rustc_middle/ty/
predicate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
use std::cmp::Ordering;

use rustc_data_structures::captures::Captures;
use rustc_data_structures::intern::Interned;
use rustc_hir::def_id::DefId;
use rustc_macros::{HashStable, extension};
use rustc_type_ir as ir;
use tracing::instrument;

use crate::ty::{
    self, DebruijnIndex, EarlyBinder, PredicatePolarity, Ty, TyCtxt, TypeFlags, Upcast, UpcastFrom,
    WithCachedTypeInfo,
};

pub type TraitRef<'tcx> = ir::TraitRef<TyCtxt<'tcx>>;
pub type AliasTerm<'tcx> = ir::AliasTerm<TyCtxt<'tcx>>;
pub type ProjectionPredicate<'tcx> = ir::ProjectionPredicate<TyCtxt<'tcx>>;
pub type ExistentialPredicate<'tcx> = ir::ExistentialPredicate<TyCtxt<'tcx>>;
pub type ExistentialTraitRef<'tcx> = ir::ExistentialTraitRef<TyCtxt<'tcx>>;
pub type ExistentialProjection<'tcx> = ir::ExistentialProjection<TyCtxt<'tcx>>;
pub type TraitPredicate<'tcx> = ir::TraitPredicate<TyCtxt<'tcx>>;
pub type ClauseKind<'tcx> = ir::ClauseKind<TyCtxt<'tcx>>;
pub type PredicateKind<'tcx> = ir::PredicateKind<TyCtxt<'tcx>>;
pub type NormalizesTo<'tcx> = ir::NormalizesTo<TyCtxt<'tcx>>;
pub type CoercePredicate<'tcx> = ir::CoercePredicate<TyCtxt<'tcx>>;
pub type SubtypePredicate<'tcx> = ir::SubtypePredicate<TyCtxt<'tcx>>;
pub type OutlivesPredicate<'tcx, T> = ir::OutlivesPredicate<TyCtxt<'tcx>, T>;
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<'tcx, ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<'tcx, Ty<'tcx>>;
pub type PolyTraitPredicate<'tcx> = ty::Binder<'tcx, TraitPredicate<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>;
pub type PolySubtypePredicate<'tcx> = ty::Binder<'tcx, SubtypePredicate<'tcx>>;
pub type PolyCoercePredicate<'tcx> = ty::Binder<'tcx, CoercePredicate<'tcx>>;
pub type PolyProjectionPredicate<'tcx> = ty::Binder<'tcx, ProjectionPredicate<'tcx>>;

/// A statement that can be proven by a trait solver. This includes things that may
/// show up in where clauses, such as trait predicates and projection predicates,
/// and also things that are emitted as part of type checking such as `DynCompatible`
/// predicate which is emitted when a type is coerced to a trait object.
///
/// Use this rather than `PredicateKind`, whenever possible.
#[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable)]
#[rustc_pass_by_value]
pub struct Predicate<'tcx>(
    pub(super) Interned<'tcx, WithCachedTypeInfo<ty::Binder<'tcx, PredicateKind<'tcx>>>>,
);

impl<'tcx> rustc_type_ir::inherent::Predicate<TyCtxt<'tcx>> for Predicate<'tcx> {
    fn as_clause(self) -> Option<ty::Clause<'tcx>> {
        self.as_clause()
    }

    fn is_coinductive(self, interner: TyCtxt<'tcx>) -> bool {
        self.is_coinductive(interner)
    }

    fn allow_normalization(self) -> bool {
        self.allow_normalization()
    }
}

impl<'tcx> rustc_type_ir::inherent::IntoKind for Predicate<'tcx> {
    type Kind = ty::Binder<'tcx, ty::PredicateKind<'tcx>>;

    fn kind(self) -> Self::Kind {
        self.kind()
    }
}

impl<'tcx> rustc_type_ir::visit::Flags for Predicate<'tcx> {
    fn flags(&self) -> TypeFlags {
        self.0.flags
    }

    fn outer_exclusive_binder(&self) -> ty::DebruijnIndex {
        self.0.outer_exclusive_binder
    }
}

impl<'tcx> Predicate<'tcx> {
    /// Gets the inner `ty::Binder<'tcx, PredicateKind<'tcx>>`.
    #[inline]
    pub fn kind(self) -> ty::Binder<'tcx, PredicateKind<'tcx>> {
        self.0.internee
    }

