rustc_type_ir/elaborate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
use std::marker::PhantomData;
use smallvec::smallvec;
use crate::data_structures::HashSet;
use crate::inherent::*;
use crate::lang_items::TraitSolverLangItem;
use crate::outlives::{Component, push_outlives_components};
use crate::{self as ty, Interner, Upcast as _};
/// "Elaboration" is the process of identifying all the predicates that
/// are implied by a source predicate. Currently, this basically means
/// walking the "supertraits" and other similar assumptions. For example,
/// if we know that `T: Ord`, the elaborator would deduce that `T: PartialOrd`
/// holds as well. Similarly, if we have `trait Foo: 'static`, and we know that
/// `T: Foo`, then we know that `T: 'static`.
pub struct Elaborator<I: Interner, O> {
cx: I,
stack: Vec<O>,
visited: HashSet<ty::Binder<I, ty::PredicateKind<I>>>,
mode: Filter,
}
enum Filter {
All,
OnlySelf,
}
/// Describes how to elaborate an obligation into a sub-obligation.
pub trait Elaboratable<I: Interner> {
fn predicate(&self) -> I::Predicate;
// Makes a new `Self` but with a different clause that comes from elaboration.
fn child(&self, clause: I::Clause) -> Self;
// Makes a new `Self` but with a different clause and a different cause
// code (if `Self` has one, such as [`PredicateObligation`]).
fn child_with_derived_cause(
&self,
clause: I::Clause,
span: I::Span,
parent_trait_pred: ty::Binder<I, ty::TraitPredicate<I>>,
index: usize,
) -> Self;
}
pub struct ClauseWithSupertraitSpan<I: Interner> {
pub pred: I::Predicate,
// Span of the original elaborated predicate.
pub original_span: I::Span,
// Span of the supertrait predicatae that lead to this clause.
pub supertrait_span: I::Span,
}
impl<I: Interner> ClauseWithSupertraitSpan<I> {
pub fn new(pred: I::Predicate, span: I::Span) -> Self {
ClauseWithSupertraitSpan { pred, original_span: span, supertrait_span: span }
}
}
impl<I: Interner> Elaboratable<I> for ClauseWithSupertraitSpan<I> {
fn predicate(&self) -> <I as Interner>::Predicate {
self.pred
}
fn child(&self, clause: <I as Interner>::Clause) -> Self {
ClauseWithSupertraitSpan {
pred: clause.as_predicate(),
original_span: self.original_span,
supertrait_span: self.supertrait_span,
}
}
fn child_with_derived_cause(
&self,
clause: <I as Interner>::Clause,
supertrait_span: <I as Interner>::Span,
_parent_trait_pred: crate::Binder<I, crate::TraitPredicate<I>>,
_index: usize,
) -> Self {
ClauseWithSupertraitSpan {
pred: clause.as_predicate(),
original_span: self.original_span,
supertrait_span: supertrait_span,
}
}
}
pub fn elaborate<I: Interner, O: Elaboratable<I>>(
cx: I,
obligations: impl IntoIterator<Item = O>,
) -> Elaborator<I, O> {
let mut elaborator =
Elaborator { cx, stack: Vec::new(), visited: HashSet::default(), mode: Filter::All };
elaborator.extend_deduped(obligations);
elaborator
}
impl<I: Interner, O: Elaboratable<I>> Elaborator<I, O> {
fn extend_deduped(&mut self, obligations: impl IntoIterator<Item = O>) {
// Only keep those bounds that we haven't already seen.
// This is necessary to prevent infinite recursion in some
// cases. One common case is when people define
// `trait Sized: Sized { }` rather than `trait Sized { }`.
self.stack.extend(
obligations.into_iter().filter(|o| {
self.visited.insert(self.cx.anonymize_bound_vars(o.predicate().kind()))
}),
);
}
/// Filter to only the supertraits of trait predicates, i.e. only the predicates
/// that have `Self` as their self type, instead of all implied predicates.
pub fn filter_only_self(mut self) -> Self {
self.mode = Filter::OnlySelf;
self
}
fn elaborate(&mut self, elaboratable: &O) {
let cx = self.cx;
// We only elaborate clauses.
let Some(clause) = elaboratable.predicate().as_clause() else {
return;
};
let bound_clause = clause.kind();
match bound_clause.skip_binder() {
ty::ClauseKind::Trait(data) => {
// Negative trait bounds do not imply any supertrait bounds
if data.polarity != ty::PredicatePolarity::Positive {
return;
}
// HACK(effects): The following code is required to get implied bounds for effects associated
// types to work with super traits.
