rustc_middle/mir/mod.rs
1//! MIR datatypes and passes. See the [rustc dev guide] for more info.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
4
5use std::borrow::Cow;
6use std::fmt::{self, Debug, Formatter};
7use std::ops::{Index, IndexMut};
8use std::{iter, mem};
9
10pub use basic_blocks::BasicBlocks;
11use either::Either;
12use polonius_engine::Atom;
13use rustc_abi::{FieldIdx, VariantIdx};
14pub use rustc_ast::Mutability;
15use rustc_data_structures::captures::Captures;
16use rustc_data_structures::fx::{FxHashMap, FxHashSet};
17use rustc_data_structures::graph::dominators::Dominators;
18use rustc_errors::{DiagArgName, DiagArgValue, DiagMessage, ErrorGuaranteed, IntoDiagArg};
19use rustc_hir::def::{CtorKind, Namespace};
20use rustc_hir::def_id::{CRATE_DEF_ID, DefId};
21use rustc_hir::{
22 self as hir, BindingMode, ByRef, CoroutineDesugaring, CoroutineKind, HirId, ImplicitSelfKind,
23};
24use rustc_index::bit_set::DenseBitSet;
25use rustc_index::{Idx, IndexSlice, IndexVec};
26use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
27use rustc_serialize::{Decodable, Encodable};
28use rustc_span::source_map::Spanned;
29use rustc_span::{DUMMY_SP, Span, Symbol};
30use tracing::{debug, trace};
31
32pub use self::query::*;
33use self::visit::TyContext;
34use crate::mir::interpret::{AllocRange, Scalar};
35use crate::mir::visit::MirVisitable;
36use crate::ty::codec::{TyDecoder, TyEncoder};
37use crate::ty::print::{FmtPrinter, Printer, pretty_print_const, with_no_trimmed_paths};
38use crate::ty::visit::TypeVisitableExt;
39use crate::ty::{
40 self, AdtDef, GenericArg, GenericArgsRef, Instance, InstanceKind, List, Ty, TyCtxt, TypingEnv,
41 UserTypeAnnotationIndex,
42};
43
44mod basic_blocks;
45mod consts;
46pub mod coverage;
47mod generic_graph;
48pub mod generic_graphviz;
49pub mod graphviz;
50pub mod interpret;
51pub mod mono;
52pub mod pretty;
53mod query;
54mod statement;
55mod syntax;
56pub mod tcx;
57mod terminator;
58
59pub mod traversal;
60pub mod visit;
61
62pub use consts::*;
63use pretty::pretty_print_const_value;
64pub use statement::*;
65pub use syntax::*;
66pub use terminator::*;
67
68pub use self::generic_graph::graphviz_safe_def_name;
69pub use self::graphviz::write_mir_graphviz;
70pub use self::pretty::{
71 PassWhere, create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty,
72};
73
74/// Types for locals
75pub type LocalDecls<'tcx> = IndexSlice<Local, LocalDecl<'tcx>>;
76
77pub trait HasLocalDecls<'tcx> {
78 fn local_decls(&self) -> &LocalDecls<'tcx>;
79}
80
81impl<'tcx> HasLocalDecls<'tcx> for IndexVec<Local, LocalDecl<'tcx>> {
82 #[inline]
83 fn local_decls(&self) -> &LocalDecls<'tcx> {
84 self
85 }
86}
87
88impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
89 #[inline]
90 fn local_decls(&self) -> &LocalDecls<'tcx> {
91 self
92 }
93}
94
95impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
96 #[inline]
97 fn local_decls(&self) -> &LocalDecls<'tcx> {
98 &self.local_decls
99 }
100}
101
102impl MirPhase {
103 /// Gets the index of the current MirPhase within the set of all `MirPhase`s.
104 ///
105 /// FIXME(JakobDegen): Return a `(usize, usize)` instead.
106 pub fn phase_index(&self) -> usize {
107 const BUILT_PHASE_COUNT: usize = 1;
108 const ANALYSIS_PHASE_COUNT: usize = 2;
109 match self {
110 MirPhase::Built => 1,
111 MirPhase::Analysis(analysis_phase) => {
112 1 + BUILT_PHASE_COUNT + (*analysis_phase as usize)
113 }
114 MirPhase::Runtime(runtime_phase) => {
115 1 + BUILT_PHASE_COUNT + ANALYSIS_PHASE_COUNT + (*runtime_phase as usize)
116 }
117 }
118 }
119
120 /// Parses an `MirPhase` from a pair of strings. Panics if this isn't possible for any reason.
121 pub fn parse(dialect: String, phase: Option<String>) -> Self {
122 match &*dialect.to_ascii_lowercase() {
123 "built" => {
124 assert!(phase.is_none(), "Cannot specify a phase for `Built` MIR");
125 MirPhase::Built
126 }
127 "analysis" => Self::Analysis(AnalysisPhase::parse(phase)),
128 "runtime" => Self::Runtime(RuntimePhase::parse(phase)),
129 _ => bug!("Unknown MIR dialect: '{}'", dialect),
130 }
131 }
132}
133
134impl AnalysisPhase {
135 pub fn parse(phase: Option<String>) -> Self {
136 let Some(phase) = phase else {
137 return Self::Initial;
138 };
139
140 match &*phase.to_ascii_lowercase() {
141 "initial" => Self::Initial,
142 "post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
143 _ => bug!("Unknown analysis phase: '{}'", phase),
144 }
145 }
146}
147
148impl RuntimePhase {
149 pub fn parse(phase: Option<String>) -> Self {
150 let Some(phase) = phase else {
151 return Self::Initial;
152 };
153
154 match &*phase.to_ascii_lowercase() {
155 "initial" => Self::Initial,
156 "post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
157 "optimized" => Self::Optimized,
158 _ => bug!("Unknown runtime phase: '{}'", phase),
159 }
160 }
161}
162
163/// Where a specific `mir::Body` comes from.
164#[derive(Copy, Clone, Debug, PartialEq, Eq)]
165#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable, TypeVisitable)]
166pub struct MirSource<'tcx> {
167 pub instance: InstanceKind<'tcx>,
168
169 /// If `Some`, this is a promoted rvalue within the parent function.
170 pub promoted: Option<Promoted>,
171}
172
173impl<'tcx> MirSource<'tcx> {
174 pub fn item(def_id: DefId) -> Self {
175 MirSource { instance: InstanceKind::Item(def_id), promoted: None }
176 }
177
178 pub fn from_instance(instance: InstanceKind<'tcx>) -> Self {
179 MirSource { instance, promoted: None }
180 }
181
182 #[inline]
183 pub fn def_id(&self) -> DefId {
184 self.instance.def_id()
185 }
186}
187
188/// Additional information carried by a MIR body when it is lowered from a coroutine.
189/// This information is modified as it is lowered during the `StateTransform` MIR pass,
190/// so not all fields will be active at a given time. For example, the `yield_ty` is
191/// taken out of the field after yields are turned into returns, and the `coroutine_drop`
192/// body is only populated after the state transform pass.
193#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
194pub struct CoroutineInfo<'tcx> {
195 /// The yield type of the function. This field is removed after the state transform pass.
196 pub yield_ty: Option<Ty<'tcx>>,
197
198 /// The resume type of the function. This field is removed after the state transform pass.
199 pub resume_ty: Option<Ty<'tcx>>,
200
201 /// Coroutine drop glue. This field is populated after the state transform pass.
202 pub coroutine_drop: Option<Body<'tcx>>,
203
204 /// The layout of a coroutine. This field is populated after the state transform pass.
205 pub coroutine_layout: Option<CoroutineLayout<'tcx>>,
206
207 /// If this is a coroutine then record the type of source expression that caused this coroutine
208 /// to be created.
209 pub coroutine_kind: CoroutineKind,
210}
211
212impl<'tcx> CoroutineInfo<'tcx> {
213 // Sets up `CoroutineInfo` for a pre-coroutine-transform MIR body.
214 pub fn initial(
215 coroutine_kind: CoroutineKind,
216 yield_ty: Ty<'tcx>,
217 resume_ty: Ty<'tcx>,
218 ) -> CoroutineInfo<'tcx> {
219 CoroutineInfo {
220 coroutine_kind,
221 yield_ty: Some(yield_ty),
222 resume_ty: Some(resume_ty),
223 coroutine_drop: None,
224 coroutine_layout: None,
225 }
226 }
227}
228
229/// Some item that needs to monomorphize successfully for a MIR body to be considered well-formed.