    // FIXME(compiler-errors): Think about removing this.
    #[inline(always)]
    pub fn flags(self) -> TypeFlags {
        self.0.flags
    }

    // FIXME(compiler-errors): Think about removing this.
    #[inline(always)]
    pub fn outer_exclusive_binder(self) -> DebruijnIndex {
        self.0.outer_exclusive_binder
    }

    /// Flips the polarity of a Predicate.
    ///
    /// Given `T: Trait` predicate it returns `T: !Trait` and given `T: !Trait` returns `T: Trait`.
    pub fn flip_polarity(self, tcx: TyCtxt<'tcx>) -> Option<Predicate<'tcx>> {
        let kind = self
            .kind()
            .map_bound(|kind| match kind {
                PredicateKind::Clause(ClauseKind::Trait(TraitPredicate {
                    trait_ref,
                    polarity,
                })) => Some(PredicateKind::Clause(ClauseKind::Trait(TraitPredicate {
                    trait_ref,
                    polarity: polarity.flip(),
                }))),

                _ => None,
            })
            .transpose()?;

        Some(tcx.mk_predicate(kind))
    }

    #[instrument(level = "debug", skip(tcx), ret)]
    pub fn is_coinductive(self, tcx: TyCtxt<'tcx>) -> bool {
        match self.kind().skip_binder() {
            ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
                tcx.trait_is_coinductive(data.def_id())
            }
            ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(_)) => true,
            _ => false,
        }
    }

    /// Whether this projection can be soundly normalized.
    ///
    /// Wf predicates must not be normalized, as normalization
    /// can remove required bounds which would cause us to
    /// unsoundly accept some programs. See #91068.
    #[inline]
    pub fn allow_normalization(self) -> bool {
        // Keep this in sync with the one in `rustc_type_ir::inherent`!
        match self.kind().skip_binder() {
            PredicateKind::Clause(ClauseKind::WellFormed(_))
            | PredicateKind::AliasRelate(..)
            | PredicateKind::NormalizesTo(..) => false,
            PredicateKind::Clause(ClauseKind::Trait(_))
            | PredicateKind::Clause(ClauseKind::RegionOutlives(_))
            | PredicateKind::Clause(ClauseKind::TypeOutlives(_))
            | PredicateKind::Clause(ClauseKind::Projection(_))
            | PredicateKind::Clause(ClauseKind::ConstArgHasType(..))
            | PredicateKind::DynCompatible(_)
            | PredicateKind::Subtype(_)
            | PredicateKind::Coerce(_)
            | PredicateKind::Clause(ClauseKind::ConstEvaluatable(_))
            | PredicateKind::ConstEquate(_, _)
            | PredicateKind::Ambiguous => true,
        }
    }
}

impl rustc_errors::IntoDiagArg for Predicate<'_> {
    fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
        rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(self.to_string()))
    }
}

impl rustc_errors::IntoDiagArg for Clause<'_> {
    fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
        rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(self.to_string()))
    }
}

/// A subset of predicates which can be assumed by the trait solver. They show up in
/// an item's where clauses, hence the name `Clause`, and may either be user-written
/// (such as traits) or may be inserted during lowering.
#[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable)]
#[rustc_pass_by_value]
pub struct Clause<'tcx>(
    pub(super) Interned<'tcx, WithCachedTypeInfo<ty::Binder<'tcx, PredicateKind<'tcx>>>>,
);

impl<'tcx> rustc_type_ir::inherent::Clause<TyCtxt<'tcx>> for Clause<'tcx> {
    fn as_predicate(self) -> Predicate<'tcx> {
        self.as_predicate()
    }

    fn instantiate_supertrait(self, tcx: TyCtxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>) -> Self {
        self.instantiate_supertrait(tcx, trait_ref)
    }
}

impl<'tcx> rustc_type_ir::inherent::IntoKind for Clause<'tcx> {
    type Kind = ty::Binder<'tcx, ClauseKind<'tcx>>;

    fn kind(self) -> Self::Kind {
        self.kind()
    }
}

impl<'tcx> Clause<'tcx> {
    pub fn as_predicate(self) -> Predicate<'tcx> {
        Predicate(self.0)
    }