//
// Suppose `data` is a trait predicate with the form `<T as Tr>::Fx: EffectsCompat<somebool>`
// and we know that `trait Tr: ~const SuperTr`, we need to elaborate this predicate into
// `<T as SuperTr>::Fx: EffectsCompat<somebool>`.
//
// Since the semantics for elaborating bounds about effects is equivalent to elaborating
// bounds about super traits (elaborate `T: Tr` into `T: SuperTr`), we place effects elaboration
// next to super trait elaboration.
if cx.is_lang_item(data.def_id(), TraitSolverLangItem::EffectsCompat)
&& matches!(self.mode, Filter::All)
{
// first, ensure that the predicate we've got looks like a `<T as Tr>::Fx: EffectsCompat<somebool>`.
if let ty::Alias(ty::AliasTyKind::Projection, alias_ty) = data.self_ty().kind()
{
// look for effects-level bounds that look like `<Self as Tr>::Fx: TyCompat<<Self as SuperTr>::Fx>`
// on the trait, which is proof to us that `Tr: ~const SuperTr`. We're looking for bounds on the
// associated trait, so we use `explicit_implied_predicates_of` since it gives us more than just
// `Self: SuperTr` bounds.
let bounds = cx.explicit_implied_predicates_of(cx.parent(alias_ty.def_id));
// instantiate the implied bounds, so we get `<T as Tr>::Fx` and not `<Self as Tr>::Fx`.
let elaborated = bounds.iter_instantiated(cx, alias_ty.args).filter_map(
|(clause, _)| {
let ty::ClauseKind::Trait(tycompat_bound) =
clause.kind().skip_binder()
else {
return None;
};
if !cx.is_lang_item(
tycompat_bound.def_id(),
TraitSolverLangItem::EffectsTyCompat,
) {
return None;
}
// extract `<T as SuperTr>::Fx` from the `TyCompat` bound.
let supertrait_effects_ty =
tycompat_bound.trait_ref.args.type_at(1);
let ty::Alias(ty::AliasTyKind::Projection, supertrait_alias_ty) =
supertrait_effects_ty.kind()
else {
return None;
};
// The self types (`T`) must be equal for `<T as Tr>::Fx` and `<T as SuperTr>::Fx`.
if supertrait_alias_ty.self_ty() != alias_ty.self_ty() {
return None;
};
// replace the self type in the original bound `<T as Tr>::Fx: EffectsCompat<somebool>`
// to the effects type of the super trait. (`<T as SuperTr>::Fx`)
let elaborated_bound = data.with_self_ty(cx, supertrait_effects_ty);
Some(
elaboratable
.child(bound_clause.rebind(elaborated_bound).upcast(cx)),
)
},
);
self.extend_deduped(elaborated);
}
}
let map_to_child_clause =
|(index, (clause, span)): (usize, (I::Clause, I::Span))| {
elaboratable.child_with_derived_cause(
clause.instantiate_supertrait(cx, bound_clause.rebind(data.trait_ref)),
span,
bound_clause.rebind(data),
index,
)
};
// Get predicates implied by the trait, or only super predicates if we only care about self predicates.
match self.mode {
Filter::All => self.extend_deduped(
cx.explicit_implied_predicates_of(data.def_id())
.iter_identity()
.enumerate()
.map(map_to_child_clause),
),
Filter::OnlySelf => self.extend_deduped(
cx.explicit_super_predicates_of(data.def_id())
.iter_identity()
.enumerate()
.map(map_to_child_clause),
),
};
}
ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty_max, r_min)) => {
// We know that `T: 'a` for some type `T`. We can
// often elaborate this. For example, if we know that
// `[U]: 'a`, that implies that `U: 'a`. Similarly, if
// we know `&'a U: 'b`, then we know that `'a: 'b` and
// `U: 'b`.
//
// We can basically ignore bound regions here. So for
// example `for<'c> Foo<'a,'c>: 'b` can be elaborated to
// `'a: 'b`.
// Ignore `for<'a> T: 'a` -- we might in the future
// consider this as evidence that `T: 'static`, but
// I'm a bit wary of such constructions and so for now
// I want to be conservative. --nmatsakis
if r_min.is_bound() {
return;
}
let mut components = smallvec![];
push_outlives_components(cx, ty_max, &mut components);
self.extend_deduped(
components
.into_iter()
.filter_map(|component| elaborate_component_to_clause(cx, component, r_min))
.map(|clause| elaboratable.child(bound_clause.rebind(clause).upcast(cx))),
);
}
ty::ClauseKind::RegionOutlives(..) => {
// Nothing to elaborate from `'a: 'b`.