230#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, HashStable, TyEncodable, TyDecodable)]
231#[derive(TypeFoldable, TypeVisitable)]
232pub enum MentionedItem<'tcx> {
233 /// A function that gets called. We don't necessarily know its precise type yet, since it can be
234 /// hidden behind a generic.
235 Fn(Ty<'tcx>),
236 /// A type that has its drop shim called.
237 Drop(Ty<'tcx>),
238 /// Unsizing casts might require vtables, so we have to record them.
239 UnsizeCast { source_ty: Ty<'tcx>, target_ty: Ty<'tcx> },
240 /// A closure that is coerced to a function pointer.
241 Closure(Ty<'tcx>),
242}
243
244/// The lowered representation of a single function.
245#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
246pub struct Body<'tcx> {
247 /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
248 /// that indexes into this vector.
249 pub basic_blocks: BasicBlocks<'tcx>,
250
251 /// Records how far through the "desugaring and optimization" process this particular
252 /// MIR has traversed. This is particularly useful when inlining, since in that context
253 /// we instantiate the promoted constants and add them to our promoted vector -- but those
254 /// promoted items have already been optimized, whereas ours have not. This field allows
255 /// us to see the difference and forego optimization on the inlined promoted items.
256 pub phase: MirPhase,
257
258 /// How many passses we have executed since starting the current phase. Used for debug output.
259 pub pass_count: usize,
260
261 pub source: MirSource<'tcx>,
262
263 /// A list of source scopes; these are referenced by statements
264 /// and used for debuginfo. Indexed by a `SourceScope`.
265 pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
266
267 /// Additional information carried by a MIR body when it is lowered from a coroutine.
268 ///
269 /// Note that the coroutine drop shim, any promoted consts, and other synthetic MIR
270 /// bodies that come from processing a coroutine body are not typically coroutines
271 /// themselves, and should probably set this to `None` to avoid carrying redundant
272 /// information.
273 pub coroutine: Option<Box<CoroutineInfo<'tcx>>>,
274
275 /// Declarations of locals.
276 ///
277 /// The first local is the return value pointer, followed by `arg_count`
278 /// locals for the function arguments, followed by any user-declared
279 /// variables and temporaries.
280 pub local_decls: IndexVec<Local, LocalDecl<'tcx>>,
281
282 /// User type annotations.
283 pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
284
285 /// The number of arguments this function takes.
286 ///
287 /// Starting at local 1, `arg_count` locals will be provided by the caller
288 /// and can be assumed to be initialized.
289 ///
290 /// If this MIR was built for a constant, this will be 0.
291 pub arg_count: usize,
292
293 /// Mark an argument local (which must be a tuple) as getting passed as
294 /// its individual components at the LLVM level.
295 ///
296 /// This is used for the "rust-call" ABI.
297 pub spread_arg: Option<Local>,
298
299 /// Debug information pertaining to user variables, including captures.
300 pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
301
302 /// A span representing this MIR, for error reporting.
303 pub span: Span,
304
305 /// Constants that are required to evaluate successfully for this MIR to be well-formed.
306 /// We hold in this field all the constants we are not able to evaluate yet.
307 /// `None` indicates that the list has not been computed yet.
308 ///
309 /// This is soundness-critical, we make a guarantee that all consts syntactically mentioned in a
310 /// function have successfully evaluated if the function ever gets executed at runtime.
311 pub required_consts: Option<Vec<ConstOperand<'tcx>>>,
312
313 /// Further items that were mentioned in this function and hence *may* become monomorphized,
314 /// depending on optimizations. We use this to avoid optimization-dependent compile errors: the
315 /// collector recursively traverses all "mentioned" items and evaluates all their
316 /// `required_consts`.
317 /// `None` indicates that the list has not been computed yet.
318 ///
319 /// This is *not* soundness-critical and the contents of this list are *not* a stable guarantee.
320 /// All that's relevant is that this set is optimization-level-independent, and that it includes
321 /// everything that the collector would consider "used". (For example, we currently compute this
322 /// set after drop elaboration, so some drop calls that can never be reached are not considered
323 /// "mentioned".) See the documentation of `CollectionMode` in
324 /// `compiler/rustc_monomorphize/src/collector.rs` for more context.
325 pub mentioned_items: Option<Vec<Spanned<MentionedItem<'tcx>>>>,
326
327 /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
328 ///
329 /// Note that this does not actually mean that this body is not computable right now.
330 /// The repeat count in the following example is polymorphic, but can still be evaluated
331 /// without knowing anything about the type parameter `T`.
332 ///
333 /// ```rust
334 /// fn test<T>() {
335 /// let _ = [0; std::mem::size_of::<*mut T>()];
336 /// }
337 /// ```
338 ///
339 /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
340 /// removed the last mention of all generic params. We do not want to rely on optimizations and
341 /// potentially allow things like `[u8; std::mem::size_of::<T>() * 0]` due to this.
342 pub is_polymorphic: bool,
343
344 /// The phase at which this MIR should be "injected" into the compilation process.
345 ///
346 /// Everything that comes before this `MirPhase` should be skipped.
347 ///
348 /// This is only `Some` if the function that this body comes from was annotated with `rustc_custom_mir`.
349 pub injection_phase: Option<MirPhase>,
350
351 pub tainted_by_errors: Option<ErrorGuaranteed>,
352
353 /// Coverage information collected from THIR/MIR during MIR building,
354 /// to be used by the `InstrumentCoverage` pass.
355 ///
356 /// Only present if coverage is enabled and this function is eligible.
357 /// Boxed to limit space overhead in non-coverage builds.
358 #[type_foldable(identity)]
359 #[type_visitable(ignore)]
360 pub coverage_info_hi: Option<Box<coverage::CoverageInfoHi>>,
361
362 /// Per-function coverage information added by the `InstrumentCoverage`
363 /// pass, to be used in conjunction with the coverage statements injected
364 /// into this body's blocks.
365 ///
366 /// If `-Cinstrument-coverage` is not active, or if an individual function
367 /// is not eligible for coverage, then this should always be `None`.
368 #[type_foldable(identity)]
369 #[type_visitable(ignore)]
370 pub function_coverage_info: Option<Box<coverage::FunctionCoverageInfo>>,
371}
372
373impl<'tcx> Body<'tcx> {
374 pub fn new(
375 source: MirSource<'tcx>,
376 basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
377 source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
378 local_decls: IndexVec<Local, LocalDecl<'tcx>>,
379 user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
380 arg_count: usize,
381 var_debug_info: Vec<VarDebugInfo<'tcx>>,
382 span: Span,
383 coroutine: Option<Box<CoroutineInfo<'tcx>>>,
384 tainted_by_errors: Option<ErrorGuaranteed>,
385 ) -> Self {
386 // We need `arg_count` locals, and one for the return place.
387 assert!(
388 local_decls.len() > arg_count,
389 "expected at least {} locals, got {}",
390 arg_count + 1,
391 local_decls.len()
392 );
393
394 let mut body = Body {
395 phase: MirPhase::Built,
396 pass_count: 0,
397 source,
398 basic_blocks: BasicBlocks::new(basic_blocks),
399 source_scopes,
400 coroutine,
401 local_decls,
402 user_type_annotations,
403 arg_count,
404 spread_arg: None,
405 var_debug_info,
406 span,
407 required_consts: None,
408 mentioned_items: None,
409 is_polymorphic: false,
410 injection_phase: None,
411 tainted_by_errors,
412 coverage_info_hi: None,
413 function_coverage_info: None,
414 };
415 body.is_polymorphic = body.has_non_region_param();
416 body
417 }
418
419 /// Returns a partially initialized MIR body containing only a list of basic blocks.
420 ///
421 /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
422 /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
423 /// crate.
