876 f(self, name, mode, var, pattern.span, ty, pattern_user_ty.clone());
877 }
878 if let Some(subpattern) = subpattern.as_ref() {
879 self.visit_primary_bindings(subpattern, pattern_user_ty, f);
880 }
881 }
882
883 PatKind::Array { ref prefix, ref slice, ref suffix }
884 | PatKind::Slice { ref prefix, ref slice, ref suffix } => {
885 let from = u64::try_from(prefix.len()).unwrap();
886 let to = u64::try_from(suffix.len()).unwrap();
887 for subpattern in prefix.iter() {
888 self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
889 }
890 if let Some(subpattern) = slice {
891 self.visit_primary_bindings(
892 subpattern,
893 pattern_user_ty.clone().subslice(from, to),
894 f,
895 );
896 }
897 for subpattern in suffix.iter() {
898 self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
899 }
900 }
901
902 PatKind::Constant { .. }
903 | PatKind::Range { .. }
904 | PatKind::Wild
905 | PatKind::Never
906 | PatKind::Error(_) => {}
907
908 PatKind::Deref { ref subpattern } => {
909 self.visit_primary_bindings(subpattern, pattern_user_ty.deref(), f);
910 }
911
912 PatKind::DerefPattern { ref subpattern, .. } => {
913 self.visit_primary_bindings(subpattern, UserTypeProjections::none(), f);
914 }
915
916 PatKind::AscribeUserType {
917 ref subpattern,
918 ascription: thir::Ascription { ref annotation, variance: _ },
919 } => {
920 // This corresponds to something like
921 //
922 // ```
923 // let A::<'a>(_): A<'static> = ...;
924 // ```
925 //
926 // Note that the variance doesn't apply here, as we are tracking the effect
927 // of `user_ty` on any bindings contained with subpattern.
928
929 let projection = UserTypeProjection {
930 base: self.canonical_user_type_annotations.push(annotation.clone()),
931 projs: Vec::new(),
932 };
933 let subpattern_user_ty =
934 pattern_user_ty.push_projection(&projection, annotation.span);
935 self.visit_primary_bindings(subpattern, subpattern_user_ty, f)
936 }
937
938 PatKind::ExpandedConstant { ref subpattern, .. } => {
939 self.visit_primary_bindings(subpattern, pattern_user_ty, f)
940 }
941
942 PatKind::Leaf { ref subpatterns } => {
943 for subpattern in subpatterns {
944 let subpattern_user_ty = pattern_user_ty.clone().leaf(subpattern.field);
945 debug!("visit_primary_bindings: subpattern_user_ty={:?}", subpattern_user_ty);
946 self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
947 }
948 }
949
950 PatKind::Variant { adt_def, args: _, variant_index, ref subpatterns } => {
951 for subpattern in subpatterns {
952 let subpattern_user_ty =
953 pattern_user_ty.clone().variant(adt_def, variant_index, subpattern.field);
954 self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
955 }
956 }
957 PatKind::Or { ref pats } => {
958 // In cases where we recover from errors the primary bindings
959 // may not all be in the leftmost subpattern. For example in
960 // `let (x | y) = ...`, the primary binding of `y` occurs in
961 // the right subpattern
962 for subpattern in pats.iter() {
963 self.visit_primary_bindings(subpattern, pattern_user_ty.clone(), f);
964 }
965 }
966 }
967 }
968}
969
970/// Data extracted from a pattern that doesn't affect which branch is taken. Collected during
971/// pattern simplification and not mutated later.
972#[derive(Debug, Clone)]
973struct PatternExtraData<'tcx> {
974 /// [`Span`] of the original pattern.
975 span: Span,
976
977 /// Bindings that must be established.
978 bindings: Vec<Binding<'tcx>>,
979
980 /// Types that must be asserted.
981 ascriptions: Vec<Ascription<'tcx>>,
982
983 /// Whether this corresponds to a never pattern.
984 is_never: bool,
985}
986
987impl<'tcx> PatternExtraData<'tcx> {
988 fn is_empty(&self) -> bool {
989 self.bindings.is_empty() && self.ascriptions.is_empty()
990 }
991}
992
993/// A pattern in a form suitable for lowering the match tree, with all irrefutable
994/// patterns simplified away, and or-patterns sorted to the end.
995///
996/// Here, "flat" indicates that the pattern's match pairs have been recursively
997/// simplified by [`Builder::simplify_match_pairs`]. They are not necessarily
998/// flat in an absolute sense.
999///
1000/// Will typically be incorporated into a [`Candidate`].
1001#[derive(Debug, Clone)]
1002struct FlatPat<'tcx> {
1003 /// To match the pattern, all of these must be satisfied...
1004 // Invariant: all the match pairs are recursively simplified.
1005 // Invariant: or-patterns must be sorted to the end.
1006 match_pairs: Vec<MatchPairTree<'tcx>>,
1007
1008 extra_data: PatternExtraData<'tcx>,
1009}
1010
1011impl<'tcx> FlatPat<'tcx> {
1012 /// Creates a `FlatPat` containing a simplified [`MatchPairTree`] list/forest
1013 /// for the given pattern.
1014 fn new(place: PlaceBuilder<'tcx>, pattern: &Pat<'tcx>, cx: &mut Builder<'_, 'tcx>) -> Self {
1015 // First, recursively build a tree of match pairs for the given pattern.
1016 let mut match_pairs = vec![MatchPairTree::for_pattern(place, pattern, cx)];
1017 let mut extra_data = PatternExtraData {
1018 span: pattern.span,
1019 bindings: Vec::new(),
1020 ascriptions: Vec::new(),
1021 is_never: pattern.is_never_pattern(),
1022 };
1023 // Recursively remove irrefutable match pairs, while recording their
1024 // bindings/ascriptions, and sort or-patterns after other match pairs.
1025 cx.simplify_match_pairs(&mut match_pairs, &mut extra_data);
1026
1027 Self { match_pairs, extra_data }
1028 }
1029}
1030
1031/// Candidates are a generalization of (a) top-level match arms, and
1032/// (b) sub-branches of or-patterns, allowing the match-lowering process to handle
1033/// them both in a mostly-uniform way. For example, the list of candidates passed
1034/// to [`Builder::match_candidates`] will often contain a mixture of top-level
1035/// candidates and or-pattern subcandidates.
1036///
1037/// At the start of match lowering, there is one candidate for each match arm.
1038/// During match lowering, arms with or-patterns will be expanded into a tree
1039/// of candidates, where each "leaf" candidate represents one of the ways for
1040/// the arm pattern to successfully match.
1041#[derive(Debug)]
1042struct Candidate<'tcx> {
1043 /// For the candidate to match, all of these must be satisfied...
1044 ///
1045 /// ---
1046 /// Initially contains a list of match pairs created by [`FlatPat`], but is
1047 /// subsequently mutated (in a queue-like way) while lowering the match tree.
1048 /// When this list becomes empty, the candidate is fully matched and becomes
1049 /// a leaf (see [`Builder::select_matched_candidate`]).
1050 ///
1051 /// Key mutations include:
1052 ///
1053 /// - When a match pair is fully satisfied by a test, it is removed from the
1054 /// list, and its subpairs are added instead (see [`Builder::sort_candidate`]).
1055 /// - During or-pattern expansion, any leading or-pattern is removed, and is
1056 /// converted into subcandidates (see [`Builder::expand_and_match_or_candidates`]).
1057 /// - After a candidate's subcandidates have been lowered, a copy of any remaining
1058 /// or-patterns is added to each leaf subcandidate
1059 /// (see [`Builder::test_remaining_match_pairs_after_or`]).
1060 ///
1061 /// Invariants:
1062 /// - All [`TestCase::Irrefutable`] patterns have been removed by simplification.
1063 /// - All or-patterns ([`TestCase::Or`]) have been sorted to the end.
1064 match_pairs: Vec<MatchPairTree<'tcx>>,
1065
1066 /// ...and if this is non-empty, one of these subcandidates also has to match...
1067 ///
1068 /// ---
1069 /// Initially a candidate has no subcandidates; they are added (and then immediately
1070 /// lowered) during or-pattern expansion. Their main function is to serve as _output_
1071 /// of match tree lowering, allowing later steps to see the leaf candidates that
1072 /// represent a match of the entire match arm.
1073 ///
1074 /// A candidate no subcandidates is either incomplete (if it has match pairs left),
1075 /// or is a leaf in the match tree. A candidate with one or more subcandidates is
1076 /// an internal node in the match tree.
1077 ///
1078 /// Invariant: at the end of match tree lowering, this must not contain an
1079 /// `is_never` candidate, because that would break binding consistency.
1080 /// - See [`Builder::remove_never_subcandidates`].
1081 subcandidates: Vec<Candidate<'tcx>>,
1082
1083 /// ...and if there is a guard it must be evaluated; if it's `false` then branch to `otherwise_block`.
1084 ///
1085 /// ---
1086 /// For subcandidates, this is copied from the parent candidate, so it indicates
1087 /// whether the enclosing match arm has a guard.
1088 has_guard: bool,
1089
1090 /// Holds extra pattern data that was prepared by [`FlatPat`], including bindings and
1091 /// ascriptions that must be established if this candidate succeeds.
1092 extra_data: PatternExtraData<'tcx>,
1093
1094 /// When setting `self.subcandidates`, we store here the span of the or-pattern they came from.
1095 ///
1096 /// ---
1097 /// Invariant: it is `None` iff `subcandidates.is_empty()`.
1098 /// - FIXME: We sometimes don't unset this when clearing `subcandidates`.
1099 or_span: Option<Span>,
1100
1101 /// The block before the `bindings` have been established.
1102 ///
1103 /// After the match tree has been lowered, [`Builder::lower_match_arms`]
1104 /// will use this as the start point for lowering bindings and guards, and
1105 /// then jump to a shared block containing the arm body.
1106 pre_binding_block: Option<BasicBlock>,
1107
1108 /// The block to branch to if the guard or a nested candidate fails to match.
1109 otherwise_block: Option<BasicBlock>,
1110
1111 /// The earliest block that has only candidates >= this one as descendents. Used for false
1112 /// edges, see the doc for [`Builder::match_expr`].
