rustc_middle/ty/closure.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
use std::fmt::Write;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxIndexMap;
use rustc_hir as hir;
use rustc_hir::HirId;
use rustc_hir::def_id::LocalDefId;
use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
use rustc_span::def_id::LocalDefIdMap;
use rustc_span::symbol::Ident;
use rustc_span::{Span, Symbol};
use self::BorrowKind::*;
use super::TyCtxt;
use crate::hir::place::{
Place as HirPlace, PlaceBase as HirPlaceBase, ProjectionKind as HirProjectionKind,
};
use crate::query::Providers;
use crate::{mir, ty};
/// Captures are represented using fields inside a structure.
/// This represents accessing self in the closure structure
pub const CAPTURE_STRUCT_LOCAL: mir::Local = mir::Local::from_u32(1);
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable)]
#[derive(TypeFoldable, TypeVisitable)]
pub struct UpvarPath {
pub hir_id: HirId,
}
/// Upvars do not get their own `NodeId`. Instead, we use the pair of
/// the original var ID (that is, the root variable that is referenced
/// by the upvar) and the ID of the closure expression.
#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable)]
#[derive(TypeFoldable, TypeVisitable)]
pub struct UpvarId {
pub var_path: UpvarPath,
pub closure_expr_id: LocalDefId,
}
impl UpvarId {
pub fn new(var_hir_id: HirId, closure_def_id: LocalDefId) -> UpvarId {
UpvarId { var_path: UpvarPath { hir_id: var_hir_id }, closure_expr_id: closure_def_id }
}
}
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
#[derive(Eq, PartialEq, Clone, Debug, Copy, TyEncodable, TyDecodable, HashStable, Hash)]
#[derive(TypeFoldable, TypeVisitable)]
pub enum UpvarCapture {
/// Upvar is captured by value. This is always true when the
/// closure is labeled `move`, but can also be true in other cases
/// depending on inference.
ByValue,
/// Upvar is captured by reference.
ByRef(BorrowKind),
}
/// Given the closure DefId this map provides a map of root variables to minimum
/// set of `CapturedPlace`s that need to be tracked to support all captures of that closure.
pub type MinCaptureInformationMap<'tcx> = LocalDefIdMap<RootVariableMinCaptureList<'tcx>>;
/// Part of `MinCaptureInformationMap`; Maps a root variable to the list of `CapturedPlace`.
/// Used to track the minimum set of `Place`s that need to be captured to support all
/// Places captured by the closure starting at a given root variable.
///
/// This provides a convenient and quick way of checking if a variable being used within
/// a closure is a capture of a local variable.
pub type RootVariableMinCaptureList<'tcx> = FxIndexMap<HirId, MinCaptureList<'tcx>>;
/// Part of `MinCaptureInformationMap`; List of `CapturePlace`s.
pub type MinCaptureList<'tcx> = Vec<CapturedPlace<'tcx>>;
/// A composite describing a `Place` that is captured by a closure.
#[derive(Eq, PartialEq, Clone, Debug, TyEncodable, TyDecodable, HashStable, Hash)]
#[derive(TypeFoldable, TypeVisitable)]
pub struct CapturedPlace<'tcx> {
/// Name and span where the binding happens.
pub var_ident: Ident,
/// The `Place` that is captured.
pub place: HirPlace<'tcx>,
/// `CaptureKind` and expression(s) that resulted in such capture of `place`.
pub info: CaptureInfo,
/// Represents if `place` can be mutated or not.
pub mutability: hir::Mutability,
}
impl<'tcx> CapturedPlace<'tcx> {
pub fn to_string(&self, tcx: TyCtxt<'tcx>) -> String {
place_to_string_for_capture(tcx, &self.place)
}
/// Returns a symbol of the captured upvar, which looks like `name__field1__field2`.
pub fn to_symbol(&self) -> Symbol {
let mut symbol = self.var_ident.to_string();
let mut ty = self.place.base_ty;
for proj in self.place.projections.iter() {
match proj.kind {
HirProjectionKind::Field(idx, variant) => match ty.kind() {
ty::Tuple(_) => write!(&mut symbol, "__{}", idx.index()).unwrap(),
ty::Adt(def, ..) => {
write!(
&mut symbol,
"__{}",
def.variant(variant).fields[idx].name.as_str(),
)
.unwrap();
}
ty => {
bug!("Unexpected type {:?} for `Field` projection", ty)
}
},
// Ignore derefs for now, as they are likely caused by
// autoderefs that don't appear in the original code.