424 pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
425 let mut body = Body {
426 phase: MirPhase::Built,
427 pass_count: 0,
428 source: MirSource::item(CRATE_DEF_ID.to_def_id()),
429 basic_blocks: BasicBlocks::new(basic_blocks),
430 source_scopes: IndexVec::new(),
431 coroutine: None,
432 local_decls: IndexVec::new(),
433 user_type_annotations: IndexVec::new(),
434 arg_count: 0,
435 spread_arg: None,
436 span: DUMMY_SP,
437 required_consts: None,
438 mentioned_items: None,
439 var_debug_info: Vec::new(),
440 is_polymorphic: false,
441 injection_phase: None,
442 tainted_by_errors: None,
443 coverage_info_hi: None,
444 function_coverage_info: None,
445 };
446 body.is_polymorphic = body.has_non_region_param();
447 body
448 }
449
450 #[inline]
451 pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
452 self.basic_blocks.as_mut()
453 }
454
455 pub fn typing_env(&self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> {
456 match self.phase {
457 // FIXME(#132279): we should reveal the opaques defined in the body during analysis.
458 MirPhase::Built | MirPhase::Analysis(_) => TypingEnv {
459 typing_mode: ty::TypingMode::non_body_analysis(),
460 param_env: tcx.param_env(self.source.def_id()),
461 },
462 MirPhase::Runtime(_) => TypingEnv::post_analysis(tcx, self.source.def_id()),
463 }
464 }
465
466 #[inline]
467 pub fn local_kind(&self, local: Local) -> LocalKind {
468 let index = local.as_usize();
469 if index == 0 {
470 debug_assert!(
471 self.local_decls[local].mutability == Mutability::Mut,
472 "return place should be mutable"
473 );
474
475 LocalKind::ReturnPointer
476 } else if index < self.arg_count + 1 {
477 LocalKind::Arg
478 } else {
479 LocalKind::Temp
480 }
481 }
482
483 /// Returns an iterator over all user-declared mutable locals.
484 #[inline]
485 pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
486 (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
487 let local = Local::new(index);
488 let decl = &self.local_decls[local];
489 (decl.is_user_variable() && decl.mutability.is_mut()).then_some(local)
490 })
491 }
492
493 /// Returns an iterator over all user-declared mutable arguments and locals.
494 #[inline]
495 pub fn mut_vars_and_args_iter<'a>(
496 &'a self,
497 ) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
498 (1..self.local_decls.len()).filter_map(move |index| {
499 let local = Local::new(index);
500 let decl = &self.local_decls[local];
501 if (decl.is_user_variable() || index < self.arg_count + 1)
502 && decl.mutability == Mutability::Mut
503 {
504 Some(local)
505 } else {
506 None
507 }
508 })
509 }
510
511 /// Returns an iterator over all function arguments.
512 #[inline]
513 pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
514 (1..self.arg_count + 1).map(Local::new)
515 }
516
517 /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
518 /// locals that are neither arguments nor the return place).
519 #[inline]
520 pub fn vars_and_temps_iter(
521 &self,
522 ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
523 (self.arg_count + 1..self.local_decls.len()).map(Local::new)
524 }
525
526 #[inline]
527 pub fn drain_vars_and_temps<'a>(&'a mut self) -> impl Iterator<Item = LocalDecl<'tcx>> + 'a {
528 self.local_decls.drain(self.arg_count + 1..)
529 }
530
531 /// Returns the source info associated with `location`.
532 pub fn source_info(&self, location: Location) -> &SourceInfo {
533 let block = &self[location.block];
534 let stmts = &block.statements;
535 let idx = location.statement_index;
536 if idx < stmts.len() {
537 &stmts[idx].source_info
538 } else {
539 assert_eq!(idx, stmts.len());
540 &block.terminator().source_info
541 }
542 }
543
544 pub fn span_for_ty_context(&self, ty_context: TyContext) -> Span {
545 match ty_context {
546 TyContext::UserTy(span) => span,
547 TyContext::ReturnTy(source_info)
548 | TyContext::LocalDecl { source_info, .. }
549 | TyContext::YieldTy(source_info)
550 | TyContext::ResumeTy(source_info) => source_info.span,
551 TyContext::Location(loc) => self.source_info(loc).span,
552 }
553 }
554
555 /// Returns the return type; it always return first element from `local_decls` array.
556 #[inline]
557 pub fn return_ty(&self) -> Ty<'tcx> {
558 self.local_decls[RETURN_PLACE].ty
559 }
560
561 /// Returns the return type; it always return first element from `local_decls` array.
562 #[inline]
563 pub fn bound_return_ty(&self) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
564 ty::EarlyBinder::bind(self.local_decls[RETURN_PLACE].ty)
565 }
566
567 /// Gets the location of the terminator for the given block.
568 #[inline]
569 pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
570 Location { block: bb, statement_index: self[bb].statements.len() }
571 }
572
573 pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
574 let Location { block, statement_index } = location;
575 let block_data = &self.basic_blocks[block];
576 block_data
577 .statements
578 .get(statement_index)
579 .map(Either::Left)
580 .unwrap_or_else(|| Either::Right(block_data.terminator()))
581 }
582
583 #[inline]
584 pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
585 self.coroutine.as_ref().and_then(|coroutine| coroutine.yield_ty)
586 }
587
588 #[inline]
589 pub fn resume_ty(&self) -> Option<Ty<'tcx>> {
590 self.coroutine.as_ref().and_then(|coroutine| coroutine.resume_ty)
591 }
592
593 /// Prefer going through [`TyCtxt::coroutine_layout`] rather than using this directly.
594 #[inline]
595 pub fn coroutine_layout_raw(&self) -> Option<&CoroutineLayout<'tcx>> {
596 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_layout.as_ref())
597 }
598
599 #[inline]
600 pub fn coroutine_drop(&self) -> Option<&Body<'tcx>> {
601 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop.as_ref())
602 }
603
604 #[inline]
605 pub fn coroutine_kind(&self) -> Option<CoroutineKind> {
606 self.coroutine.as_ref().map(|coroutine| coroutine.coroutine_kind)
607 }
608
609 #[inline]
610 pub fn should_skip(&self) -> bool {
611 let Some(injection_phase) = self.injection_phase else {
612 return false;
613 };
614 injection_phase > self.phase
615 }
616
617 #[inline]
618 pub fn is_custom_mir(&self) -> bool {
619 self.injection_phase.is_some()
620 }
621
622 /// If this basic block ends with a [`TerminatorKind::SwitchInt`] for which we can evaluate the
623 /// discriminant in monomorphization, we return the discriminant bits and the
624 /// [`SwitchTargets`], just so the caller doesn't also have to match on the terminator.
625 fn try_const_mono_switchint<'a>(
626 tcx: TyCtxt<'tcx>,
627 instance: Instance<'tcx>,
628 block: &'a BasicBlockData<'tcx>,
629 ) -> Option<(u128, &'a SwitchTargets)> {
630 // There are two places here we need to evaluate a constant.
631 let eval_mono_const = |constant: &ConstOperand<'tcx>| {
632 // FIXME(#132279): what is this, why are we using an empty environment here.
633 let typing_env = ty::TypingEnv::fully_monomorphized();
634 let mono_literal = instance.instantiate_mir_and_normalize_erasing_regions(
635 tcx,
636 typing_env,
637 crate::ty::EarlyBinder::bind(constant.const_),
638 );
639 mono_literal.try_eval_bits(tcx, typing_env)
640 };
641
642 let TerminatorKind::SwitchInt { discr, targets } = &block.terminator().kind else {
643 return None;
644 };
645
646 // If this is a SwitchInt(const _), then we can just evaluate the constant and return.
647 let discr = match discr {
648 Operand::Constant(constant) => {
649 let bits = eval_mono_const(constant)?;
650 return Some((bits, targets));
651 }
652 Operand::Move(place) | Operand::Copy(place) => place,
653 };
654
655 // MIR for `if false` actually looks like this:
656 // _1 = const _
657 // SwitchInt(_1)
658 //
659 // And MIR for if intrinsics::ub_checks() looks like this:
660 // _1 = UbChecks()
661 // SwitchInt(_1)
662 //
663 // So we're going to try to recognize this pattern.
664 //
665 // If we have a SwitchInt on a non-const place, we find the most recent statement that
666 // isn't a storage marker. If that statement is an assignment of a const to our
667 // discriminant place, we evaluate and return the const, as if we've const-propagated it
668 // into the SwitchInt.