1113 false_edge_start_block: Option<BasicBlock>,
1114}
1115
1116impl<'tcx> Candidate<'tcx> {
1117 fn new(
1118 place: PlaceBuilder<'tcx>,
1119 pattern: &Pat<'tcx>,
1120 has_guard: HasMatchGuard,
1121 cx: &mut Builder<'_, 'tcx>,
1122 ) -> Self {
1123 // Use `FlatPat` to build simplified match pairs, then immediately
1124 // incorporate them into a new candidate.
1125 Self::from_flat_pat(
1126 FlatPat::new(place, pattern, cx),
1127 matches!(has_guard, HasMatchGuard::Yes),
1128 )
1129 }
1130
1131 /// Incorporates an already-simplified [`FlatPat`] into a new candidate.
1132 fn from_flat_pat(flat_pat: FlatPat<'tcx>, has_guard: bool) -> Self {
1133 Candidate {
1134 match_pairs: flat_pat.match_pairs,
1135 extra_data: flat_pat.extra_data,
1136 has_guard,
1137 subcandidates: Vec::new(),
1138 or_span: None,
1139 otherwise_block: None,
1140 pre_binding_block: None,
1141 false_edge_start_block: None,
1142 }
1143 }
1144
1145 /// Returns whether the first match pair of this candidate is an or-pattern.
1146 fn starts_with_or_pattern(&self) -> bool {
1147 matches!(&*self.match_pairs, [MatchPairTree { test_case: TestCase::Or { .. }, .. }, ..])
1148 }
1149
1150 /// Visit the leaf candidates (those with no subcandidates) contained in
1151 /// this candidate.
1152 fn visit_leaves<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
1153 traverse_candidate(
1154 self,
1155 &mut (),
1156 &mut move |c, _| visit_leaf(c),
1157 move |c, _| c.subcandidates.iter_mut(),
1158 |_| {},
1159 );
1160 }
1161
1162 /// Visit the leaf candidates in reverse order.
1163 fn visit_leaves_rev<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
1164 traverse_candidate(
1165 self,
1166 &mut (),
1167 &mut move |c, _| visit_leaf(c),
1168 move |c, _| c.subcandidates.iter_mut().rev(),
1169 |_| {},
1170 );
1171 }
1172}
1173
1174/// A depth-first traversal of the `Candidate` and all of its recursive
1175/// subcandidates.
1176///
1177/// This signature is very generic, to support traversing candidate trees by
1178/// reference or by value, and to allow a mutable "context" to be shared by the
1179/// traversal callbacks. Most traversals can use the simpler
1180/// [`Candidate::visit_leaves`] wrapper instead.
1181fn traverse_candidate<'tcx, C, T, I>(
1182 candidate: C,
1183 context: &mut T,
1184 // Called when visiting a "leaf" candidate (with no subcandidates).
1185 visit_leaf: &mut impl FnMut(C, &mut T),
1186 // Called when visiting a "node" candidate (with one or more subcandidates).
1187 // Returns an iterator over the candidate's children (by value or reference).
1188 // Can perform setup before visiting the node's children.
1189 get_children: impl Copy + Fn(C, &mut T) -> I,
1190 // Called after visiting a "node" candidate's children.
1191 complete_children: impl Copy + Fn(&mut T),
1192) where
1193 C: Borrow<Candidate<'tcx>>, // Typically `Candidate` or `&mut Candidate`
1194 I: Iterator<Item = C>,
1195{
1196 if candidate.borrow().subcandidates.is_empty() {
1197 visit_leaf(candidate, context)
1198 } else {
1199 for child in get_children(candidate, context) {
1200 traverse_candidate(child, context, visit_leaf, get_children, complete_children);
1201 }
1202 complete_children(context)
1203 }
1204}
1205
1206#[derive(Clone, Debug)]
1207struct Binding<'tcx> {
1208 span: Span,
1209 source: Place<'tcx>,
1210 var_id: LocalVarId,
1211 binding_mode: BindingMode,
1212}
1213
1214/// Indicates that the type of `source` must be a subtype of the
1215/// user-given type `user_ty`; this is basically a no-op but can
1216/// influence region inference.
1217#[derive(Clone, Debug)]
1218struct Ascription<'tcx> {
1219 source: Place<'tcx>,
1220 annotation: CanonicalUserTypeAnnotation<'tcx>,
1221 variance: ty::Variance,
1222}
1223
1224/// Partial summary of a [`thir::Pat`], indicating what sort of test should be
1225/// performed to match/reject the pattern, and what the desired test outcome is.
1226/// This avoids having to perform a full match on [`thir::PatKind`] in some places,
1227/// and helps [`TestKind::Switch`] and [`TestKind::SwitchInt`] know what target
1228/// values to use.
1229///
1230/// Created by [`MatchPairTree::for_pattern`], and then inspected primarily by:
1231/// - [`Builder::pick_test_for_match_pair`] (to choose a test)
1232/// - [`Builder::sort_candidate`] (to see how the test interacts with a match pair)
1233///
1234/// Two variants are unlike the others and deserve special mention:
1235///
1236/// - [`Self::Irrefutable`] is only used temporarily when building a [`MatchPairTree`].
1237/// They are then flattened away by [`Builder::simplify_match_pairs`], with any
1238/// bindings/ascriptions incorporated into the enclosing [`FlatPat`].
1239/// - [`Self::Or`] are not tested directly like the other variants. Instead they
1240/// participate in or-pattern expansion, where they are transformed into subcandidates.
1241/// - See [`Builder::expand_and_match_or_candidates`].
1242#[derive(Debug, Clone)]
1243enum TestCase<'tcx> {
1244 Irrefutable { binding: Option<Binding<'tcx>>, ascription: Option<Ascription<'tcx>> },
1245 Variant { adt_def: ty::AdtDef<'tcx>, variant_index: VariantIdx },
1246 Constant { value: mir::Const<'tcx> },
1247 Range(Arc<PatRange<'tcx>>),
1248 Slice { len: usize, variable_length: bool },
1249 Deref { temp: Place<'tcx>, mutability: Mutability },
1250 Never,
1251 Or { pats: Box<[FlatPat<'tcx>]> },
1252}
1253
1254impl<'tcx> TestCase<'tcx> {
1255 fn as_range(&self) -> Option<&PatRange<'tcx>> {
1256 if let Self::Range(v) = self { Some(v.as_ref()) } else { None }
1257 }
1258}
1259
1260/// Node in a tree of "match pairs", where each pair consists of a place to be
1261/// tested, and a test to perform on that place.
1262///
1263/// Each node also has a list of subpairs (possibly empty) that must also match,
1264/// and a reference to the THIR pattern it represents.
1265#[derive(Debug, Clone)]
1266pub(crate) struct MatchPairTree<'tcx> {
1267 /// This place...
1268 ///
1269 /// ---
1270 /// This can be `None` if it referred to a non-captured place in a closure.
1271 ///
1272 /// Invariant: Can only be `None` when `test_case` is `Irrefutable`.
1273 /// Therefore this must be `Some(_)` after simplification.
1274 place: Option<Place<'tcx>>,
1275
1276 /// ... must pass this test...
1277 ///
1278 /// ---
1279 /// Invariant: after creation and simplification in [`FlatPat::new`],
1280 /// this must not be [`TestCase::Irrefutable`].
1281 test_case: TestCase<'tcx>,
1282
1283 /// ... and these subpairs must match.
1284 ///
1285 /// ---
1286 /// Subpairs typically represent tests that can only be performed after their
1287 /// parent has succeeded. For example, the pattern `Some(3)` might have an
1288 /// outer match pair that tests for the variant `Some`, and then a subpair
1289 /// that tests its field for the value `3`.
1290 subpairs: Vec<Self>,
1291
1292 /// Type field of the pattern this node was created from.
1293 pattern_ty: Ty<'tcx>,
1294 /// Span field of the pattern this node was created from.
1295 pattern_span: Span,
1296}
1297
1298/// See [`Test`] for more.
1299#[derive(Clone, Debug, PartialEq)]
1300enum TestKind<'tcx> {
1301 /// Test what enum variant a value is.
1302 ///
1303 /// The subset of expected variants is not stored here; instead they are
1304 /// extracted from the [`TestCase`]s of the candidates participating in the
1305 /// test.
1306 Switch {
1307 /// The enum type being tested.
1308 adt_def: ty::AdtDef<'tcx>,
1309 },
1310
1311 /// Test what value an integer or `char` has.
1312 ///
1313 /// The test's target values are not stored here; instead they are extracted
1314 /// from the [`TestCase`]s of the candidates participating in the test.
1315 SwitchInt,
1316
1317 /// Test whether a `bool` is `true` or `false`.
1318 If,
1319
1320 /// Test for equality with value, possibly after an unsizing coercion to
1321 /// `ty`,
1322 Eq {
1323 value: Const<'tcx>,
1324 // Integer types are handled by `SwitchInt`, and constants with ADT
1325 // types are converted back into patterns, so this can only be `&str`,
1326 // `&[T]`, `f32` or `f64`.
1327 ty: Ty<'tcx>,
1328 },
1329
1330 /// Test whether the value falls within an inclusive or exclusive range.
1331 Range(Arc<PatRange<'tcx>>),
1332
1333 /// Test that the length of the slice is `== len` or `>= len`.
1334 Len { len: u64, op: BinOp },
1335
1336 /// Call `Deref::deref[_mut]` on the value.
1337 Deref {
1338 /// Temporary to store the result of `deref()`/`deref_mut()`.
1339 temp: Place<'tcx>,
1340 mutability: Mutability,
1341 },
1342
1343 /// Assert unreachability of never patterns.
1344 Never,
1345}
1346
1347/// A test to perform to determine which [`Candidate`] matches a value.
1348///
1349/// [`Test`] is just the test to perform; it does not include the value
1350/// to be tested.
1351#[derive(Debug)]
1352pub(crate) struct Test<'tcx> {
1353 span: Span,
1354 kind: TestKind<'tcx>,
1355}
1356
1357/// The branch to be taken after a test.
1358#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
1359enum TestBranch<'tcx> {
1360 /// Success branch, used for tests with two possible outcomes.
1361 Success,
1362 /// Branch corresponding to this constant.
1363 Constant(Const<'tcx>, u128),
1364 /// Branch corresponding to this variant.
1365 Variant(VariantIdx),
1366 /// Failure branch for tests with two possible outcomes, and "otherwise" branch for other tests.