HirProjectionKind::Deref => {}
// Just change the type to the hidden type, so we can actually project.
HirProjectionKind::OpaqueCast => {}
proj => bug!("Unexpected projection {:?} in captured place", proj),
}
ty = proj.ty;
}
Symbol::intern(&symbol)
}
/// Returns the hir-id of the root variable for the captured place.
/// e.g., if `a.b.c` was captured, would return the hir-id for `a`.
pub fn get_root_variable(&self) -> HirId {
match self.place.base {
HirPlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
base => bug!("Expected upvar, found={:?}", base),
}
}
/// Returns the `LocalDefId` of the closure that captured this Place
pub fn get_closure_local_def_id(&self) -> LocalDefId {
match self.place.base {
HirPlaceBase::Upvar(upvar_id) => upvar_id.closure_expr_id,
base => bug!("expected upvar, found={:?}", base),
}
}
/// Return span pointing to use that resulted in selecting the captured path
pub fn get_path_span(&self, tcx: TyCtxt<'tcx>) -> Span {
if let Some(path_expr_id) = self.info.path_expr_id {
tcx.hir().span(path_expr_id)
} else if let Some(capture_kind_expr_id) = self.info.capture_kind_expr_id {
tcx.hir().span(capture_kind_expr_id)
} else {
// Fallback on upvars mentioned if neither path or capture expr id is captured
// Safe to unwrap since we know this place is captured by the closure, therefore the closure must have upvars.
tcx.upvars_mentioned(self.get_closure_local_def_id()).unwrap()
[&self.get_root_variable()]
.span
}
}
/// Return span pointing to use that resulted in selecting the current capture kind
pub fn get_capture_kind_span(&self, tcx: TyCtxt<'tcx>) -> Span {
if let Some(capture_kind_expr_id) = self.info.capture_kind_expr_id {
tcx.hir().span(capture_kind_expr_id)
} else if let Some(path_expr_id) = self.info.path_expr_id {
tcx.hir().span(path_expr_id)
} else {
// Fallback on upvars mentioned if neither path or capture expr id is captured
// Safe to unwrap since we know this place is captured by the closure, therefore the closure must have upvars.
tcx.upvars_mentioned(self.get_closure_local_def_id()).unwrap()
[&self.get_root_variable()]
.span
}
}
pub fn is_by_ref(&self) -> bool {
match self.info.capture_kind {
ty::UpvarCapture::ByValue => false,
ty::UpvarCapture::ByRef(..) => true,
}
}
}
#[derive(Copy, Clone, Debug, HashStable)]
pub struct ClosureTypeInfo<'tcx> {
user_provided_sig: ty::CanonicalPolyFnSig<'tcx>,
captures: &'tcx ty::List<&'tcx ty::CapturedPlace<'tcx>>,
kind_origin: Option<&'tcx (Span, HirPlace<'tcx>)>,
}
fn closure_typeinfo<'tcx>(tcx: TyCtxt<'tcx>, def: LocalDefId) -> ClosureTypeInfo<'tcx> {
debug_assert!(tcx.is_closure_like(def.to_def_id()));
let typeck_results = tcx.typeck(def);
let user_provided_sig = typeck_results.user_provided_sigs[&def];
let captures = typeck_results.closure_min_captures_flattened(def);
let captures = tcx.mk_captures_from_iter(captures);
let hir_id = tcx.local_def_id_to_hir_id(def);
let kind_origin = typeck_results.closure_kind_origins().get(hir_id);
ClosureTypeInfo { user_provided_sig, captures, kind_origin }
}
impl<'tcx> TyCtxt<'tcx> {
pub fn closure_kind_origin(self, def_id: LocalDefId) -> Option<&'tcx (Span, HirPlace<'tcx>)> {
self.closure_typeinfo(def_id).kind_origin
}
pub fn closure_user_provided_sig(self, def_id: LocalDefId) -> ty::CanonicalPolyFnSig<'tcx> {
self.closure_typeinfo(def_id).user_provided_sig
}
pub fn closure_captures(self, def_id: LocalDefId) -> &'tcx [&'tcx ty::CapturedPlace<'tcx>] {
if !self.is_closure_like(def_id.to_def_id()) {
return &[];
};
self.closure_typeinfo(def_id).captures
}
}
/// Return true if the `proj_possible_ancestor` represents an ancestor path
/// to `proj_capture` or `proj_possible_ancestor` is same as `proj_capture`,
/// assuming they both start off of the same root variable.