669
670 let last_stmt = block.statements.iter().rev().find(|stmt| {
671 !matches!(stmt.kind, StatementKind::StorageDead(_) | StatementKind::StorageLive(_))
672 })?;
673
674 let (place, rvalue) = last_stmt.kind.as_assign()?;
675
676 if discr != place {
677 return None;
678 }
679
680 match rvalue {
681 Rvalue::NullaryOp(NullOp::UbChecks, _) => Some((tcx.sess.ub_checks() as u128, targets)),
682 Rvalue::Use(Operand::Constant(constant)) => {
683 let bits = eval_mono_const(constant)?;
684 Some((bits, targets))
685 }
686 _ => None,
687 }
688 }
689
690 /// For a `Location` in this scope, determine what the "caller location" at that point is. This
691 /// is interesting because of inlining: the `#[track_caller]` attribute of inlined functions
692 /// must be honored. Falls back to the `tracked_caller` value for `#[track_caller]` functions,
693 /// or the function's scope.
694 pub fn caller_location_span<T>(
695 &self,
696 mut source_info: SourceInfo,
697 caller_location: Option<T>,
698 tcx: TyCtxt<'tcx>,
699 from_span: impl FnOnce(Span) -> T,
700 ) -> T {
701 loop {
702 let scope_data = &self.source_scopes[source_info.scope];
703
704 if let Some((callee, callsite_span)) = scope_data.inlined {
705 // Stop inside the most nested non-`#[track_caller]` function,
706 // before ever reaching its caller (which is irrelevant).
707 if !callee.def.requires_caller_location(tcx) {
708 return from_span(source_info.span);
709 }
710 source_info.span = callsite_span;
711 }
712
713 // Skip past all of the parents with `inlined: None`.
714 match scope_data.inlined_parent_scope {
715 Some(parent) => source_info.scope = parent,
716 None => break,
717 }
718 }
719
720 // No inlined `SourceScope`s, or all of them were `#[track_caller]`.
721 caller_location.unwrap_or_else(|| from_span(source_info.span))
722 }
723
724 #[track_caller]
725 pub fn set_required_consts(&mut self, required_consts: Vec<ConstOperand<'tcx>>) {
726 assert!(
727 self.required_consts.is_none(),
728 "required_consts for {:?} have already been set",
729 self.source.def_id()
730 );
731 self.required_consts = Some(required_consts);
732 }
733 #[track_caller]
734 pub fn required_consts(&self) -> &[ConstOperand<'tcx>] {
735 match &self.required_consts {
736 Some(l) => l,
737 None => panic!("required_consts for {:?} have not yet been set", self.source.def_id()),
738 }
739 }
740
741 #[track_caller]
742 pub fn set_mentioned_items(&mut self, mentioned_items: Vec<Spanned<MentionedItem<'tcx>>>) {
743 assert!(
744 self.mentioned_items.is_none(),
745 "mentioned_items for {:?} have already been set",
746 self.source.def_id()
747 );
748 self.mentioned_items = Some(mentioned_items);
749 }
750 #[track_caller]
751 pub fn mentioned_items(&self) -> &[Spanned<MentionedItem<'tcx>>] {
752 match &self.mentioned_items {
753 Some(l) => l,
754 None => panic!("mentioned_items for {:?} have not yet been set", self.source.def_id()),
755 }
756 }
757}
758
759impl<'tcx> Index<BasicBlock> for Body<'tcx> {
760 type Output = BasicBlockData<'tcx>;
761
762 #[inline]
763 fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
764 &self.basic_blocks[index]
765 }
766}
767
768impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
769 #[inline]
770 fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
771 &mut self.basic_blocks.as_mut()[index]
772 }
773}
774
775#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
776pub enum ClearCrossCrate<T> {
777 Clear,
778 Set(T),
779}
780
781impl<T> ClearCrossCrate<T> {
782 pub fn as_ref(&self) -> ClearCrossCrate<&T> {
783 match self {
784 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
785 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
786 }
787 }
788
789 pub fn as_mut(&mut self) -> ClearCrossCrate<&mut T> {
790 match self {
791 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
792 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
793 }
794 }
795
796 pub fn assert_crate_local(self) -> T {
797 match self {
798 ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
799 ClearCrossCrate::Set(v) => v,
800 }
801 }
802}
803
804const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
805const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
806
807impl<E: TyEncoder, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
808 #[inline]
809 fn encode(&self, e: &mut E) {
810 if E::CLEAR_CROSS_CRATE {
811 return;
812 }
813
814 match *self {
815 ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
816 ClearCrossCrate::Set(ref val) => {
817 TAG_CLEAR_CROSS_CRATE_SET.encode(e);
818 val.encode(e);
819 }
820 }
821 }
822}
823impl<D: TyDecoder, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
824 #[inline]
825 fn decode(d: &mut D) -> ClearCrossCrate<T> {
826 if D::CLEAR_CROSS_CRATE {
827 return ClearCrossCrate::Clear;
828 }
829
830 let discr = u8::decode(d);
831
832 match discr {
833 TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
834 TAG_CLEAR_CROSS_CRATE_SET => {
835 let val = T::decode(d);
836 ClearCrossCrate::Set(val)
837 }
838 tag => panic!("Invalid tag for ClearCrossCrate: {tag:?}"),
839 }
840 }
841}
842
843/// Grouped information about the source code origin of a MIR entity.
844/// Intended to be inspected by diagnostics and debuginfo.
845/// Most passes can work with it as a whole, within a single function.
846// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
847// `Hash`. Please ping @bjorn3 if removing them.
848#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
849pub struct SourceInfo {
850 /// The source span for the AST pertaining to this MIR entity.
851 pub span: Span,
852
853 /// The source scope, keeping track of which bindings can be
854 /// seen by debuginfo, active lint levels, etc.
855 pub scope: SourceScope,
856}
857
858impl SourceInfo {
859 #[inline]
860 pub fn outermost(span: Span) -> Self {
861 SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
862 }
863}
864
865///////////////////////////////////////////////////////////////////////////
866// Variables and temps
867
868rustc_index::newtype_index! {
869 #[derive(HashStable)]
870 #[encodable]
871 #[orderable]
872 #[debug_format = "_{}"]
873 pub struct Local {
874 const RETURN_PLACE = 0;
875 }
876}
877
878impl Atom for Local {
879 fn index(self) -> usize {
880 Idx::index(self)
881 }
882}
883
884/// Classifies locals into categories. See `Body::local_kind`.
885#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
886pub enum LocalKind {
887 /// User-declared variable binding or compiler-introduced temporary.
888 Temp,
889 /// Function argument.
890 Arg,
891 /// Location of function's return value.
892 ReturnPointer,
893}
894
895#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
896pub struct VarBindingForm<'tcx> {
897 /// Is variable bound via `x`, `mut x`, `ref x`, `ref mut x`, `mut ref x`, or `mut ref mut x`?
898 pub binding_mode: BindingMode,
899 /// If an explicit type was provided for this variable binding,
900 /// this holds the source Span of that type.
901 ///
902 /// NOTE: if you want to change this to a `HirId`, be wary that
903 /// doing so breaks incremental compilation (as of this writing),
904 /// while a `Span` does not cause our tests to fail.
905 pub opt_ty_info: Option<Span>,
906 /// Place of the RHS of the =, or the subject of the `match` where this
907 /// variable is initialized. None in the case of `let PATTERN;`.
908 /// Some((None, ..)) in the case of and `let [mut] x = ...` because
909 /// (a) the right-hand side isn't evaluated as a place expression.
910 /// (b) it gives a way to separate this case from the remaining cases
911 /// for diagnostics.
912 pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
913 /// The span of the pattern in which this variable was bound.
914 pub pat_span: Span,
915}
916
917#[derive(Clone, Debug, TyEncodable, TyDecodable)]
918pub enum BindingForm<'tcx> {
919 /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
920 Var(VarBindingForm<'tcx>),
921 /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
922 ImplicitSelf(ImplicitSelfKind),
923 /// Reference used in a guard expression to ensure immutability.
924 RefForGuard,
925}
926
927mod binding_form_impl {
928 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
929 use rustc_query_system::ich::StableHashingContext;
930
931 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
932 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
933 use super::BindingForm::*;
934 std::mem::discriminant(self).hash_stable(hcx, hasher);
935
936 match self {
937 Var(binding) => binding.hash_stable(hcx, hasher),
938 ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
939 RefForGuard => (),
940 }
941 }
942 }
943}
944
945/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
946/// created during evaluation of expressions in a block tail
947/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
948///
949/// It is used to improve diagnostics when such temporaries are
950/// involved in borrow_check errors, e.g., explanations of where the
951/// temporaries come from, when their destructors are run, and/or how
952/// one might revise the code to satisfy the borrow checker's rules.