1367 Failure,
1368}
1369
1370impl<'tcx> TestBranch<'tcx> {
1371 fn as_constant(&self) -> Option<&Const<'tcx>> {
1372 if let Self::Constant(v, _) = self { Some(v) } else { None }
1373 }
1374}
1375
1376/// `ArmHasGuard` is a wrapper around a boolean flag. It indicates whether
1377/// a match arm has a guard expression attached to it.
1378#[derive(Copy, Clone, Debug)]
1379pub(crate) struct ArmHasGuard(pub(crate) bool);
1380
1381///////////////////////////////////////////////////////////////////////////
1382// Main matching algorithm
1383
1384/// A sub-branch in the output of match lowering. Match lowering has generated MIR code that will
1385/// branch to `success_block` when the matched value matches the corresponding pattern. If there is
1386/// a guard, its failure must continue to `otherwise_block`, which will resume testing patterns.
1387#[derive(Debug)]
1388struct MatchTreeSubBranch<'tcx> {
1389 span: Span,
1390 /// The block that is branched to if the corresponding subpattern matches.
1391 success_block: BasicBlock,
1392 /// The block to branch to if this arm had a guard and the guard fails.
1393 otherwise_block: BasicBlock,
1394 /// The bindings to set up in this sub-branch.
1395 bindings: Vec<Binding<'tcx>>,
1396 /// The ascriptions to set up in this sub-branch.
1397 ascriptions: Vec<Ascription<'tcx>>,
1398 /// Whether the sub-branch corresponds to a never pattern.
1399 is_never: bool,
1400}
1401
1402/// A branch in the output of match lowering.
1403#[derive(Debug)]
1404struct MatchTreeBranch<'tcx> {
1405 sub_branches: Vec<MatchTreeSubBranch<'tcx>>,
1406}
1407
1408/// The result of generating MIR for a pattern-matching expression. Each input branch/arm/pattern
1409/// gives rise to an output `MatchTreeBranch`. If one of the patterns matches, we branch to the
1410/// corresponding `success_block`. If none of the patterns matches, we branch to `otherwise_block`.
1411///
1412/// Each branch is made of one of more sub-branches, corresponding to or-patterns. E.g.
1413/// ```ignore(illustrative)
1414/// match foo {
1415/// (x, false) | (false, x) => {}
1416/// (true, true) => {}
1417/// }
1418/// ```
1419/// Here the first arm gives the first `MatchTreeBranch`, which has two sub-branches, one for each
1420/// alternative of the or-pattern. They are kept separate because each needs to bind `x` to a
1421/// different place.
1422#[derive(Debug)]
1423struct BuiltMatchTree<'tcx> {
1424 branches: Vec<MatchTreeBranch<'tcx>>,
1425 otherwise_block: BasicBlock,
1426 /// If any of the branches had a guard, we collect here the places and locals to fakely borrow
1427 /// to ensure match guards can't modify the values as we match them. For more details, see
1428 /// [`util::collect_fake_borrows`].
1429 fake_borrow_temps: Vec<(Place<'tcx>, Local, FakeBorrowKind)>,
1430}
1431
1432impl<'tcx> MatchTreeSubBranch<'tcx> {
1433 fn from_sub_candidate(
1434 candidate: Candidate<'tcx>,
1435 parent_data: &Vec<PatternExtraData<'tcx>>,
1436 ) -> Self {
1437 debug_assert!(candidate.match_pairs.is_empty());
1438 MatchTreeSubBranch {
1439 span: candidate.extra_data.span,
1440 success_block: candidate.pre_binding_block.unwrap(),
1441 otherwise_block: candidate.otherwise_block.unwrap(),
1442 bindings: parent_data
1443 .iter()
1444 .flat_map(|d| &d.bindings)
1445 .chain(&candidate.extra_data.bindings)
1446 .cloned()
1447 .collect(),
1448 ascriptions: parent_data
1449 .iter()
1450 .flat_map(|d| &d.ascriptions)
1451 .cloned()
1452 .chain(candidate.extra_data.ascriptions)
1453 .collect(),
1454 is_never: candidate.extra_data.is_never,
1455 }
1456 }
1457}
1458
1459impl<'tcx> MatchTreeBranch<'tcx> {
1460 fn from_candidate(candidate: Candidate<'tcx>) -> Self {
1461 let mut sub_branches = Vec::new();
1462 traverse_candidate(
1463 candidate,
1464 &mut Vec::new(),
1465 &mut |candidate: Candidate<'_>, parent_data: &mut Vec<PatternExtraData<'_>>| {
1466 sub_branches.push(MatchTreeSubBranch::from_sub_candidate(candidate, parent_data));
1467 },
1468 |inner_candidate, parent_data| {
1469 parent_data.push(inner_candidate.extra_data);
1470 inner_candidate.subcandidates.into_iter()
1471 },
1472 |parent_data| {
1473 parent_data.pop();
1474 },
1475 );
1476 MatchTreeBranch { sub_branches }
1477 }
1478}
1479
1480#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1481enum HasMatchGuard {
1482 Yes,
1483 No,
1484}
1485
1486impl<'a, 'tcx> Builder<'a, 'tcx> {
1487 /// The entrypoint of the matching algorithm. Create the decision tree for the match expression,
1488 /// starting from `block`.
1489 ///
1490 /// `patterns` is a list of patterns, one for each arm. The associated boolean indicates whether
1491 /// the arm has a guard.
1492 ///
1493 /// `refutable` indicates whether the candidate list is refutable (for `if let` and `let else`)
1494 /// or not (for `let` and `match`). In the refutable case we return the block to which we branch
1495 /// on failure.
1496 fn lower_match_tree(
1497 &mut self,
1498 block: BasicBlock,
1499 scrutinee_span: Span,
1500 scrutinee_place_builder: &PlaceBuilder<'tcx>,
1501 match_start_span: Span,
1502 patterns: Vec<(&Pat<'tcx>, HasMatchGuard)>,
1503 refutable: bool,
1504 ) -> BuiltMatchTree<'tcx> {
1505 // Assemble the initial list of candidates. These top-level candidates are 1:1 with the
1506 // input patterns, but other parts of match lowering also introduce subcandidates (for
1507 // sub-or-patterns). So inside the algorithm, the candidates list may not correspond to
1508 // match arms directly.
1509 let mut candidates: Vec<Candidate<'_>> = patterns
1510 .into_iter()
1511 .map(|(pat, has_guard)| {
1512 Candidate::new(scrutinee_place_builder.clone(), pat, has_guard, self)
1513 })
1514 .collect();
1515
1516 let fake_borrow_temps = util::collect_fake_borrows(
1517 self,
1518 &candidates,
1519 scrutinee_span,
1520 scrutinee_place_builder.base(),
1521 );
1522
1523 // This will generate code to test scrutinee_place and branch to the appropriate arm block.
1524 // If none of the arms match, we branch to `otherwise_block`. When lowering a `match`
1525 // expression, exhaustiveness checking ensures that this block is unreachable.
1526 let mut candidate_refs = candidates.iter_mut().collect::<Vec<_>>();
1527 let otherwise_block =
1528 self.match_candidates(match_start_span, scrutinee_span, block, &mut candidate_refs);
1529
1530 // Set up false edges so that the borrow-checker cannot make use of the specific CFG we
1531 // generated. We falsely branch from each candidate to the one below it to make it as if we
1532 // were testing match branches one by one in order. In the refutable case we also want a
1533 // false edge to the final failure block.
1534 let mut next_candidate_start_block = if refutable { Some(otherwise_block) } else { None };
1535 for candidate in candidates.iter_mut().rev() {
1536 let has_guard = candidate.has_guard;
1537 candidate.visit_leaves_rev(|leaf_candidate| {
1538 if let Some(next_candidate_start_block) = next_candidate_start_block {
1539 let source_info = self.source_info(leaf_candidate.extra_data.span);
1540 // Falsely branch to `next_candidate_start_block` before reaching pre_binding.
1541 let old_pre_binding = leaf_candidate.pre_binding_block.unwrap();
1542 let new_pre_binding = self.cfg.start_new_block();
1543 self.false_edges(
1544 old_pre_binding,
1545 new_pre_binding,
1546 next_candidate_start_block,
1547 source_info,
1548 );
1549 leaf_candidate.pre_binding_block = Some(new_pre_binding);
1550 if has_guard {
1551 // Falsely branch to `next_candidate_start_block` also if the guard fails.
1552 let new_otherwise = self.cfg.start_new_block();
1553 let old_otherwise = leaf_candidate.otherwise_block.unwrap();
1554 self.false_edges(
1555 new_otherwise,
1556 old_otherwise,
1557 next_candidate_start_block,
1558 source_info,
1559 );
1560 leaf_candidate.otherwise_block = Some(new_otherwise);
1561 }
1562 }
1563 assert!(leaf_candidate.false_edge_start_block.is_some());
1564 next_candidate_start_block = leaf_candidate.false_edge_start_block;
1565 });
1566 }
1567
1568 if !refutable {
1569 // Match checking ensures `otherwise_block` is actually unreachable in irrefutable
1570 // cases.
1571 let source_info = self.source_info(scrutinee_span);
1572
1573 // Matching on a scrutinee place of an uninhabited type doesn't generate any memory
1574 // reads by itself, and so if the place is uninitialized we wouldn't know. In order to
1575 // disallow the following:
1576 // ```rust
1577 // let x: !;
1578 // match x {}
1579 // ```
1580 // we add a dummy read on the place.
1581 //
1582 // NOTE: If we require never patterns for empty matches, those will check that the place
1583 // is initialized, and so this read would no longer be needed.
1584 let cause_matched_place = FakeReadCause::ForMatchedPlace(None);
1585
1586 if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
1587 self.cfg.push_fake_read(
1588 otherwise_block,
1589 source_info,
1590 cause_matched_place,
1591 scrutinee_place,
1592 );
1593 }
1594
1595 self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable);
1596 }
1597
1598 BuiltMatchTree {
1599 branches: candidates.into_iter().map(MatchTreeBranch::from_candidate).collect(),
1600 otherwise_block,
1601 fake_borrow_temps,
1602 }
1603 }
1604
1605 /// The main match algorithm. It begins with a set of candidates `candidates` and has the job of
1606 /// generating code that branches to an appropriate block if the scrutinee matches one of these
1607 /// candidates. The
1608 /// candidates are ordered such that the first item in the list
1609 /// has the highest priority. When a candidate is found to match
1610 /// the value, we will set and generate a branch to the appropriate
1611 /// pre-binding block.