///
/// **Note:** It's the caller's responsibility to ensure that both lists of projections
/// start off of the same root variable.
///
/// Eg: 1. `foo.x` which is represented using `projections=[Field(x)]` is an ancestor of
/// `foo.x.y` which is represented using `projections=[Field(x), Field(y)]`.
/// Note both `foo.x` and `foo.x.y` start off of the same root variable `foo`.
/// 2. Since we only look at the projections here function will return `bar.x` as a valid
/// ancestor of `foo.x.y`. It's the caller's responsibility to ensure that both projections
/// list are being applied to the same root variable.
pub fn is_ancestor_or_same_capture(
proj_possible_ancestor: &[HirProjectionKind],
proj_capture: &[HirProjectionKind],
) -> bool {
// We want to make sure `is_ancestor_or_same_capture("x.0.0", "x.0")` to return false.
// Therefore we can't just check if all projections are same in the zipped iterator below.
if proj_possible_ancestor.len() > proj_capture.len() {
return false;
}
proj_possible_ancestor.iter().zip(proj_capture).all(|(a, b)| a == b)
}
/// Part of `MinCaptureInformationMap`; describes the capture kind (&, &mut, move)
/// for a particular capture as well as identifying the part of the source code
/// that triggered this capture to occur.
#[derive(Eq, PartialEq, Clone, Debug, Copy, TyEncodable, TyDecodable, HashStable, Hash)]
#[derive(TypeFoldable, TypeVisitable)]
pub struct CaptureInfo {
/// Expr Id pointing to use that resulted in selecting the current capture kind
///
/// Eg:
/// ```rust,no_run
/// let mut t = (0,1);
///
/// let c = || {
/// println!("{t:?}"); // L1
/// t.1 = 4; // L2
/// };
/// ```
/// `capture_kind_expr_id` will point to the use on L2 and `path_expr_id` will point to the
/// use on L1.
///
/// If the user doesn't enable feature `capture_disjoint_fields` (RFC 2229) then, it is
/// possible that we don't see the use of a particular place resulting in capture_kind_expr_id being
/// None. In such case we fallback on uvpars_mentioned for span.
///
/// Eg:
/// ```rust,no_run
/// let x = 5;
///
/// let c = || {
/// let _ = x;
/// };
/// ```
///
/// In this example, if `capture_disjoint_fields` is **not** set, then x will be captured,
/// but we won't see it being used during capture analysis, since it's essentially a discard.
pub capture_kind_expr_id: Option<HirId>,
/// Expr Id pointing to use that resulted the corresponding place being captured
///
/// See `capture_kind_expr_id` for example.