953#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
954pub struct BlockTailInfo {
955 /// If `true`, then the value resulting from evaluating this tail
956 /// expression is ignored by the block's expression context.
957 ///
958 /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
959 /// but not e.g., `let _x = { ...; tail };`
960 pub tail_result_is_ignored: bool,
961
962 /// `Span` of the tail expression.
963 pub span: Span,
964}
965
966/// A MIR local.
967///
968/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
969/// argument, or the return place.
970#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
971pub struct LocalDecl<'tcx> {
972 /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
973 ///
974 /// Temporaries and the return place are always mutable.
975 pub mutability: Mutability,
976
977 // FIXME(matthewjasper) Don't store in this in `Body`
978 pub local_info: ClearCrossCrate<Box<LocalInfo<'tcx>>>,
979
980 /// The type of this local.
981 pub ty: Ty<'tcx>,
982
983 /// If the user manually ascribed a type to this variable,
984 /// e.g., via `let x: T`, then we carry that type here. The MIR
985 /// borrow checker needs this information since it can affect
986 /// region inference.
987 // FIXME(matthewjasper) Don't store in this in `Body`
988 pub user_ty: Option<Box<UserTypeProjections>>,
989
990 /// The *syntactic* (i.e., not visibility) source scope the local is defined
991 /// in. If the local was defined in a let-statement, this
992 /// is *within* the let-statement, rather than outside
993 /// of it.
994 ///
995 /// This is needed because the visibility source scope of locals within
996 /// a let-statement is weird.
997 ///
998 /// The reason is that we want the local to be *within* the let-statement
999 /// for lint purposes, but we want the local to be *after* the let-statement
1000 /// for names-in-scope purposes.
1001 ///
1002 /// That's it, if we have a let-statement like the one in this
1003 /// function:
1004 ///
1005 /// ```
1006 /// fn foo(x: &str) {
1007 /// #[allow(unused_mut)]
1008 /// let mut x: u32 = { // <- one unused mut
1009 /// let mut y: u32 = x.parse().unwrap();
1010 /// y + 2
1011 /// };
1012 /// drop(x);
1013 /// }
1014 /// ```
1015 ///
1016 /// Then, from a lint point of view, the declaration of `x: u32`
1017 /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
1018 /// lint scopes are the same as the AST/HIR nesting.
1019 ///
1020 /// However, from a name lookup point of view, the scopes look more like
1021 /// as if the let-statements were `match` expressions:
1022 ///
1023 /// ```
1024 /// fn foo(x: &str) {
1025 /// match {
1026 /// match x.parse::<u32>().unwrap() {
1027 /// y => y + 2
1028 /// }
1029 /// } {
1030 /// x => drop(x)
1031 /// };
1032 /// }
1033 /// ```
1034 ///
1035 /// We care about the name-lookup scopes for debuginfo - if the
1036 /// debuginfo instruction pointer is at the call to `x.parse()`, we
1037 /// want `x` to refer to `x: &str`, but if it is at the call to
1038 /// `drop(x)`, we want it to refer to `x: u32`.
1039 ///
1040 /// To allow both uses to work, we need to have more than a single scope
1041 /// for a local. We have the `source_info.scope` represent the "syntactic"
1042 /// lint scope (with a variable being under its let block) while the
1043 /// `var_debug_info.source_info.scope` represents the "local variable"
1044 /// scope (where the "rest" of a block is under all prior let-statements).
1045 ///
1046 /// The end result looks like this:
1047 ///
1048 /// ```text
1049 /// ROOT SCOPE
1050 /// │{ argument x: &str }
1051 /// │
1052 /// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
1053 /// │ │ // in practice because I'm lazy.
1054 /// │ │
1055 /// │ │← x.source_info.scope
1056 /// │ │← `x.parse().unwrap()`
1057 /// │ │
1058 /// │ │ │← y.source_info.scope
1059 /// │ │
1060 /// │ │ │{ let y: u32 }
1061 /// │ │ │
1062 /// │ │ │← y.var_debug_info.source_info.scope
1063 /// │ │ │← `y + 2`
1064 /// │
1065 /// │ │{ let x: u32 }
1066 /// │ │← x.var_debug_info.source_info.scope
1067 /// │ │← `drop(x)` // This accesses `x: u32`.
1068 /// ```
1069 pub source_info: SourceInfo,
1070}
1071
1072/// Extra information about a some locals that's used for diagnostics and for
1073/// classifying variables into local variables, statics, etc, which is needed e.g.
1074/// for borrow checking.
1075///
1076/// Not used for non-StaticRef temporaries, the return place, or anonymous
1077/// function parameters.
1078#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1079pub enum LocalInfo<'tcx> {
1080 /// A user-defined local variable or function parameter
1081 ///
1082 /// The `BindingForm` is solely used for local diagnostics when generating
1083 /// warnings/errors when compiling the current crate, and therefore it need
1084 /// not be visible across crates.
1085 User(BindingForm<'tcx>),
1086 /// A temporary created that references the static with the given `DefId`.
1087 StaticRef { def_id: DefId, is_thread_local: bool },
1088 /// A temporary created that references the const with the given `DefId`
1089 ConstRef { def_id: DefId },
1090 /// A temporary created during the creation of an aggregate
1091 /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
1092 AggregateTemp,
1093 /// A temporary created for evaluation of some subexpression of some block's tail expression
1094 /// (with no intervening statement context).
1095 // FIXME(matthewjasper) Don't store in this in `Body`
1096 BlockTailTemp(BlockTailInfo),
1097 /// A temporary created during evaluating `if` predicate, possibly for pattern matching for `let`s,
1098 /// and subject to Edition 2024 temporary lifetime rules
1099 IfThenRescopeTemp { if_then: HirId },
1100 /// A temporary created during the pass `Derefer` to avoid it's retagging
1101 DerefTemp,
1102 /// A temporary created for borrow checking.
1103 FakeBorrow,
1104 /// A local without anything interesting about it.
1105 Boring,
1106}
1107
1108impl<'tcx> LocalDecl<'tcx> {
1109 pub fn local_info(&self) -> &LocalInfo<'tcx> {
1110 self.local_info.as_ref().assert_crate_local()
1111 }
1112
1113 /// Returns `true` only if local is a binding that can itself be
1114 /// made mutable via the addition of the `mut` keyword, namely
1115 /// something like the occurrences of `x` in:
1116 /// - `fn foo(x: Type) { ... }`,
1117 /// - `let x = ...`,
1118 /// - or `match ... { C(x) => ... }`
1119 pub fn can_be_made_mutable(&self) -> bool {
1120 matches!(
1121 self.local_info(),
1122 LocalInfo::User(
1123 BindingForm::Var(VarBindingForm {
1124 binding_mode: BindingMode(ByRef::No, _),
1125 opt_ty_info: _,
1126 opt_match_place: _,
1127 pat_span: _,
1128 }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
1129 )
1130 )
1131 }
1132
1133 /// Returns `true` if local is definitely not a `ref ident` or
1134 /// `ref mut ident` binding. (Such bindings cannot be made into
1135 /// mutable bindings, but the inverse does not necessarily hold).
1136 pub fn is_nonref_binding(&self) -> bool {
1137 matches!(
1138 self.local_info(),
1139 LocalInfo::User(
1140 BindingForm::Var(VarBindingForm {
1141 binding_mode: BindingMode(ByRef::No, _),
1142 opt_ty_info: _,
1143 opt_match_place: _,
1144 pat_span: _,
1145 }) | BindingForm::ImplicitSelf(_),
1146 )
1147 )
1148 }
1149
1150 /// Returns `true` if this variable is a named variable or function
1151 /// parameter declared by the user.
1152 #[inline]
1153 pub fn is_user_variable(&self) -> bool {
1154 matches!(self.local_info(), LocalInfo::User(_))
1155 }
1156
1157 /// Returns `true` if this is a reference to a variable bound in a `match`
1158 /// expression that is used to access said variable for the guard of the
1159 /// match arm.
1160 pub fn is_ref_for_guard(&self) -> bool {
1161 matches!(self.local_info(), LocalInfo::User(BindingForm::RefForGuard))
1162 }
1163
1164 /// Returns `Some` if this is a reference to a static item that is used to
1165 /// access that static.