    pub fn kind(self) -> ty::Binder<'tcx, ClauseKind<'tcx>> {
        self.0.internee.map_bound(|kind| match kind {
            PredicateKind::Clause(clause) => clause,
            _ => unreachable!(),
        })
    }

    pub fn as_trait_clause(self) -> Option<ty::Binder<'tcx, TraitPredicate<'tcx>>> {
        let clause = self.kind();
        if let ty::ClauseKind::Trait(trait_clause) = clause.skip_binder() {
            Some(clause.rebind(trait_clause))
        } else {
            None
        }
    }

    pub fn as_projection_clause(self) -> Option<ty::Binder<'tcx, ProjectionPredicate<'tcx>>> {
        let clause = self.kind();
        if let ty::ClauseKind::Projection(projection_clause) = clause.skip_binder() {
            Some(clause.rebind(projection_clause))
        } else {
            None
        }
    }

    pub fn as_type_outlives_clause(self) -> Option<ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>> {
        let clause = self.kind();
        if let ty::ClauseKind::TypeOutlives(o) = clause.skip_binder() {
            Some(clause.rebind(o))
        } else {
            None
        }
    }

    pub fn as_region_outlives_clause(
        self,
    ) -> Option<ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>> {
        let clause = self.kind();
        if let ty::ClauseKind::RegionOutlives(o) = clause.skip_binder() {
            Some(clause.rebind(o))
        } else {
            None
        }
    }
}

#[extension(pub trait ExistentialPredicateStableCmpExt<'tcx>)]
impl<'tcx> ExistentialPredicate<'tcx> {
    /// Compares via an ordering that will not change if modules are reordered or other changes are
    /// made to the tree. In particular, this ordering is preserved across incremental compilations.
    fn stable_cmp(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Ordering {
        match (*self, *other) {
            (ExistentialPredicate::Trait(_), ExistentialPredicate::Trait(_)) => Ordering::Equal,
            (ExistentialPredicate::Projection(ref a), ExistentialPredicate::Projection(ref b)) => {
                tcx.def_path_hash(a.def_id).cmp(&tcx.def_path_hash(b.def_id))
            }
            (ExistentialPredicate::AutoTrait(ref a), ExistentialPredicate::AutoTrait(ref b)) => {
                tcx.def_path_hash(*a).cmp(&tcx.def_path_hash(*b))
            }
            (ExistentialPredicate::Trait(_), _) => Ordering::Less,
            (ExistentialPredicate::Projection(_), ExistentialPredicate::Trait(_)) => {
                Ordering::Greater
            }
            (ExistentialPredicate::Projection(_), _) => Ordering::Less,
            (ExistentialPredicate::AutoTrait(_), _) => Ordering::Greater,
        }
    }
}

pub type PolyExistentialPredicate<'tcx> = ty::Binder<'tcx, ExistentialPredicate<'tcx>>;

impl<'tcx> rustc_type_ir::inherent::BoundExistentialPredicates<TyCtxt<'tcx>>
    for &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>
{
    fn principal_def_id(self) -> Option<DefId> {
        self.principal_def_id()
    }

    fn principal(self) -> Option<ty::PolyExistentialTraitRef<'tcx>> {
        self.principal()
    }

    fn auto_traits(self) -> impl IntoIterator<Item = DefId> {
        self.auto_traits()
    }

    fn projection_bounds(
        self,
    ) -> impl IntoIterator<Item = ty::Binder<'tcx, ExistentialProjection<'tcx>>> {
        self.projection_bounds()
    }
}

impl<'tcx> ty::List<ty::PolyExistentialPredicate<'tcx>> {
    /// Returns the "principal `DefId`" of this set of existential predicates.
    ///
    /// A Rust trait object type consists (in addition to a lifetime bound)
    /// of a set of trait bounds, which are separated into any number
    /// of auto-trait bounds, and at most one non-auto-trait bound. The
    /// non-auto-trait bound is called the "principal" of the trait
    /// object.
    ///
    /// Only the principal can have methods or type parameters (because
    /// auto traits can have neither of them). This is important, because
    /// it means the auto traits can be treated as an unordered set (methods
    /// would force an order for the vtable, while relating traits with
    /// type parameters without knowing the order to relate them in is
    /// a rather non-trivial task).
    ///
    /// For example, in the trait object `dyn std::fmt::Debug + Sync`, the
    /// principal bound is `Some(std::fmt::Debug)`, while the auto-trait bounds
    /// are the set `{Sync}`.
    ///
    /// It is also possible to have a "trivial" trait object that
    /// consists only of auto traits, with no principal - for example,
    /// `dyn Send + Sync`. In that case, the set of auto-trait bounds
    /// is `{Send, Sync}`, while there is no principal. These trait objects
    /// have a "trivial" vtable consisting of just the size, alignment,
    /// and destructor.
    pub fn principal(&self) -> Option<ty::Binder<'tcx, ExistentialTraitRef<'tcx>>> {
        self[0]
            .map_bound(|this| match this {
                ExistentialPredicate::Trait(tr) => Some(tr),
                _ => None,
            })
            .transpose()
    }