1612 ///
1613 /// If none of the candidates apply, we continue to the returned `otherwise_block`.
1614 ///
1615 /// Note that while `match` expressions in the Rust language are exhaustive,
1616 /// candidate lists passed to this method are often _non-exhaustive_.
1617 /// For example, the match lowering process will frequently divide up the
1618 /// list of candidates, and recursively call this method with a non-exhaustive
1619 /// subset of candidates.
1620 /// See [`Builder::test_candidates`] for more details on this
1621 /// "backtracking automata" approach.
1622 ///
1623 /// For an example of how we use `otherwise_block`, consider:
1624 /// ```
1625 /// # fn foo((x, y): (bool, bool)) -> u32 {
1626 /// match (x, y) {
1627 /// (true, true) => 1,
1628 /// (_, false) => 2,
1629 /// (false, true) => 3,
1630 /// }
1631 /// # }
1632 /// ```
1633 /// For this match, we generate something like:
1634 /// ```
1635 /// # fn foo((x, y): (bool, bool)) -> u32 {
1636 /// if x {
1637 /// if y {
1638 /// return 1
1639 /// } else {
1640 /// // continue
1641 /// }
1642 /// } else {
1643 /// // continue
1644 /// }
1645 /// if y {
1646 /// if x {
1647 /// // This is actually unreachable because the `(true, true)` case was handled above,
1648 /// // but we don't know that from within the lowering algorithm.
1649 /// // continue
1650 /// } else {
1651 /// return 3
1652 /// }
1653 /// } else {
1654 /// return 2
1655 /// }
1656 /// // this is the final `otherwise_block`, which is unreachable because the match was exhaustive.
1657 /// unreachable!()
1658 /// # }
1659 /// ```
1660 ///
1661 /// Every `continue` is an instance of branching to some `otherwise_block` somewhere deep within
1662 /// the algorithm. For more details on why we lower like this, see [`Builder::test_candidates`].
1663 ///
1664 /// Note how we test `x` twice. This is the tradeoff of backtracking automata: we prefer smaller
1665 /// code size so we accept non-optimal code paths.
1666 #[instrument(skip(self), level = "debug")]
1667 fn match_candidates(
1668 &mut self,
1669 span: Span,
1670 scrutinee_span: Span,
1671 start_block: BasicBlock,
1672 candidates: &mut [&mut Candidate<'tcx>],
1673 ) -> BasicBlock {
1674 ensure_sufficient_stack(|| {
1675 self.match_candidates_inner(span, scrutinee_span, start_block, candidates)
1676 })
1677 }
1678
1679 /// Construct the decision tree for `candidates`. Don't call this, call `match_candidates`
1680 /// instead to reserve sufficient stack space.
1681 fn match_candidates_inner(
1682 &mut self,
1683 span: Span,
1684 scrutinee_span: Span,
1685 mut start_block: BasicBlock,
1686 candidates: &mut [&mut Candidate<'tcx>],
1687 ) -> BasicBlock {
1688 if let [first, ..] = candidates {
1689 if first.false_edge_start_block.is_none() {
1690 first.false_edge_start_block = Some(start_block);
1691 }
1692 }
1693
1694 // Process a prefix of the candidates.
1695 let rest = match candidates {
1696 [] => {
1697 // If there are no candidates that still need testing, we're done.
1698 return start_block;
1699 }
1700 [first, remaining @ ..] if first.match_pairs.is_empty() => {
1701 // The first candidate has satisfied all its match pairs.
1702 // We record the blocks that will be needed by match arm lowering,
1703 // and then continue with the remaining candidates.
1704 let remainder_start = self.select_matched_candidate(first, start_block);
1705 remainder_start.and(remaining)
1706 }
1707 candidates if candidates.iter().any(|candidate| candidate.starts_with_or_pattern()) => {
1708 // If any candidate starts with an or-pattern, we want to expand or-patterns
1709 // before we do any more tests.
1710 //
1711 // The only candidate we strictly _need_ to expand here is the first one.
1712 // But by expanding other candidates as early as possible, we unlock more
1713 // opportunities to include them in test outcomes, making the match tree
1714 // smaller and simpler.
1715 self.expand_and_match_or_candidates(span, scrutinee_span, start_block, candidates)
1716 }
1717 candidates => {
1718 // The first candidate has some unsatisfied match pairs; we proceed to do more tests.
1719 self.test_candidates(span, scrutinee_span, candidates, start_block)
1720 }
1721 };
1722
1723 // Process any candidates that remain.
1724 let remaining_candidates = unpack!(start_block = rest);
1725 self.match_candidates(span, scrutinee_span, start_block, remaining_candidates)
1726 }
1727
1728 /// Link up matched candidates.
1729 ///
1730 /// For example, if we have something like this:
1731 ///
1732 /// ```ignore (illustrative)
1733 /// ...
1734 /// Some(x) if cond1 => ...
1735 /// Some(x) => ...
1736 /// Some(x) if cond2 => ...
1737 /// ...
1738 /// ```
1739 ///
1740 /// We generate real edges from:
1741 ///
1742 /// * `start_block` to the [pre-binding block] of the first pattern,
1743 /// * the [otherwise block] of the first pattern to the second pattern,
1744 /// * the [otherwise block] of the third pattern to a block with an
1745 /// [`Unreachable` terminator](TerminatorKind::Unreachable).
1746 ///
1747 /// In addition, we later add fake edges from the otherwise blocks to the
1748 /// pre-binding block of the next candidate in the original set of
1749 /// candidates.
1750 ///
1751 /// [pre-binding block]: Candidate::pre_binding_block
1752 /// [otherwise block]: Candidate::otherwise_block
1753 fn select_matched_candidate(
1754 &mut self,
1755 candidate: &mut Candidate<'tcx>,
1756 start_block: BasicBlock,
1757 ) -> BasicBlock {
1758 assert!(candidate.otherwise_block.is_none());
1759 assert!(candidate.pre_binding_block.is_none());
1760 assert!(candidate.subcandidates.is_empty());
1761
1762 candidate.pre_binding_block = Some(start_block);
1763 let otherwise_block = self.cfg.start_new_block();
1764 // Create the otherwise block for this candidate, which is the
1765 // pre-binding block for the next candidate.
1766 candidate.otherwise_block = Some(otherwise_block);
1767 otherwise_block
1768 }
1769
1770 /// Takes a list of candidates such that some of the candidates' first match pairs are
1771 /// or-patterns. This expands as many or-patterns as possible and processes the resulting
1772 /// candidates. Returns the unprocessed candidates if any.
1773 fn expand_and_match_or_candidates<'b, 'c>(
1774 &mut self,
1775 span: Span,
1776 scrutinee_span: Span,
1777 start_block: BasicBlock,
1778 candidates: &'b mut [&'c mut Candidate<'tcx>],
1779 ) -> BlockAnd<&'b mut [&'c mut Candidate<'tcx>]> {
1780 // We can't expand or-patterns freely. The rule is:
1781 // - If a candidate doesn't start with an or-pattern, we include it in
1782 // the expansion list as-is (i.e. it "expands" to itself).
1783 // - If a candidate has an or-pattern as its only remaining match pair,
1784 // we can expand it.
1785 // - If it starts with an or-pattern but also has other match pairs,
1786 // we can expand it, but we can't process more candidates after it.
1787 //
1788 // If we didn't stop, the `otherwise` cases could get mixed up. E.g. in the
1789 // following, or-pattern simplification (in `merge_trivial_subcandidates`) makes it
1790 // so the `1` and `2` cases branch to a same block (which then tests `false`). If we
1791 // took `(2, _)` in the same set of candidates, when we reach the block that tests
1792 // `false` we don't know whether we came from `1` or `2`, hence we can't know where
1793 // to branch on failure.
1794 //
1795 // ```ignore(illustrative)
1796 // match (1, true) {
1797 // (1 | 2, false) => {},
1798 // (2, _) => {},
1799 // _ => {}
1800 // }
1801 // ```
1802 //
1803 // We therefore split the `candidates` slice in two, expand or-patterns in the first part,
1804 // and process the rest separately.
1805 let expand_until = candidates
1806 .iter()
1807 .position(|candidate| {
1808 // If a candidate starts with an or-pattern and has more match pairs,
1809 // we can expand it, but we must stop expanding _after_ it.
1810 candidate.match_pairs.len() > 1 && candidate.starts_with_or_pattern()
1811 })
1812 .map(|pos| pos + 1) // Stop _after_ the found candidate
1813 .unwrap_or(candidates.len()); // Otherwise, include all candidates
1814 let (candidates_to_expand, remaining_candidates) = candidates.split_at_mut(expand_until);
1815
1816 // Expand one level of or-patterns for each candidate in `candidates_to_expand`.
1817 // We take care to preserve the relative ordering of candidates, so that
1818 // or-patterns are expanded in their parent's relative position.
1819 let mut expanded_candidates = Vec::new();
1820 for candidate in candidates_to_expand.iter_mut() {
1821 if candidate.starts_with_or_pattern() {
1822 let or_match_pair = candidate.match_pairs.remove(0);
1823 // Expand the or-pattern into subcandidates.
1824 self.create_or_subcandidates(candidate, or_match_pair);
1825 // Collect the newly created subcandidates.
1826 for subcandidate in candidate.subcandidates.iter_mut() {
1827 expanded_candidates.push(subcandidate);
1828 }
1829 // Note that the subcandidates have been added to `expanded_candidates`,
1830 // but `candidate` itself has not. If the last candidate has more match pairs,
1831 // they are handled separately by `test_remaining_match_pairs_after_or`.
1832 } else {
1833 // A candidate that doesn't start with an or-pattern has nothing to
1834 // expand, so it is included in the post-expansion list as-is.
1835 expanded_candidates.push(candidate);
1836 }
1837 }
1838
1839 // Recursively lower the part of the match tree represented by the
1840 // expanded candidates. This is where subcandidates actually get lowered!