1166 pub fn is_ref_to_static(&self) -> bool {
1167 matches!(self.local_info(), LocalInfo::StaticRef { .. })
1168 }
1169
1170 /// Returns `Some` if this is a reference to a thread-local static item that is used to
1171 /// access that static.
1172 pub fn is_ref_to_thread_local(&self) -> bool {
1173 match self.local_info() {
1174 LocalInfo::StaticRef { is_thread_local, .. } => *is_thread_local,
1175 _ => false,
1176 }
1177 }
1178
1179 /// Returns `true` if this is a DerefTemp
1180 pub fn is_deref_temp(&self) -> bool {
1181 match self.local_info() {
1182 LocalInfo::DerefTemp => true,
1183 _ => false,
1184 }
1185 }
1186
1187 /// Returns `true` is the local is from a compiler desugaring, e.g.,
1188 /// `__next` from a `for` loop.
1189 #[inline]
1190 pub fn from_compiler_desugaring(&self) -> bool {
1191 self.source_info.span.desugaring_kind().is_some()
1192 }
1193
1194 /// Creates a new `LocalDecl` for a temporary, mutable.
1195 #[inline]
1196 pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
1197 Self::with_source_info(ty, SourceInfo::outermost(span))
1198 }
1199
1200 /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
1201 #[inline]
1202 pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
1203 LocalDecl {
1204 mutability: Mutability::Mut,
1205 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::Boring)),
1206 ty,
1207 user_ty: None,
1208 source_info,
1209 }
1210 }
1211
1212 /// Converts `self` into same `LocalDecl` except tagged as immutable.
1213 #[inline]
1214 pub fn immutable(mut self) -> Self {
1215 self.mutability = Mutability::Not;
1216 self
1217 }
1218}
1219
1220#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1221pub enum VarDebugInfoContents<'tcx> {
1222 /// This `Place` only contains projection which satisfy `can_use_in_debuginfo`.
1223 Place(Place<'tcx>),
1224 Const(ConstOperand<'tcx>),
1225}
1226
1227impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
1228 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
1229 match self {
1230 VarDebugInfoContents::Const(c) => write!(fmt, "{c}"),
1231 VarDebugInfoContents::Place(p) => write!(fmt, "{p:?}"),
1232 }
1233 }
1234}
1235
1236#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1237pub struct VarDebugInfoFragment<'tcx> {
1238 /// Type of the original user variable.
1239 /// This cannot contain a union or an enum.
1240 pub ty: Ty<'tcx>,
1241
1242 /// Where in the composite user variable this fragment is,
1243 /// represented as a "projection" into the composite variable.
1244 /// At lower levels, this corresponds to a byte/bit range.
1245 ///
1246 /// This can only contain `PlaceElem::Field`.
1247 // FIXME support this for `enum`s by either using DWARF's
1248 // more advanced control-flow features (unsupported by LLVM?)
1249 // to match on the discriminant, or by using custom type debuginfo
1250 // with non-overlapping variants for the composite variable.
1251 pub projection: Vec<PlaceElem<'tcx>>,
1252}
1253
1254/// Debug information pertaining to a user variable.
1255#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1256pub struct VarDebugInfo<'tcx> {
1257 pub name: Symbol,
1258
1259 /// Source info of the user variable, including the scope
1260 /// within which the variable is visible (to debuginfo)
1261 /// (see `LocalDecl`'s `source_info` field for more details).
1262 pub source_info: SourceInfo,
1263
1264 /// The user variable's data is split across several fragments,
1265 /// each described by a `VarDebugInfoFragment`.
1266 /// See DWARF 5's "2.6.1.2 Composite Location Descriptions"
1267 /// and LLVM's `DW_OP_LLVM_fragment` for more details on
1268 /// the underlying debuginfo feature this relies on.
1269 pub composite: Option<Box<VarDebugInfoFragment<'tcx>>>,
1270
1271 /// Where the data for this user variable is to be found.
1272 pub value: VarDebugInfoContents<'tcx>,
1273
1274 /// When present, indicates what argument number this variable is in the function that it
1275 /// originated from (starting from 1). Note, if MIR inlining is enabled, then this is the
1276 /// argument number in the original function before it was inlined.
1277 pub argument_index: Option<u16>,
1278}
1279
1280///////////////////////////////////////////////////////////////////////////
1281// BasicBlock
1282
1283rustc_index::newtype_index! {
1284 /// A node in the MIR [control-flow graph][CFG].
1285 ///
1286 /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
1287 /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
1288 /// as an edge in a graph between basic blocks.
1289 ///
1290 /// Basic blocks consist of a series of [statements][Statement], ending with a
1291 /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
1292 /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
1293 /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
1294 /// needed because some analyses require that there are no critical edges in the CFG.
1295 ///
1296 /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
1297 /// the actual data that a basic block holds is in [`BasicBlockData`].
1298 ///
1299 /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
1300 ///
1301 /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
1302 /// [data-flow analyses]:
1303 /// https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
1304 /// [`CriticalCallEdges`]: ../../rustc_mir_transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
1305 /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
1306 #[derive(HashStable)]
1307 #[encodable]
1308 #[orderable]
1309 #[debug_format = "bb{}"]
1310 pub struct BasicBlock {
1311 const START_BLOCK = 0;
1312 }
1313}
1314
1315impl BasicBlock {
1316 pub fn start_location(self) -> Location {
1317 Location { block: self, statement_index: 0 }
1318 }
1319}
1320
1321///////////////////////////////////////////////////////////////////////////
1322// BasicBlockData
1323
1324/// Data for a basic block, including a list of its statements.
1325///
1326/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
1327#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1328pub struct BasicBlockData<'tcx> {
1329 /// List of statements in this block.
1330 pub statements: Vec<Statement<'tcx>>,
1331
1332 /// Terminator for this block.
1333 ///
1334 /// N.B., this should generally ONLY be `None` during construction.
1335 /// Therefore, you should generally access it via the
1336 /// `terminator()` or `terminator_mut()` methods. The only
1337 /// exception is that certain passes, such as `simplify_cfg`, swap
1338 /// out the terminator temporarily with `None` while they continue
1339 /// to recurse over the set of basic blocks.
1340 pub terminator: Option<Terminator<'tcx>>,
1341
1342 /// If true, this block lies on an unwind path. This is used
1343 /// during codegen where distinct kinds of basic blocks may be
1344 /// generated (particularly for MSVC cleanup). Unwind blocks must
1345 /// only branch to other unwind blocks.
1346 pub is_cleanup: bool,
1347}
1348
1349impl<'tcx> BasicBlockData<'tcx> {
1350 pub fn new(terminator: Option<Terminator<'tcx>>, is_cleanup: bool) -> BasicBlockData<'tcx> {
1351 BasicBlockData { statements: vec![], terminator, is_cleanup }
1352 }
1353
1354 /// Accessor for terminator.
1355 ///
1356 /// Terminator may not be None after construction of the basic block is complete. This accessor
1357 /// provides a convenient way to reach the terminator.
1358 #[inline]
1359 pub fn terminator(&self) -> &Terminator<'tcx> {
1360 self.terminator.as_ref().expect("invalid terminator state")
1361 }
1362
1363 #[inline]
1364 pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
1365 self.terminator.as_mut().expect("invalid terminator state")
1366 }
1367
1368 pub fn retain_statements<F>(&mut self, mut f: F)
1369 where
1370 F: FnMut(&mut Statement<'_>) -> bool,
1371 {
1372 for s in &mut self.statements {
1373 if !f(s) {
1374 s.make_nop();
1375 }
1376 }
1377 }
1378
1379 pub fn expand_statements<F, I>(&mut self, mut f: F)
1380 where
1381 F: FnMut(&mut Statement<'tcx>) -> Option<I>,
1382 I: iter::TrustedLen<Item = Statement<'tcx>>,
1383 {
1384 // Gather all the iterators we'll need to splice in, and their positions.
1385 let mut splices: Vec<(usize, I)> = vec![];
1386 let mut extra_stmts = 0;
1387 for (i, s) in self.statements.iter_mut().enumerate() {
1388 if let Some(mut new_stmts) = f(s) {
1389 if let Some(first) = new_stmts.next() {
1390 // We can already store the first new statement.
1391 *s = first;
1392
1393 // Save the other statements for optimized splicing.