}
ty::ClauseKind::WellFormed(..) => {
// Currently, we do not elaborate WF predicates,
// although we easily could.
}
ty::ClauseKind::Projection(..) => {
// Nothing to elaborate in a projection predicate.
}
ty::ClauseKind::ConstEvaluatable(..) => {
// Currently, we do not elaborate const-evaluatable
// predicates.
}
ty::ClauseKind::ConstArgHasType(..) => {
// Nothing to elaborate
}
}
}
}
fn elaborate_component_to_clause<I: Interner>(
cx: I,
component: Component<I>,
outlives_region: I::Region,
) -> Option<ty::ClauseKind<I>> {
match component {
Component::Region(r) => {
if r.is_bound() {
None
} else {
Some(ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(r, outlives_region)))
}
}
Component::Param(p) => {
let ty = Ty::new_param(cx, p);
Some(ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, outlives_region)))
}
Component::Placeholder(p) => {
let ty = Ty::new_placeholder(cx, p);
Some(ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, outlives_region)))
}
Component::UnresolvedInferenceVariable(_) => None,
Component::Alias(alias_ty) => {
// We might end up here if we have `Foo<<Bar as Baz>::Assoc>: 'a`.
// With this, we can deduce that `<Bar as Baz>::Assoc: 'a`.
Some(ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(
alias_ty.to_ty(cx),
outlives_region,
)))
}
Component::EscapingAlias(_) => {
// We might be able to do more here, but we don't
// want to deal with escaping vars right now.
None
}
}
}
impl<I: Interner, O: Elaboratable<I>> Iterator for Elaborator<I, O> {
type Item = O;
fn size_hint(&self) -> (usize, Option<usize>) {
(self.stack.len(), None)
}
fn next(&mut self) -> Option<Self::Item> {
// Extract next item from top-most stack frame, if any.
if let Some(obligation) = self.stack.pop() {
self.elaborate(&obligation);
Some(obligation)
} else {
None
}
}
}
///////////////////////////////////////////////////////////////////////////
// Supertrait iterator
///////////////////////////////////////////////////////////////////////////
/// Computes the def-ids of the transitive supertraits of `trait_def_id`. This (intentionally)
/// does not compute the full elaborated super-predicates but just the set of def-ids. It is used
/// to identify which traits may define a given associated type to help avoid cycle errors,
/// and to make size estimates for vtable layout computation.
pub fn supertrait_def_ids<I: Interner>(
cx: I,
trait_def_id: I::DefId,
) -> impl Iterator<Item = I::DefId> {
let mut set = HashSet::default();
let mut stack = vec![trait_def_id];
set.insert(trait_def_id);
std::iter::from_fn(move || {
let trait_def_id = stack.pop()?;
for (predicate, _) in cx.explicit_super_predicates_of(trait_def_id).iter_identity() {
if let ty::ClauseKind::Trait(data) = predicate.kind().skip_binder() {
if set.insert(data.def_id()) {
stack.push(data.def_id());
}
}
}
Some(trait_def_id)
})
}
pub fn supertraits<I: Interner>(
cx: I,
trait_ref: ty::Binder<I, ty::TraitRef<I>>,
) -> FilterToTraits<I, Elaborator<I, I::Clause>> {
elaborate(cx, [trait_ref.upcast(cx)]).filter_only_self().filter_to_traits()
}
impl<I: Interner> Elaborator<I, I::Clause> {
fn filter_to_traits(self) -> FilterToTraits<I, Self> {
FilterToTraits { _cx: PhantomData, base_iterator: self }
}
}
/// A filter around an iterator of predicates that makes it yield up
/// just trait references.
pub struct FilterToTraits<I: Interner, It: Iterator<Item = I::Clause>> {
_cx: PhantomData<I>,
base_iterator: It,
}
impl<I: Interner, It: Iterator<Item = I::Clause>> Iterator for FilterToTraits<I, It> {
type Item = ty::Binder<I, ty::TraitRef<I>>;
fn next(&mut self) -> Option<ty::Binder<I, ty::TraitRef<I>>> {
while let Some(pred) = self.base_iterator.next() {
if let Some(data) = pred.as_trait_clause() {
return Some(data.map_bound(|t| t.trait_ref));
}
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.base_iterator.size_hint();
(0, upper)
}
}