1841 let remainder_start = self.match_candidates(
1842 span,
1843 scrutinee_span,
1844 start_block,
1845 expanded_candidates.as_mut_slice(),
1846 );
1847
1848 // Postprocess subcandidates, and process any leftover match pairs.
1849 // (Only the last candidate can possibly have more match pairs.)
1850 debug_assert!({
1851 let mut all_except_last = candidates_to_expand.iter().rev().skip(1);
1852 all_except_last.all(|candidate| candidate.match_pairs.is_empty())
1853 });
1854 for candidate in candidates_to_expand.iter_mut() {
1855 if !candidate.subcandidates.is_empty() {
1856 self.merge_trivial_subcandidates(candidate);
1857 self.remove_never_subcandidates(candidate);
1858 }
1859 }
1860 // It's important to perform the above simplifications _before_ dealing
1861 // with remaining match pairs, to avoid exponential blowup if possible
1862 // (for trivial or-patterns), and avoid useless work (for never patterns).
1863 if let Some(last_candidate) = candidates_to_expand.last_mut() {
1864 self.test_remaining_match_pairs_after_or(span, scrutinee_span, last_candidate);
1865 }
1866
1867 remainder_start.and(remaining_candidates)
1868 }
1869
1870 /// Given a match-pair that corresponds to an or-pattern, expand each subpattern into a new
1871 /// subcandidate. Any candidate that has been expanded this way should also be postprocessed
1872 /// at the end of [`Self::expand_and_match_or_candidates`].
1873 fn create_or_subcandidates(
1874 &mut self,
1875 candidate: &mut Candidate<'tcx>,
1876 match_pair: MatchPairTree<'tcx>,
1877 ) {
1878 let TestCase::Or { pats } = match_pair.test_case else { bug!() };
1879 debug!("expanding or-pattern: candidate={:#?}\npats={:#?}", candidate, pats);
1880 candidate.or_span = Some(match_pair.pattern_span);
1881 candidate.subcandidates = pats
1882 .into_vec()
1883 .into_iter()
1884 .map(|flat_pat| Candidate::from_flat_pat(flat_pat, candidate.has_guard))
1885 .collect();
1886 candidate.subcandidates[0].false_edge_start_block = candidate.false_edge_start_block;
1887 }
1888
1889 /// Try to merge all of the subcandidates of the given candidate into one. This avoids
1890 /// exponentially large CFGs in cases like `(1 | 2, 3 | 4, ...)`. The candidate should have been
1891 /// expanded with `create_or_subcandidates`.
1892 ///
1893 /// Given a pattern `(P | Q, R | S)` we (in principle) generate a CFG like
1894 /// so:
1895 ///
1896 /// ```text
1897 /// [ start ]
1898 /// |
1899 /// [ match P, Q ]
1900 /// |
1901 /// +----------------------------------------+------------------------------------+
1902 /// | | |
1903 /// V V V
1904 /// [ P matches ] [ Q matches ] [ otherwise ]
1905 /// | | |
1906 /// V V |
1907 /// [ match R, S ] [ match R, S ] |
1908 /// | | |
1909 /// +--------------+------------+ +--------------+------------+ |
1910 /// | | | | | | |
1911 /// V V V V V V |
1912 /// [ R matches ] [ S matches ] [otherwise ] [ R matches ] [ S matches ] [otherwise ] |
1913 /// | | | | | | |
1914 /// +--------------+------------|------------+--------------+ | |
1915 /// | | | |
1916 /// | +----------------------------------------+--------+
1917 /// | |
1918 /// V V
1919 /// [ Success ] [ Failure ]
1920 /// ```
1921 ///
1922 /// In practice there are some complications:
1923 ///
1924 /// * If there's a guard, then the otherwise branch of the first match on
1925 /// `R | S` goes to a test for whether `Q` matches, and the control flow
1926 /// doesn't merge into a single success block until after the guard is
1927 /// tested.
1928 /// * If neither `P` or `Q` has any bindings or type ascriptions and there
1929 /// isn't a match guard, then we create a smaller CFG like:
1930 ///
1931 /// ```text
1932 /// ...
1933 /// +---------------+------------+
1934 /// | | |
1935 /// [ P matches ] [ Q matches ] [ otherwise ]
1936 /// | | |
1937 /// +---------------+ |
1938 /// | ...
1939 /// [ match R, S ]
1940 /// |
1941 /// ...
1942 /// ```
1943 ///
1944 /// Note that this takes place _after_ the subcandidates have participated
1945 /// in match tree lowering.
1946 fn merge_trivial_subcandidates(&mut self, candidate: &mut Candidate<'tcx>) {
1947 assert!(!candidate.subcandidates.is_empty());
1948 if candidate.has_guard {
1949 // FIXME(or_patterns; matthewjasper) Don't give up if we have a guard.
1950 return;
1951 }
1952
1953 // FIXME(or_patterns; matthewjasper) Try to be more aggressive here.
1954 let can_merge = candidate.subcandidates.iter().all(|subcandidate| {
1955 subcandidate.subcandidates.is_empty() && subcandidate.extra_data.is_empty()
1956 });
1957 if !can_merge {
1958 return;
1959 }
1960
1961 let mut last_otherwise = None;
1962 let shared_pre_binding_block = self.cfg.start_new_block();
1963 // This candidate is about to become a leaf, so unset `or_span`.
1964 let or_span = candidate.or_span.take().unwrap();
1965 let source_info = self.source_info(or_span);
1966
1967 if candidate.false_edge_start_block.is_none() {
1968 candidate.false_edge_start_block = candidate.subcandidates[0].false_edge_start_block;
1969 }
1970
1971 // Remove the (known-trivial) subcandidates from the candidate tree,
1972 // so that they aren't visible after match tree lowering, and wire them
1973 // all to join up at a single shared pre-binding block.
1974 // (Note that the subcandidates have already had their part of the match
1975 // tree lowered by this point, which is why we can add a goto to them.)
1976 for subcandidate in mem::take(&mut candidate.subcandidates) {
1977 let subcandidate_block = subcandidate.pre_binding_block.unwrap();
1978 self.cfg.goto(subcandidate_block, source_info, shared_pre_binding_block);
1979 last_otherwise = subcandidate.otherwise_block;
1980 }
1981 candidate.pre_binding_block = Some(shared_pre_binding_block);
1982 assert!(last_otherwise.is_some());
1983 candidate.otherwise_block = last_otherwise;
1984 }
1985
1986 /// Never subcandidates may have a set of bindings inconsistent with their siblings,
1987 /// which would break later code. So we filter them out. Note that we can't filter out
1988 /// top-level candidates this way.
1989 fn remove_never_subcandidates(&mut self, candidate: &mut Candidate<'tcx>) {
1990 if candidate.subcandidates.is_empty() {
1991 return;
1992 }
1993
1994 let false_edge_start_block = candidate.subcandidates[0].false_edge_start_block;
1995 candidate.subcandidates.retain_mut(|candidate| {
1996 if candidate.extra_data.is_never {
1997 candidate.visit_leaves(|subcandidate| {
1998 let block = subcandidate.pre_binding_block.unwrap();
1999 // That block is already unreachable but needs a terminator to make the MIR well-formed.
2000 let source_info = self.source_info(subcandidate.extra_data.span);
2001 self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
2002 });
2003 false
2004 } else {
2005 true
2006 }
2007 });
2008 if candidate.subcandidates.is_empty() {
2009 // If `candidate` has become a leaf candidate, ensure it has a `pre_binding_block` and `otherwise_block`.
2010 let next_block = self.cfg.start_new_block();
2011 candidate.pre_binding_block = Some(next_block);
2012 candidate.otherwise_block = Some(next_block);
2013 // In addition, if `candidate` doesn't have `false_edge_start_block`, it should be assigned here.
2014 if candidate.false_edge_start_block.is_none() {
2015 candidate.false_edge_start_block = false_edge_start_block;
2016 }
2017 }
2018 }
2019
2020 /// If more match pairs remain, test them after each subcandidate.
2021 /// We could have added them to the or-candidates during or-pattern expansion, but that
2022 /// would make it impossible to detect simplifiable or-patterns. That would guarantee
2023 /// exponentially large CFGs for cases like `(1 | 2, 3 | 4, ...)`.
2024 fn test_remaining_match_pairs_after_or(
2025 &mut self,
2026 span: Span,
2027 scrutinee_span: Span,
2028 candidate: &mut Candidate<'tcx>,
2029 ) {
2030 if candidate.match_pairs.is_empty() {
2031 return;
2032 }
2033
2034 let or_span = candidate.or_span.unwrap_or(candidate.extra_data.span);
2035 let source_info = self.source_info(or_span);
2036 let mut last_otherwise = None;
2037 candidate.visit_leaves(|leaf_candidate| {
2038 last_otherwise = leaf_candidate.otherwise_block;
2039 });
2040
2041 let remaining_match_pairs = mem::take(&mut candidate.match_pairs);
2042 // We're testing match pairs that remained after an `Or`, so the remaining
2043 // pairs should all be `Or` too, due to the sorting invariant.
2044 debug_assert!(
2045 remaining_match_pairs
2046 .iter()
2047 .all(|match_pair| matches!(match_pair.test_case, TestCase::Or { .. }))
2048 );
2049
2050 // Visit each leaf candidate within this subtree, add a copy of the remaining
2051 // match pairs to it, and then recursively lower the rest of the match tree
2052 // from that point.
2053 candidate.visit_leaves(|leaf_candidate| {
2054 // At this point the leaf's own match pairs have all been lowered
2055 // and removed, so `extend` and assignment are equivalent,
2056 // but extending can also recycle any existing vector capacity.
2057 assert!(leaf_candidate.match_pairs.is_empty());
2058 leaf_candidate.match_pairs.extend(remaining_match_pairs.iter().cloned());
2059
2060 let or_start = leaf_candidate.pre_binding_block.unwrap();
2061 let otherwise =
2062 self.match_candidates(span, scrutinee_span, or_start, &mut [leaf_candidate]);
2063 // In a case like `(P | Q, R | S)`, if `P` succeeds and `R | S` fails, we know `(Q,
2064 // R | S)` will fail too. If there is no guard, we skip testing of `Q` by branching
2065 // directly to `last_otherwise`. If there is a guard,
2066 // `leaf_candidate.otherwise_block` can be reached by guard failure as well, so we
2067 // can't skip `Q`.