1394 let remaining = new_stmts.size_hint().0;
1395 if remaining > 0 {
1396 splices.push((i + 1 + extra_stmts, new_stmts));
1397 extra_stmts += remaining;
1398 }
1399 } else {
1400 s.make_nop();
1401 }
1402 }
1403 }
1404
1405 // Splice in the new statements, from the end of the block.
1406 // FIXME(eddyb) This could be more efficient with a "gap buffer"
1407 // where a range of elements ("gap") is left uninitialized, with
1408 // splicing adding new elements to the end of that gap and moving
1409 // existing elements from before the gap to the end of the gap.
1410 // For now, this is safe code, emulating a gap but initializing it.
1411 let mut gap = self.statements.len()..self.statements.len() + extra_stmts;
1412 self.statements.resize(
1413 gap.end,
1414 Statement { source_info: SourceInfo::outermost(DUMMY_SP), kind: StatementKind::Nop },
1415 );
1416 for (splice_start, new_stmts) in splices.into_iter().rev() {
1417 let splice_end = splice_start + new_stmts.size_hint().0;
1418 while gap.end > splice_end {
1419 gap.start -= 1;
1420 gap.end -= 1;
1421 self.statements.swap(gap.start, gap.end);
1422 }
1423 self.statements.splice(splice_start..splice_end, new_stmts);
1424 gap.end = splice_start;
1425 }
1426 }
1427
1428 pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> {
1429 if index < self.statements.len() { &self.statements[index] } else { &self.terminator }
1430 }
1431
1432 /// Does the block have no statements and an unreachable terminator?
1433 #[inline]
1434 pub fn is_empty_unreachable(&self) -> bool {
1435 self.statements.is_empty() && matches!(self.terminator().kind, TerminatorKind::Unreachable)
1436 }
1437
1438 /// Like [`Terminator::successors`] but tries to use information available from the [`Instance`]
1439 /// to skip successors like the `false` side of an `if const {`.
1440 ///
1441 /// This is used to implement [`traversal::mono_reachable`] and
1442 /// [`traversal::mono_reachable_reverse_postorder`].
1443 pub fn mono_successors(&self, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Successors<'_> {
1444 if let Some((bits, targets)) = Body::try_const_mono_switchint(tcx, instance, self) {
1445 targets.successors_for_value(bits)
1446 } else {
1447 self.terminator().successors()
1448 }
1449 }
1450}
1451
1452///////////////////////////////////////////////////////////////////////////
1453// Scopes
1454
1455rustc_index::newtype_index! {
1456 #[derive(HashStable)]
1457 #[encodable]
1458 #[debug_format = "scope[{}]"]
1459 pub struct SourceScope {
1460 const OUTERMOST_SOURCE_SCOPE = 0;
1461 }
1462}
1463
1464impl SourceScope {
1465 /// Finds the original HirId this MIR item came from.
1466 /// This is necessary after MIR optimizations, as otherwise we get a HirId
1467 /// from the function that was inlined instead of the function call site.
1468 pub fn lint_root(
1469 self,
1470 source_scopes: &IndexSlice<SourceScope, SourceScopeData<'_>>,
1471 ) -> Option<HirId> {
1472 let mut data = &source_scopes[self];
1473 // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
1474 // does not work as I thought it would. Needs more investigation and documentation.
1475 while data.inlined.is_some() {
1476 trace!(?data);
1477 data = &source_scopes[data.parent_scope.unwrap()];
1478 }
1479 trace!(?data);
1480 match &data.local_data {
1481 ClearCrossCrate::Set(data) => Some(data.lint_root),
1482 ClearCrossCrate::Clear => None,
1483 }
1484 }
1485
1486 /// The instance this source scope was inlined from, if any.
1487 #[inline]
1488 pub fn inlined_instance<'tcx>(
1489 self,
1490 source_scopes: &IndexSlice<SourceScope, SourceScopeData<'tcx>>,
1491 ) -> Option<ty::Instance<'tcx>> {
1492 let scope_data = &source_scopes[self];
1493 if let Some((inlined_instance, _)) = scope_data.inlined {
1494 Some(inlined_instance)
1495 } else if let Some(inlined_scope) = scope_data.inlined_parent_scope {
1496 Some(source_scopes[inlined_scope].inlined.unwrap().0)
1497 } else {
1498 None
1499 }
1500 }
1501}
1502
1503#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1504pub struct SourceScopeData<'tcx> {
1505 pub span: Span,
1506 pub parent_scope: Option<SourceScope>,
1507
1508 /// Whether this scope is the root of a scope tree of another body,
1509 /// inlined into this body by the MIR inliner.
1510 /// `ty::Instance` is the callee, and the `Span` is the call site.
1511 pub inlined: Option<(ty::Instance<'tcx>, Span)>,
1512
1513 /// Nearest (transitive) parent scope (if any) which is inlined.
1514 /// This is an optimization over walking up `parent_scope`
1515 /// until a scope with `inlined: Some(...)` is found.
1516 pub inlined_parent_scope: Option<SourceScope>,
1517
1518 /// Crate-local information for this source scope, that can't (and
1519 /// needn't) be tracked across crates.
1520 pub local_data: ClearCrossCrate<SourceScopeLocalData>,
1521}
1522
1523#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
1524pub struct SourceScopeLocalData {
1525 /// An `HirId` with lint levels equivalent to this scope's lint levels.
1526 pub lint_root: HirId,
1527}
1528
1529/// A collection of projections into user types.
1530///
1531/// They are projections because a binding can occur a part of a
1532/// parent pattern that has been ascribed a type.
1533///
1534/// It's a collection because there can be multiple type ascriptions on
1535/// the path from the root of the pattern down to the binding itself.
1536///
1537/// An example:
1538///
1539/// ```ignore (illustrative)
1540/// struct S<'a>((i32, &'a str), String);
1541/// let S((_, w): (i32, &'static str), _): S = ...;
1542/// // ------ ^^^^^^^^^^^^^^^^^^^ (1)
1543/// // --------------------------------- ^ (2)
1544/// ```
1545///
1546/// The highlights labelled `(1)` show the subpattern `(_, w)` being
1547/// ascribed the type `(i32, &'static str)`.
1548///
1549/// The highlights labelled `(2)` show the whole pattern being
1550/// ascribed the type `S`.
1551///
1552/// In this example, when we descend to `w`, we will have built up the
1553/// following two projected types:
1554///
1555/// * base: `S`, projection: `(base.0).1`
1556/// * base: `(i32, &'static str)`, projection: `base.1`
1557///
1558/// The first will lead to the constraint `w: &'1 str` (for some
1559/// inferred region `'1`). The second will lead to the constraint `w:
1560/// &'static str`.
1561#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1562pub struct UserTypeProjections {
1563 pub contents: Vec<(UserTypeProjection, Span)>,
1564}
1565
1566impl<'tcx> UserTypeProjections {
1567 pub fn none() -> Self {
1568 UserTypeProjections { contents: vec![] }
1569 }
1570
1571 pub fn is_empty(&self) -> bool {
1572 self.contents.is_empty()
1573 }
1574
1575 pub fn projections_and_spans(
1576 &self,
1577 ) -> impl Iterator<Item = &(UserTypeProjection, Span)> + ExactSizeIterator {
1578 self.contents.iter()
1579 }
1580
1581 pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
1582 self.contents.iter().map(|&(ref user_type, _span)| user_type)
1583 }
1584
1585 pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self {
1586 self.contents.push((user_ty.clone(), span));
1587 self
1588 }
1589
1590 fn map_projections(
1591 mut self,
1592 mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection,
1593 ) -> Self {
1594 self.contents = self.contents.into_iter().map(|(proj, span)| (f(proj), span)).collect();
1595 self
1596 }
1597
1598 pub fn index(self) -> Self {
1599 self.map_projections(|pat_ty_proj| pat_ty_proj.index())
1600 }
1601
1602 pub fn subslice(self, from: u64, to: u64) -> Self {
1603 self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to))
1604 }
1605
1606 pub fn deref(self) -> Self {
1607 self.map_projections(|pat_ty_proj| pat_ty_proj.deref())
1608 }
1609
1610 pub fn leaf(self, field: FieldIdx) -> Self {
1611 self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field))
1612 }
1613
1614 pub fn variant(
1615 self,
1616 adt_def: AdtDef<'tcx>,
1617 variant_index: VariantIdx,
1618 field_index: FieldIdx,
1619 ) -> Self {
1620 self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field_index))
1621 }
1622}
1623
1624/// Encodes the effect of a user-supplied type annotation on the
1625/// subcomponents of a pattern. The effect is determined by applying the
1626/// given list of projections to some underlying base type. Often,
1627/// the projection element list `projs` is empty, in which case this
1628/// directly encodes a type in `base`. But in the case of complex patterns with
1629/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
1630/// in which case the `projs` vector is used.