    pub fn principal_def_id(&self) -> Option<DefId> {
        self.principal().map(|trait_ref| trait_ref.skip_binder().def_id)
    }

    #[inline]
    pub fn projection_bounds<'a>(
        &'a self,
    ) -> impl Iterator<Item = ty::Binder<'tcx, ExistentialProjection<'tcx>>> + 'a {
        self.iter().filter_map(|predicate| {
            predicate
                .map_bound(|pred| match pred {
                    ExistentialPredicate::Projection(projection) => Some(projection),
                    _ => None,
                })
                .transpose()
        })
    }

    #[inline]
    pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + Captures<'tcx> + 'a {
        self.iter().filter_map(|predicate| match predicate.skip_binder() {
            ExistentialPredicate::AutoTrait(did) => Some(did),
            _ => None,
        })
    }

    pub fn without_auto_traits(
        &self,
    ) -> impl Iterator<Item = ty::PolyExistentialPredicate<'tcx>> + '_ {
        self.iter().filter(|predicate| {
            !matches!(predicate.as_ref().skip_binder(), ExistentialPredicate::AutoTrait(_))
        })
    }
}

pub type PolyTraitRef<'tcx> = ty::Binder<'tcx, TraitRef<'tcx>>;
pub type PolyExistentialTraitRef<'tcx> = ty::Binder<'tcx, ExistentialTraitRef<'tcx>>;
pub type PolyExistentialProjection<'tcx> = ty::Binder<'tcx, ExistentialProjection<'tcx>>;

impl<'tcx> Clause<'tcx> {
    /// Performs a instantiation suitable for going from a
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// instantiation in terms of what happens with bound regions. See
    /// lengthy comment below for details.
    pub fn instantiate_supertrait(
        self,
        tcx: TyCtxt<'tcx>,
        trait_ref: ty::PolyTraitRef<'tcx>,
    ) -> Clause<'tcx> {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a>: Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
        // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal instantiation.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds. So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`. So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The instantiation from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The supertrait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b` is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the instantiation `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the instantiation code will
        // adjust the DB index because we instantiating into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the instantiation to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // instantiation code expects equal binding levels in the values
        // from the instantiation and the value being instantiated into, and
        // this trick achieves that).

        // Working through the second example:
        // trait_ref: for<'x> T: Foo1<'^0.0>; args: [T, '^0.0]
        // predicate: for<'b> Self: Bar1<'a, '^0.0>; args: [Self, 'a, '^0.0]
        // We want to end up with:
        //     for<'x, 'b> T: Bar1<'^0.0, '^0.1>
        // To do this:
        // 1) We must shift all bound vars in predicate by the length
        //    of trait ref's bound vars. So, we would end up with predicate like
        //    Self: Bar1<'a, '^0.1>
        // 2) We can then apply the trait args to this, ending up with
        //    T: Bar1<'^0.0, '^0.1>
        // 3) Finally, to create the final bound vars, we concatenate the bound
        //    vars of the trait ref with those of the predicate:
        //    ['x, 'b]
        let bound_pred = self.kind();
        let pred_bound_vars = bound_pred.bound_vars();
        let trait_bound_vars = trait_ref.bound_vars();
        // 1) Self: Bar1<'a, '^0.0> -> Self: Bar1<'a, '^0.1>
        let shifted_pred =
            tcx.shift_bound_var_indices(trait_bound_vars.len(), bound_pred.skip_binder());
        // 2) Self: Bar1<'a, '^0.1> -> T: Bar1<'^0.0, '^0.1>
        let new = EarlyBinder::bind(shifted_pred).instantiate(tcx, trait_ref.skip_binder().args);
        // 3) ['x] + ['b] -> ['x, 'b]
        let bound_vars =
            tcx.mk_bound_variable_kinds_from_iter(trait_bound_vars.iter().chain(pred_bound_vars));