2068 let or_otherwise = if leaf_candidate.has_guard {
2069 leaf_candidate.otherwise_block.unwrap()
2070 } else {
2071 last_otherwise.unwrap()
2072 };
2073 self.cfg.goto(otherwise, source_info, or_otherwise);
2074 });
2075 }
2076
2077 /// Pick a test to run. Which test doesn't matter as long as it is guaranteed to fully match at
2078 /// least one match pair. We currently simply pick the test corresponding to the first match
2079 /// pair of the first candidate in the list.
2080 ///
2081 /// *Note:* taking the first match pair is somewhat arbitrary, and we might do better here by
2082 /// choosing more carefully what to test.
2083 ///
2084 /// For example, consider the following possible match-pairs:
2085 ///
2086 /// 1. `x @ Some(P)` -- we will do a [`Switch`] to decide what variant `x` has
2087 /// 2. `x @ 22` -- we will do a [`SwitchInt`] to decide what value `x` has
2088 /// 3. `x @ 3..5` -- we will do a [`Range`] test to decide what range `x` falls in
2089 /// 4. etc.
2090 ///
2091 /// [`Switch`]: TestKind::Switch
2092 /// [`SwitchInt`]: TestKind::SwitchInt
2093 /// [`Range`]: TestKind::Range
2094 fn pick_test(&mut self, candidates: &[&mut Candidate<'tcx>]) -> (Place<'tcx>, Test<'tcx>) {
2095 // Extract the match-pair from the highest priority candidate
2096 let match_pair = &candidates[0].match_pairs[0];
2097 let test = self.pick_test_for_match_pair(match_pair);
2098 // Unwrap is ok after simplification.
2099 let match_place = match_pair.place.unwrap();
2100 debug!(?test, ?match_pair);
2101
2102 (match_place, test)
2103 }
2104
2105 /// Given a test, we partition the input candidates into several buckets.
2106 /// If a candidate matches in exactly one of the branches of `test`
2107 /// (and no other branches), we put it into the corresponding bucket.
2108 /// If it could match in more than one of the branches of `test`, the test
2109 /// doesn't usefully apply to it, and we stop partitioning candidates.
2110 ///
2111 /// Importantly, we also **mutate** the branched candidates to remove match pairs
2112 /// that are entailed by the outcome of the test, and add any sub-pairs of the
2113 /// removed pairs.
2114 ///
2115 /// This returns a pair of
2116 /// - the candidates that weren't sorted;
2117 /// - for each possible outcome of the test, the candidates that match in that outcome.
2118 ///
2119 /// For example:
2120 /// ```
2121 /// # let (x, y, z) = (true, true, true);
2122 /// match (x, y, z) {
2123 /// (true , _ , true ) => true, // (0)
2124 /// (false, false, _ ) => false, // (1)
2125 /// (_ , true , _ ) => true, // (2)
2126 /// (true , _ , false) => false, // (3)
2127 /// }
2128 /// # ;
2129 /// ```
2130 ///
2131 /// Assume we are testing on `x`. Conceptually, there are 2 overlapping candidate sets:
2132 /// - If the outcome is that `x` is true, candidates {0, 2, 3} are possible
2133 /// - If the outcome is that `x` is false, candidates {1, 2} are possible
2134 ///
2135 /// Following our algorithm:
2136 /// - Candidate 0 is sorted into outcome `x == true`
2137 /// - Candidate 1 is sorted into outcome `x == false`
2138 /// - Candidate 2 remains unsorted, because testing `x` has no effect on it
2139 /// - Candidate 3 remains unsorted, because a previous candidate (2) was unsorted
2140 /// - This helps preserve the illusion that candidates are tested "in order"
2141 ///
2142 /// The sorted candidates are mutated to remove entailed match pairs:
2143 /// - candidate 0 becomes `[z @ true]` since we know that `x` was `true`;
2144 /// - candidate 1 becomes `[y @ false]` since we know that `x` was `false`.
2145 fn sort_candidates<'b, 'c>(
2146 &mut self,
2147 match_place: Place<'tcx>,
2148 test: &Test<'tcx>,
2149 mut candidates: &'b mut [&'c mut Candidate<'tcx>],
2150 ) -> (
2151 &'b mut [&'c mut Candidate<'tcx>],
2152 FxIndexMap<TestBranch<'tcx>, Vec<&'b mut Candidate<'tcx>>>,
2153 ) {
2154 // For each of the possible outcomes, collect vector of candidates that apply if the test
2155 // has that particular outcome.
2156 let mut target_candidates: FxIndexMap<_, Vec<&mut Candidate<'_>>> = Default::default();
2157
2158 let total_candidate_count = candidates.len();
2159
2160 // Sort the candidates into the appropriate vector in `target_candidates`. Note that at some
2161 // point we may encounter a candidate where the test is not relevant; at that point, we stop
2162 // sorting.
2163 while let Some(candidate) = candidates.first_mut() {
2164 let Some(branch) =
2165 self.sort_candidate(match_place, test, candidate, &target_candidates)
2166 else {
2167 break;
2168 };
2169 let (candidate, rest) = candidates.split_first_mut().unwrap();
2170 target_candidates.entry(branch).or_insert_with(Vec::new).push(candidate);
2171 candidates = rest;
2172 }
2173
2174 // At least the first candidate ought to be tested
2175 assert!(
2176 total_candidate_count > candidates.len(),
2177 "{total_candidate_count}, {candidates:#?}"
2178 );
2179 debug!("tested_candidates: {}", total_candidate_count - candidates.len());
2180 debug!("untested_candidates: {}", candidates.len());
2181
2182 (candidates, target_candidates)
2183 }
2184
2185 /// This is the most subtle part of the match lowering algorithm. At this point, there are
2186 /// no fully-satisfied candidates, and no or-patterns to expand, so we actually need to
2187 /// perform some sort of test to make progress.
2188 ///
2189 /// Once we pick what sort of test we are going to perform, this test will help us winnow down
2190 /// our candidates. So we walk over the candidates (from high to low priority) and check. We
2191 /// compute, for each outcome of the test, a list of (modified) candidates. If a candidate
2192 /// matches in exactly one branch of our test, we add it to the corresponding outcome. We also
2193 /// **mutate its list of match pairs** if appropriate, to reflect the fact that we know which
2194 /// outcome occurred.
2195 ///
2196 /// For example, if we are testing `x.0`'s variant, and we have a candidate `(x.0 @ Some(v), x.1
2197 /// @ 22)`, then we would have a resulting candidate of `((x.0 as Some).0 @ v, x.1 @ 22)` in the
2198 /// branch corresponding to `Some`. To ensure we make progress, we always pick a test that
2199 /// results in simplifying the first candidate.
2200 ///
2201 /// But there may also be candidates that the test doesn't
2202 /// apply to. The classical example is wildcards:
2203 ///
2204 /// ```
2205 /// # let (x, y, z) = (true, true, true);
2206 /// match (x, y, z) {
2207 /// (true , _ , true ) => true, // (0)
2208 /// (false, false, _ ) => false, // (1)
2209 /// (_ , true , _ ) => true, // (2)
2210 /// (true , _ , false) => false, // (3)
2211 /// }
2212 /// # ;
2213 /// ```
2214 ///
2215 /// Here, the traditional "decision tree" method would generate 2 separate code-paths for the 2
2216 /// possible values of `x`. This would however duplicate some candidates, which would need to be
2217 /// lowered several times.
2218 ///
2219 /// In some cases, this duplication can create an exponential amount of
2220 /// code. This is most easily seen by noticing that this method terminates
2221 /// with precisely the reachable arms being reachable - but that problem
2222 /// is trivially NP-complete:
2223 ///
2224 /// ```ignore (illustrative)
2225 /// match (var0, var1, var2, var3, ...) {
2226 /// (true , _ , _ , false, true, ...) => false,
2227 /// (_ , true, true , false, _ , ...) => false,
2228 /// (false, _ , false, false, _ , ...) => false,
2229 /// ...
2230 /// _ => true
2231 /// }
2232 /// ```
2233 ///
2234 /// Here the last arm is reachable only if there is an assignment to
2235 /// the variables that does not match any of the literals. Therefore,
2236 /// compilation would take an exponential amount of time in some cases.
2237 ///
2238 /// In rustc, we opt instead for the "backtracking automaton" approach. This guarantees we never
2239 /// duplicate a candidate (except in the presence of or-patterns). In fact this guarantee is
2240 /// ensured by the fact that we carry around `&mut Candidate`s which can't be duplicated.
2241 ///
2242 /// To make this work, whenever we decide to perform a test, if we encounter a candidate that
2243 /// could match in more than one branch of the test, we stop. We generate code for the test and
2244 /// for the candidates in its branches; the remaining candidates will be tested if the
2245 /// candidates in the branches fail to match.
2246 ///
2247 /// For example, if we test on `x` in the following:
2248 /// ```
2249 /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
2250 /// match (x, y, z) {
2251 /// (true , _ , true ) => 0,
2252 /// (false, false, _ ) => 1,
2253 /// (_ , true , _ ) => 2,
2254 /// (true , _ , false) => 3,
2255 /// }
2256 /// # }
2257 /// ```
2258 /// this function generates code that looks more of less like:
2259 /// ```
2260 /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
2261 /// if x {
2262 /// match (y, z) {
2263 /// (_, true) => return 0,
2264 /// _ => {} // continue matching
2265 /// }
2266 /// } else {
2267 /// match (y, z) {
2268 /// (false, _) => return 1,
2269 /// _ => {} // continue matching
2270 /// }
2271 /// }
2272 /// // the block here is `remainder_start`
2273 /// match (x, y, z) {
2274 /// (_ , true , _ ) => 2,
2275 /// (true , _ , false) => 3,
2276 /// _ => unreachable!(),
2277 /// }
2278 /// # }
2279 /// ```
2280 ///
2281 /// We return the unprocessed candidates.
2282 fn test_candidates<'b, 'c>(
2283 &mut self,
2284 span: Span,
2285 scrutinee_span: Span,
2286 candidates: &'b mut [&'c mut Candidate<'tcx>],
2287 start_block: BasicBlock,
2288 ) -> BlockAnd<&'b mut [&'c mut Candidate<'tcx>]> {
2289 // Choose a match pair from the first candidate, and use it to determine a
2290 // test to perform that will confirm or refute that match pair.