1631///
1632/// Examples:
1633///
1634/// * `let x: T = ...` -- here, the `projs` vector is empty.
1635///
1636/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
1637/// `field[0]` (aka `.0`), indicating that the type of `s` is
1638/// determined by finding the type of the `.0` field from `T`.
1639#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
1640#[derive(TypeFoldable, TypeVisitable)]
1641pub struct UserTypeProjection {
1642 pub base: UserTypeAnnotationIndex,
1643 pub projs: Vec<ProjectionKind>,
1644}
1645
1646impl UserTypeProjection {
1647 pub(crate) fn index(mut self) -> Self {
1648 self.projs.push(ProjectionElem::Index(()));
1649 self
1650 }
1651
1652 pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self {
1653 self.projs.push(ProjectionElem::Subslice { from, to, from_end: true });
1654 self
1655 }
1656
1657 pub(crate) fn deref(mut self) -> Self {
1658 self.projs.push(ProjectionElem::Deref);
1659 self
1660 }
1661
1662 pub(crate) fn leaf(mut self, field: FieldIdx) -> Self {
1663 self.projs.push(ProjectionElem::Field(field, ()));
1664 self
1665 }
1666
1667 pub(crate) fn variant(
1668 mut self,
1669 adt_def: AdtDef<'_>,
1670 variant_index: VariantIdx,
1671 field_index: FieldIdx,
1672 ) -> Self {
1673 self.projs.push(ProjectionElem::Downcast(
1674 Some(adt_def.variant(variant_index).name),
1675 variant_index,
1676 ));
1677 self.projs.push(ProjectionElem::Field(field_index, ()));
1678 self
1679 }
1680}
1681
1682rustc_index::newtype_index! {
1683 #[derive(HashStable)]
1684 #[encodable]
1685 #[orderable]
1686 #[debug_format = "promoted[{}]"]
1687 pub struct Promoted {}
1688}
1689
1690/// `Location` represents the position of the start of the statement; or, if
1691/// `statement_index` equals the number of statements, then the start of the
1692/// terminator.
1693#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
1694pub struct Location {
1695 /// The block that the location is within.
1696 pub block: BasicBlock,
1697
1698 pub statement_index: usize,
1699}
1700
1701impl fmt::Debug for Location {
1702 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1703 write!(fmt, "{:?}[{}]", self.block, self.statement_index)
1704 }
1705}
1706
1707impl Location {
1708 pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
1709
1710 /// Returns the location immediately after this one within the enclosing block.
1711 ///
1712 /// Note that if this location represents a terminator, then the
1713 /// resulting location would be out of bounds and invalid.
1714 #[inline]
1715 pub fn successor_within_block(&self) -> Location {
1716 Location { block: self.block, statement_index: self.statement_index + 1 }
1717 }
1718
1719 /// Returns `true` if `other` is earlier in the control flow graph than `self`.
1720 pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
1721 // If we are in the same block as the other location and are an earlier statement
1722 // then we are a predecessor of `other`.
1723 if self.block == other.block && self.statement_index < other.statement_index {
1724 return true;
1725 }
1726
1727 let predecessors = body.basic_blocks.predecessors();
1728
1729 // If we're in another block, then we want to check that block is a predecessor of `other`.
1730 let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
1731 let mut visited = FxHashSet::default();
1732
1733 while let Some(block) = queue.pop() {
1734 // If we haven't visited this block before, then make sure we visit its predecessors.
1735 if visited.insert(block) {
1736 queue.extend(predecessors[block].iter().cloned());
1737 } else {
1738 continue;
1739 }
1740
1741 // If we found the block that `self` is in, then we are a predecessor of `other` (since
1742 // we found that block by looking at the predecessors of `other`).
1743 if self.block == block {
1744 return true;
1745 }
1746 }
1747
1748 false
1749 }
1750
1751 #[inline]
1752 pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
1753 if self.block == other.block {
1754 self.statement_index <= other.statement_index
1755 } else {
1756 dominators.dominates(self.block, other.block)
1757 }
1758 }
1759}
1760
1761/// `DefLocation` represents the location of a definition - either an argument or an assignment
1762/// within MIR body.
1763#[derive(Copy, Clone, Debug, PartialEq, Eq)]
1764pub enum DefLocation {
1765 Argument,
1766 Assignment(Location),
1767 CallReturn { call: BasicBlock, target: Option<BasicBlock> },
1768}
1769
1770impl DefLocation {
1771 #[inline]
1772 pub fn dominates(self, location: Location, dominators: &Dominators<BasicBlock>) -> bool {
1773 match self {
1774 DefLocation::Argument => true,
1775 DefLocation::Assignment(def) => {
1776 def.successor_within_block().dominates(location, dominators)
1777 }
1778 DefLocation::CallReturn { target: None, .. } => false,
1779 DefLocation::CallReturn { call, target: Some(target) } => {
1780 // The definition occurs on the call -> target edge. The definition dominates a use
1781 // if and only if the edge is on all paths from the entry to the use.
1782 //
1783 // Note that a call terminator has only one edge that can reach the target, so when
1784 // the call strongly dominates the target, all paths from the entry to the target
1785 // go through the call -> target edge.
1786 call != target
1787 && dominators.dominates(call, target)
1788 && dominators.dominates(target, location.block)
1789 }
1790 }
1791 }
1792}
1793
1794/// Checks if the specified `local` is used as the `self` parameter of a method call
1795/// in the provided `BasicBlock`. If it is, then the `DefId` of the called method is
1796/// returned.
1797pub fn find_self_call<'tcx>(
1798 tcx: TyCtxt<'tcx>,
1799 body: &Body<'tcx>,
1800 local: Local,
1801 block: BasicBlock,
1802) -> Option<(DefId, GenericArgsRef<'tcx>)> {
1803 debug!("find_self_call(local={:?}): terminator={:?}", local, body[block].terminator);
1804 if let Some(Terminator { kind: TerminatorKind::Call { func, args, .. }, .. }) =
1805 &body[block].terminator
1806 && let Operand::Constant(box ConstOperand { const_, .. }) = func
1807 && let ty::FnDef(def_id, fn_args) = *const_.ty().kind()
1808 && let Some(ty::AssocItem { fn_has_self_parameter: true, .. }) =
1809 tcx.opt_associated_item(def_id)
1810 && let [Spanned { node: Operand::Move(self_place) | Operand::Copy(self_place), .. }, ..] =
1811 **args
1812 {
1813 if self_place.as_local() == Some(local) {
1814 return Some((def_id, fn_args));
1815 }
1816
1817 // Handle the case where `self_place` gets reborrowed.
1818 // This happens when the receiver is `&T`.
1819 for stmt in &body[block].statements {
1820 if let StatementKind::Assign(box (place, rvalue)) = &stmt.kind
1821 && let Some(reborrow_local) = place.as_local()
1822 && self_place.as_local() == Some(reborrow_local)
1823 && let Rvalue::Ref(_, _, deref_place) = rvalue
1824 && let PlaceRef { local: deref_local, projection: [ProjectionElem::Deref] } =
1825 deref_place.as_ref()
1826 && deref_local == local
1827 {
1828 return Some((def_id, fn_args));
1829 }
1830 }
1831 }
1832 None
1833}
1834
1835// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
1836#[cfg(target_pointer_width = "64")]
1837mod size_asserts {
1838 use rustc_data_structures::static_assert_size;
1839
1840 use super::*;
1841 // tidy-alphabetical-start
1842 static_assert_size!(BasicBlockData<'_>, 128);
1843 static_assert_size!(LocalDecl<'_>, 40);
1844 static_assert_size!(SourceScopeData<'_>, 64);
1845 static_assert_size!(Statement<'_>, 32);
1846 static_assert_size!(Terminator<'_>, 96);
1847 static_assert_size!(VarDebugInfo<'_>, 88);
1848 // tidy-alphabetical-end
1849}