        // FIXME: Is it really perf sensitive to use reuse_or_mk_predicate here?
        tcx.reuse_or_mk_predicate(
            self.as_predicate(),
            ty::Binder::bind_with_vars(PredicateKind::Clause(new), bound_vars),
        )
        .expect_clause()
    }
}

pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, PredicateKind<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: PredicateKind<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        ty::Binder::dummy(from).upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ty::Binder<'tcx, PredicateKind<'tcx>>> for Predicate<'tcx> {
    fn upcast_from(from: ty::Binder<'tcx, PredicateKind<'tcx>>, tcx: TyCtxt<'tcx>) -> Self {
        tcx.mk_predicate(from)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ClauseKind<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: ClauseKind<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        tcx.mk_predicate(ty::Binder::dummy(PredicateKind::Clause(from)))
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ty::Binder<'tcx, ClauseKind<'tcx>>> for Predicate<'tcx> {
    fn upcast_from(from: ty::Binder<'tcx, ClauseKind<'tcx>>, tcx: TyCtxt<'tcx>) -> Self {
        tcx.mk_predicate(from.map_bound(PredicateKind::Clause))
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, Clause<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: Clause<'tcx>, _tcx: TyCtxt<'tcx>) -> Self {
        from.as_predicate()
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ClauseKind<'tcx>> for Clause<'tcx> {
    fn upcast_from(from: ClauseKind<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        tcx.mk_predicate(ty::Binder::dummy(PredicateKind::Clause(from))).expect_clause()
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ty::Binder<'tcx, ClauseKind<'tcx>>> for Clause<'tcx> {
    fn upcast_from(from: ty::Binder<'tcx, ClauseKind<'tcx>>, tcx: TyCtxt<'tcx>) -> Self {
        tcx.mk_predicate(from.map_bound(|clause| PredicateKind::Clause(clause))).expect_clause()
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, TraitRef<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: TraitRef<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        ty::Binder::dummy(from).upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, TraitRef<'tcx>> for Clause<'tcx> {
    fn upcast_from(from: TraitRef<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        let p: Predicate<'tcx> = from.upcast(tcx);
        p.expect_clause()
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ty::Binder<'tcx, TraitRef<'tcx>>> for Predicate<'tcx> {
    fn upcast_from(from: ty::Binder<'tcx, TraitRef<'tcx>>, tcx: TyCtxt<'tcx>) -> Self {
        let pred: PolyTraitPredicate<'tcx> = from.upcast(tcx);
        pred.upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ty::Binder<'tcx, TraitRef<'tcx>>> for Clause<'tcx> {
    fn upcast_from(from: ty::Binder<'tcx, TraitRef<'tcx>>, tcx: TyCtxt<'tcx>) -> Self {
        let pred: PolyTraitPredicate<'tcx> = from.upcast(tcx);
        pred.upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ty::Binder<'tcx, TraitRef<'tcx>>> for PolyTraitPredicate<'tcx> {
    fn upcast_from(from: ty::Binder<'tcx, TraitRef<'tcx>>, _tcx: TyCtxt<'tcx>) -> Self {
        from.map_bound(|trait_ref| TraitPredicate {
            trait_ref,
            polarity: PredicatePolarity::Positive,
        })
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, TraitPredicate<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: TraitPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        PredicateKind::Clause(ClauseKind::Trait(from)).upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, PolyTraitPredicate<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: PolyTraitPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        from.map_bound(|p| PredicateKind::Clause(ClauseKind::Trait(p))).upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, TraitPredicate<'tcx>> for Clause<'tcx> {
    fn upcast_from(from: TraitPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        let p: Predicate<'tcx> = from.upcast(tcx);
        p.expect_clause()
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, PolyTraitPredicate<'tcx>> for Clause<'tcx> {
    fn upcast_from(from: PolyTraitPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        let p: Predicate<'tcx> = from.upcast(tcx);
        p.expect_clause()
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, RegionOutlivesPredicate<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: RegionOutlivesPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        ty::Binder::dummy(PredicateKind::Clause(ClauseKind::RegionOutlives(from))).upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, PolyRegionOutlivesPredicate<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: PolyRegionOutlivesPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        from.map_bound(|p| PredicateKind::Clause(ClauseKind::RegionOutlives(p))).upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, TypeOutlivesPredicate<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: TypeOutlivesPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        ty::Binder::dummy(PredicateKind::Clause(ClauseKind::TypeOutlives(from))).upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ProjectionPredicate<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: ProjectionPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        ty::Binder::dummy(PredicateKind::Clause(ClauseKind::Projection(from))).upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, PolyProjectionPredicate<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: PolyProjectionPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        from.map_bound(|p| PredicateKind::Clause(ClauseKind::Projection(p))).upcast(tcx)
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, ProjectionPredicate<'tcx>> for Clause<'tcx> {
    fn upcast_from(from: ProjectionPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        let p: Predicate<'tcx> = from.upcast(tcx);
        p.expect_clause()
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, PolyProjectionPredicate<'tcx>> for Clause<'tcx> {
    fn upcast_from(from: PolyProjectionPredicate<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        let p: Predicate<'tcx> = from.upcast(tcx);
        p.expect_clause()
    }
}