2291 let (match_place, test) = self.pick_test(candidates);
2292
2293 // For each of the N possible test outcomes, build the vector of candidates that applies if
2294 // the test has that particular outcome. This also mutates the candidates to remove match
2295 // pairs that are fully satisfied by the relevant outcome.
2296 let (remaining_candidates, target_candidates) =
2297 self.sort_candidates(match_place, &test, candidates);
2298
2299 // The block that we should branch to if none of the `target_candidates` match.
2300 let remainder_start = self.cfg.start_new_block();
2301
2302 // For each outcome of the test, recursively lower the rest of the match tree
2303 // from that point. (Note that we haven't lowered the actual test yet!)
2304 let target_blocks: FxIndexMap<_, _> = target_candidates
2305 .into_iter()
2306 .map(|(branch, mut candidates)| {
2307 let branch_start = self.cfg.start_new_block();
2308 // Recursively lower the rest of the match tree after the relevant outcome.
2309 let branch_otherwise =
2310 self.match_candidates(span, scrutinee_span, branch_start, &mut *candidates);
2311
2312 // Link up the `otherwise` block of the subtree to `remainder_start`.
2313 let source_info = self.source_info(span);
2314 self.cfg.goto(branch_otherwise, source_info, remainder_start);
2315 (branch, branch_start)
2316 })
2317 .collect();
2318
2319 // Perform the chosen test, branching to one of the N subtrees prepared above
2320 // (or to `remainder_start` if no outcome was satisfied).
2321 self.perform_test(
2322 span,
2323 scrutinee_span,
2324 start_block,
2325 remainder_start,
2326 match_place,
2327 &test,
2328 target_blocks,
2329 );
2330
2331 remainder_start.and(remaining_candidates)
2332 }
2333}
2334
2335///////////////////////////////////////////////////////////////////////////
2336// Pat binding - used for `let` and function parameters as well.
2337
2338impl<'a, 'tcx> Builder<'a, 'tcx> {
2339 /// Lowers a `let` expression that appears in a suitable context
2340 /// (e.g. an `if` condition or match guard).
2341 ///
2342 /// Also used for lowering let-else statements, since they have similar
2343 /// needs despite not actually using `let` expressions.
2344 ///
2345 /// Use [`DeclareLetBindings`] to control whether the `let` bindings are
2346 /// declared or not.
2347 pub(crate) fn lower_let_expr(
2348 &mut self,
2349 mut block: BasicBlock,
2350 expr_id: ExprId,
2351 pat: &Pat<'tcx>,
2352 source_scope: Option<SourceScope>,
2353 scope_span: Span,
2354 declare_let_bindings: DeclareLetBindings,
2355 emit_storage_live: EmitStorageLive,
2356 ) -> BlockAnd<()> {
2357 let expr_span = self.thir[expr_id].span;
2358 let scrutinee = unpack!(block = self.lower_scrutinee(block, expr_id, expr_span));
2359 let built_tree = self.lower_match_tree(
2360 block,
2361 expr_span,
2362 &scrutinee,
2363 pat.span,
2364 vec![(pat, HasMatchGuard::No)],
2365 true,
2366 );
2367 let [branch] = built_tree.branches.try_into().unwrap();
2368
2369 self.break_for_else(built_tree.otherwise_block, self.source_info(expr_span));
2370
2371 match declare_let_bindings {
2372 DeclareLetBindings::Yes => {
2373 let expr_place = scrutinee.try_to_place(self);
2374 let opt_expr_place = expr_place.as_ref().map(|place| (Some(place), expr_span));
2375 self.declare_bindings(
2376 source_scope,
2377 pat.span.to(scope_span),
2378 pat,
2379 None,
2380 opt_expr_place,
2381 );
2382 }
2383 DeclareLetBindings::No => {} // Caller is responsible for bindings.
2384 DeclareLetBindings::LetNotPermitted => {
2385 self.tcx.dcx().span_bug(expr_span, "let expression not expected in this context")
2386 }
2387 }
2388
2389 let success = self.bind_pattern(
2390 self.source_info(pat.span),
2391 branch,
2392 &[],
2393 expr_span,
2394 None,
2395 emit_storage_live,
2396 );
2397
2398 // If branch coverage is enabled, record this branch.
2399 self.visit_coverage_conditional_let(pat, success, built_tree.otherwise_block);
2400
2401 success.unit()
2402 }
2403
2404 /// Initializes each of the bindings from the candidate by
2405 /// moving/copying/ref'ing the source as appropriate. Tests the guard, if
2406 /// any, and then branches to the arm. Returns the block for the case where
2407 /// the guard succeeds.
2408 ///
2409 /// Note: we do not check earlier that if there is a guard,
2410 /// there cannot be move bindings. We avoid a use-after-move by only
2411 /// moving the binding once the guard has evaluated to true (see below).
2412 fn bind_and_guard_matched_candidate(
2413 &mut self,
2414 sub_branch: MatchTreeSubBranch<'tcx>,
2415 fake_borrows: &[(Place<'tcx>, Local, FakeBorrowKind)],
2416 scrutinee_span: Span,
2417 arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
2418 schedule_drops: ScheduleDrops,
2419 emit_storage_live: EmitStorageLive,
2420 ) -> BasicBlock {
2421 debug!("bind_and_guard_matched_candidate(subbranch={:?})", sub_branch);
2422
2423 let block = sub_branch.success_block;
2424
2425 if sub_branch.is_never {
2426 // This arm has a dummy body, we don't need to generate code for it. `block` is already
2427 // unreachable (except via false edge).
2428 let source_info = self.source_info(sub_branch.span);
2429 self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
2430 return self.cfg.start_new_block();
2431 }
2432
2433 self.ascribe_types(block, sub_branch.ascriptions);
2434
2435 // Lower an instance of the arm guard (if present) for this candidate,
2436 // and then perform bindings for the arm body.
2437 if let Some((arm, match_scope)) = arm_match_scope
2438 && let Some(guard) = arm.guard
2439 {
2440 let tcx = self.tcx;
2441
2442 // Bindings for guards require some extra handling to automatically
2443 // insert implicit references/dereferences.
2444 self.bind_matched_candidate_for_guard(
2445 block,
2446 schedule_drops,
2447 sub_branch.bindings.iter(),
2448 );
2449 let guard_frame = GuardFrame {
2450 locals: sub_branch
2451 .bindings
2452 .iter()
2453 .map(|b| GuardFrameLocal::new(b.var_id))
2454 .collect(),
2455 };
2456 debug!("entering guard building context: {:?}", guard_frame);
2457 self.guard_context.push(guard_frame);
2458
2459 let re_erased = tcx.lifetimes.re_erased;
2460 let scrutinee_source_info = self.source_info(scrutinee_span);
2461 for &(place, temp, kind) in fake_borrows {
2462 let borrow = Rvalue::Ref(re_erased, BorrowKind::Fake(kind), place);
2463 self.cfg.push_assign(block, scrutinee_source_info, Place::from(temp), borrow);
2464 }
2465
2466 let mut guard_span = rustc_span::DUMMY_SP;
2467
2468 let (post_guard_block, otherwise_post_guard_block) =
2469 self.in_if_then_scope(match_scope, guard_span, |this| {
2470 guard_span = this.thir[guard].span;
2471 this.then_else_break(
2472 block,
2473 guard,
2474 None, // Use `self.local_scope()` as the temp scope
2475 this.source_info(arm.span),
2476 DeclareLetBindings::No, // For guards, `let` bindings are declared separately
2477 )
2478 });
2479
2480 let source_info = self.source_info(guard_span);
2481 let guard_end = self.source_info(tcx.sess.source_map().end_point(guard_span));
2482 let guard_frame = self.guard_context.pop().unwrap();
2483 debug!("Exiting guard building context with locals: {:?}", guard_frame);
2484
2485 for &(_, temp, _) in fake_borrows {
2486 let cause = FakeReadCause::ForMatchGuard;
2487 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(temp));
2488 }
2489
2490 self.cfg.goto(otherwise_post_guard_block, source_info, sub_branch.otherwise_block);
2491
2492 // We want to ensure that the matched candidates are bound
2493 // after we have confirmed this candidate *and* any
2494 // associated guard; Binding them on `block` is too soon,
2495 // because that would be before we've checked the result
2496 // from the guard.
2497 //
2498 // But binding them on the arm is *too late*, because
2499 // then all of the candidates for a single arm would be
2500 // bound in the same place, that would cause a case like:
2501 //
2502 // ```rust
2503 // match (30, 2) {
2504 // (mut x, 1) | (2, mut x) if { true } => { ... }
2505 // ... // ^^^^^^^ (this is `arm_block`)
2506 // }
2507 // ```
2508 //
2509 // would yield an `arm_block` something like:
2510 //
2511 // ```
2512 // StorageLive(_4); // _4 is `x`
2513 // _4 = &mut (_1.0: i32); // this is handling `(mut x, 1)` case
2514 // _4 = &mut (_1.1: i32); // this is handling `(2, mut x)` case
2515 // ```
2516 //
2517 // and that is clearly not correct.
2518 let by_value_bindings = sub_branch
2519 .bindings
2520 .iter()
2521 .filter(|binding| matches!(binding.binding_mode.0, ByRef::No));
2522 // Read all of the by reference bindings to ensure that the
2523 // place they refer to can't be modified by the guard.
2524 for binding in by_value_bindings.clone() {
2525 let local_id = self.var_local_id(binding.var_id, RefWithinGuard);
2526 let cause = FakeReadCause::ForGuardBinding;
2527 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
2528 }
2529 assert_matches!(
2530 schedule_drops,
2531 ScheduleDrops::Yes,
2532 "patterns with guards must schedule drops"
2533 );
2534 self.bind_matched_candidate_for_arm_body(
2535 post_guard_block,
2536 ScheduleDrops::Yes,
2537 by_value_bindings,
2538 emit_storage_live,
2539 );
2540
2541 post_guard_block
2542 } else {
2543 // (Here, it is not too early to bind the matched
2544 // candidate on `block`, because there is no guard result
2545 // that we have to inspect before we bind them.)
2546 self.bind_matched_candidate_for_arm_body(
2547 block,
2548 schedule_drops,
2549 sub_branch.bindings.iter(),
2550 emit_storage_live,
2551 );
2552 block
2553 }
2554 }
2555
2556 /// Append `AscribeUserType` statements onto the end of `block`
2557 /// for each ascription
2558 fn ascribe_types(
2559 &mut self,
2560 block: BasicBlock,
2561 ascriptions: impl IntoIterator<Item = Ascription<'tcx>>,
2562 ) {
2563 for ascription in ascriptions {
2564 let source_info = self.source_info(ascription.annotation.span);
2565
2566 let base = self.canonical_user_type_annotations.push(ascription.annotation);
2567 self.cfg.push(
2568 block,
2569 Statement {
2570 source_info,
2571 kind: StatementKind::AscribeUserType(
2572 Box::new((
2573 ascription.source,
2574 UserTypeProjection { base, projs: Vec::new() },
2575 )),
2576 ascription.variance,
2577 ),
2578 },
2579 );
2580 }
2581 }
2582
2583 /// Binding for guards is a bit different from binding for the arm body,
2584 /// because an extra layer of implicit reference/dereference is added.
2585 ///
2586 /// The idea is that any pattern bindings of type T will map to a `&T` within
2587 /// the context of the guard expression, but will continue to map to a `T`
2588 /// in the context of the arm body. To avoid surfacing this distinction in
2589 /// the user source code (which would be a severe change to the language and
2590 /// require far more revision to the compiler), any occurrence of the
2591 /// identifier in the guard expression will automatically get a deref op
2592 /// applied to it. (See the caller of [`Self::is_bound_var_in_guard`].)
2593 ///
2594 /// So an input like:
2595 ///
2596 /// ```ignore (illustrative)
2597 /// let place = Foo::new();
2598 /// match place { foo if inspect(foo)
2599 /// => feed(foo), ... }
2600 /// ```
2601 ///
2602 /// will be treated as if it were really something like:
2603 ///
2604 /// ```ignore (illustrative)
2605 /// let place = Foo::new();
2606 /// match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
2607 /// => { let tmp2 = place; feed(tmp2) }, ... }
2608 /// ```
2609 ///
2610 /// And an input like:
2611 ///
2612 /// ```ignore (illustrative)
2613 /// let place = Foo::new();
2614 /// match place { ref mut foo if inspect(foo)
2615 /// => feed(foo), ... }
2616 /// ```
2617 ///
2618 /// will be treated as if it were really something like:
2619 ///
2620 /// ```ignore (illustrative)
2621 /// let place = Foo::new();
2622 /// match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
2623 /// => { let tmp2 = &mut place; feed(tmp2) }, ... }
2624 /// ```
2625 /// ---
2626 ///
2627 /// ## Implementation notes
2628 ///
2629 /// To encode the distinction above, we must inject the
2630 /// temporaries `tmp1` and `tmp2`.
2631 ///
2632 /// There are two cases of interest: binding by-value, and binding by-ref.
2633 ///
2634 /// 1. Binding by-value: Things are simple.
2635 ///
2636 /// * Establishing `tmp1` creates a reference into the
2637 /// matched place. This code is emitted by
2638 /// [`Self::bind_matched_candidate_for_guard`].
2639 ///
2640 /// * `tmp2` is only initialized "lazily", after we have
2641 /// checked the guard. Thus, the code that can trigger
2642 /// moves out of the candidate can only fire after the
2643 /// guard evaluated to true. This initialization code is
2644 /// emitted by [`Self::bind_matched_candidate_for_arm_body`].
2645 ///
2646 /// 2. Binding by-reference: Things are tricky.
2647 ///
2648 /// * Here, the guard expression wants a `&&` or `&&mut`
2649 /// into the original input. This means we need to borrow
2650 /// the reference that we create for the arm.
2651 /// * So we eagerly create the reference for the arm and then take a
2652 /// reference to that.
2653 ///
2654 /// ---
2655 ///
2656 /// See these PRs for some historical context:
2657 /// - <https://github.com/rust-lang/rust/pull/49870> (introduction of autoref)
2658 /// - <https://github.com/rust-lang/rust/pull/59114> (always use autoref)
2659 fn bind_matched_candidate_for_guard<'b>(
2660 &mut self,
2661 block: BasicBlock,
2662 schedule_drops: ScheduleDrops,
2663 bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2664 ) where
2665 'tcx: 'b,
2666 {
2667 debug!("bind_matched_candidate_for_guard(block={:?})", block);
2668
2669 // Assign each of the bindings. Since we are binding for a
2670 // guard expression, this will never trigger moves out of the
2671 // candidate.
2672 let re_erased = self.tcx.lifetimes.re_erased;
2673 for binding in bindings {
2674 debug!("bind_matched_candidate_for_guard(binding={:?})", binding);
2675 let source_info = self.source_info(binding.span);
2676
2677 // For each pattern ident P of type T, `ref_for_guard` is
2678 // a reference R: &T pointing to the location matched by
2679 // the pattern, and every occurrence of P within a guard
2680 // denotes *R.
2681 let ref_for_guard = self.storage_live_binding(
2682 block,
2683 binding.var_id,
2684 binding.span,
2685 RefWithinGuard,
2686 schedule_drops,
2687 );
2688 match binding.binding_mode.0 {
2689 ByRef::No => {
2690 // The arm binding will be by value, so for the guard binding
2691 // just take a shared reference to the matched place.
2692 let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, binding.source);
2693 self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2694 }
2695 ByRef::Yes(mutbl) => {
2696 // The arm binding will be by reference, so eagerly create it now.
2697 let value_for_arm = self.storage_live_binding(
2698 block,
2699 binding.var_id,
2700 binding.span,
2701 OutsideGuard,
2702 schedule_drops,
2703 );
2704
2705 let rvalue =
2706 Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source);
2707 self.cfg.push_assign(block, source_info, value_for_arm, rvalue);
2708 // For the guard binding, take a shared reference to that reference.
2709 let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, value_for_arm);
2710 self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2711 }
2712 }
2713 }
2714 }
2715
2716 fn bind_matched_candidate_for_arm_body<'b>(
2717 &mut self,
2718 block: BasicBlock,
2719 schedule_drops: ScheduleDrops,
2720 bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2721 emit_storage_live: EmitStorageLive,
2722 ) where
2723 'tcx: 'b,
2724 {
2725 debug!("bind_matched_candidate_for_arm_body(block={:?})", block);
2726
2727 let re_erased = self.tcx.lifetimes.re_erased;
2728 // Assign each of the bindings. This may trigger moves out of the candidate.
2729 for binding in bindings {
2730 let source_info = self.source_info(binding.span);
2731 let local = match emit_storage_live {
2732 // Here storages are already alive, probably because this is a binding
2733 // from let-else.
2734 // We just need to schedule drop for the value.
2735 EmitStorageLive::No => self.var_local_id(binding.var_id, OutsideGuard).into(),
2736 EmitStorageLive::Yes => self.storage_live_binding(
2737 block,
2738 binding.var_id,
2739 binding.span,
2740 OutsideGuard,
2741 schedule_drops,
2742 ),
2743 };
2744 if matches!(schedule_drops, ScheduleDrops::Yes) {
2745 self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
2746 }
2747 let rvalue = match binding.binding_mode.0 {
2748 ByRef::No => Rvalue::Use(self.consume_by_copy_or_move(binding.source)),
2749 ByRef::Yes(mutbl) => {
2750 Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source)
2751 }
2752 };
2753 self.cfg.push_assign(block, source_info, local, rvalue);
2754 }
2755 }
2756
2757 /// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where the bound
2758 /// `var` has type `T` in the arm body) in a pattern maps to 2 locals. The
2759 /// first local is a binding for occurrences of `var` in the guard, which
2760 /// will have type `&T`. The second local is a binding for occurrences of
2761 /// `var` in the arm body, which will have type `T`.
2762 #[instrument(skip(self), level = "debug")]
2763 fn declare_binding(
2764 &mut self,
2765 source_info: SourceInfo,
2766 visibility_scope: SourceScope,
2767 name: Symbol,
2768 mode: BindingMode,
2769 var_id: LocalVarId,
2770 var_ty: Ty<'tcx>,
2771 user_ty: UserTypeProjections,
2772 has_guard: ArmHasGuard,
2773 opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
2774 pat_span: Span,
2775 ) {
2776 let tcx = self.tcx;
2777 let debug_source_info = SourceInfo { span: source_info.span, scope: visibility_scope };
2778 let local = LocalDecl {
2779 mutability: mode.1,
2780 ty: var_ty,
2781 user_ty: if user_ty.is_empty() { None } else { Some(Box::new(user_ty)) },
2782 source_info,
2783 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(BindingForm::Var(
2784 VarBindingForm {
2785 binding_mode: mode,
2786 // hypothetically, `visit_primary_bindings` could try to unzip
2787 // an outermost hir::Ty as we descend, matching up
2788 // idents in pat; but complex w/ unclear UI payoff.
2789 // Instead, just abandon providing diagnostic info.
2790 opt_ty_info: None,
2791 opt_match_place,
2792 pat_span,
2793 },
2794 )))),
2795 };
2796 let for_arm_body = self.local_decls.push(local);
2797 self.var_debug_info.push(VarDebugInfo {
2798 name,
2799 source_info: debug_source_info,
2800 value: VarDebugInfoContents::Place(for_arm_body.into()),
2801 composite: None,
2802 argument_index: None,
2803 });
2804 let locals = if has_guard.0 {
2805 let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
2806 // This variable isn't mutated but has a name, so has to be
2807 // immutable to avoid the unused mut lint.
2808 mutability: Mutability::Not,
2809 ty: Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, var_ty),
2810 user_ty: None,
2811 source_info,
2812 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(
2813 BindingForm::RefForGuard,
2814 ))),
2815 });
2816 self.var_debug_info.push(VarDebugInfo {
2817 name,
2818 source_info: debug_source_info,
2819 value: VarDebugInfoContents::Place(ref_for_guard.into()),
2820 composite: None,
2821 argument_index: None,
2822 });
2823 LocalsForNode::ForGuard { ref_for_guard, for_arm_body }
2824 } else {
2825 LocalsForNode::One(for_arm_body)
2826 };
2827 debug!(?locals);
2828 self.var_indices.insert(var_id, locals);
2829 }
2830}