impl<'tcx> UpcastFrom<TyCtxt<'tcx>, NormalizesTo<'tcx>> for Predicate<'tcx> {
    fn upcast_from(from: NormalizesTo<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
        PredicateKind::NormalizesTo(from).upcast(tcx)
    }
}

impl<'tcx> Predicate<'tcx> {
    pub fn as_trait_clause(self) -> Option<PolyTraitPredicate<'tcx>> {
        let predicate = self.kind();
        match predicate.skip_binder() {
            PredicateKind::Clause(ClauseKind::Trait(t)) => Some(predicate.rebind(t)),
            PredicateKind::Clause(ClauseKind::Projection(..))
            | PredicateKind::Clause(ClauseKind::ConstArgHasType(..))
            | PredicateKind::NormalizesTo(..)
            | PredicateKind::AliasRelate(..)
            | PredicateKind::Subtype(..)
            | PredicateKind::Coerce(..)
            | PredicateKind::Clause(ClauseKind::RegionOutlives(..))
            | PredicateKind::Clause(ClauseKind::WellFormed(..))
            | PredicateKind::DynCompatible(..)
            | PredicateKind::Clause(ClauseKind::TypeOutlives(..))
            | PredicateKind::Clause(ClauseKind::ConstEvaluatable(..))
            | PredicateKind::ConstEquate(..)
            | PredicateKind::Ambiguous => None,
        }
    }

    pub fn as_projection_clause(self) -> Option<PolyProjectionPredicate<'tcx>> {
        let predicate = self.kind();
        match predicate.skip_binder() {
            PredicateKind::Clause(ClauseKind::Projection(t)) => Some(predicate.rebind(t)),
            PredicateKind::Clause(ClauseKind::Trait(..))
            | PredicateKind::Clause(ClauseKind::ConstArgHasType(..))
            | PredicateKind::NormalizesTo(..)
            | PredicateKind::AliasRelate(..)
            | PredicateKind::Subtype(..)
            | PredicateKind::Coerce(..)
            | PredicateKind::Clause(ClauseKind::RegionOutlives(..))
            | PredicateKind::Clause(ClauseKind::WellFormed(..))
            | PredicateKind::DynCompatible(..)
            | PredicateKind::Clause(ClauseKind::TypeOutlives(..))
            | PredicateKind::Clause(ClauseKind::ConstEvaluatable(..))
            | PredicateKind::ConstEquate(..)
            | PredicateKind::Ambiguous => None,
        }
    }

    /// Matches a `PredicateKind::Clause` and turns it into a `Clause`, otherwise returns `None`.
    pub fn as_clause(self) -> Option<Clause<'tcx>> {
        match self.kind().skip_binder() {
            PredicateKind::Clause(..) => Some(self.expect_clause()),
            _ => None,
        }
    }

    /// Assert that the predicate is a clause.
    pub fn expect_clause(self) -> Clause<'tcx> {
        match self.kind().skip_binder() {
            PredicateKind::Clause(..) => Clause(self.0),
            _ => bug!("{self} is not a clause"),
        }
    }
}