///
pub path_expr_id: Option<HirId>,
/// Capture mode that was selected
pub capture_kind: UpvarCapture,
}
pub fn place_to_string_for_capture<'tcx>(tcx: TyCtxt<'tcx>, place: &HirPlace<'tcx>) -> String {
let mut curr_string: String = match place.base {
HirPlaceBase::Upvar(upvar_id) => tcx.hir().name(upvar_id.var_path.hir_id).to_string(),
_ => bug!("Capture_information should only contain upvars"),
};
for (i, proj) in place.projections.iter().enumerate() {
match proj.kind {
HirProjectionKind::Deref => {
curr_string = format!("*{curr_string}");
}
HirProjectionKind::Field(idx, variant) => match place.ty_before_projection(i).kind() {
ty::Adt(def, ..) => {
curr_string = format!(
"{}.{}",
curr_string,
def.variant(variant).fields[idx].name.as_str()
);
}
ty::Tuple(_) => {
curr_string = format!("{}.{}", curr_string, idx.index());
}
_ => {
bug!(
"Field projection applied to a type other than Adt or Tuple: {:?}.",
place.ty_before_projection(i).kind()
)
}
},
proj => bug!("{:?} unexpected because it isn't captured", proj),
}
}
curr_string
}
#[derive(Eq, Clone, PartialEq, Debug, TyEncodable, TyDecodable, Copy, HashStable, Hash)]
#[derive(TypeFoldable, TypeVisitable)]
pub enum BorrowKind {
/// Data must be immutable and is aliasable.
ImmBorrow,
/// Data must be immutable but not aliasable. This kind of borrow
/// cannot currently be expressed by the user and is used only in
/// implicit closure bindings. It is needed when the closure
/// is borrowing or mutating a mutable referent, e.g.:
///
/// ```
/// let mut z = 3;
/// let x: &mut isize = &mut z;
/// let y = || *x += 5;
/// ```
///
/// If we were to try to translate this closure into a more explicit
/// form, we'd encounter an error with the code as written:
///
/// ```compile_fail,E0594
/// struct Env<'a> { x: &'a &'a mut isize }
/// let mut z = 3;
/// let x: &mut isize = &mut z;
/// let y = (&mut Env { x: &x }, fn_ptr); // Closure is pair of env and fn
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
/// ```
///
/// This is then illegal because you cannot mutate a `&mut` found
/// in an aliasable location. To solve, you'd have to translate with
/// an `&mut` borrow:
///
/// ```compile_fail,E0596
/// struct Env<'a> { x: &'a mut &'a mut isize }
/// let mut z = 3;
/// let x: &mut isize = &mut z;
/// let y = (&mut Env { x: &mut x }, fn_ptr); // changed from &x to &mut x
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
/// ```
///
/// Now the assignment to `**env.x` is legal, but creating a
/// mutable pointer to `x` is not because `x` is not mutable. We
/// could fix this by declaring `x` as `let mut x`. This is ok in
/// user code, if awkward, but extra weird for closures, since the
/// borrow is hidden.
///
/// So we introduce a "unique imm" borrow -- the referent is
/// immutable, but not aliasable. This solves the problem. For
/// simplicity, we don't give users the way to express this
/// borrow, it's just used when translating closures.
///
/// FIXME: Rename this to indicate the borrow is actually not immutable.
UniqueImmBorrow,
/// Data is mutable and not aliasable.
MutBorrow,
}
impl BorrowKind {
pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
match m {
hir::Mutability::Mut => MutBorrow,
hir::Mutability::Not => ImmBorrow,
}
}
/// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
/// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
/// mutability that is stronger than necessary so that it at least *would permit* the borrow in
/// question.
pub fn to_mutbl_lossy(self) -> hir::Mutability {
match self {
MutBorrow => hir::Mutability::Mut,
ImmBorrow => hir::Mutability::Not,
// We have no type corresponding to a unique imm borrow, so
// use `&mut`. It gives all the capabilities of a `&uniq`
// and hence is a safe "over approximation".
UniqueImmBorrow => hir::Mutability::Mut,
}
}
}
pub fn analyze_coroutine_closure_captures<'a, 'tcx: 'a, T>(
parent_captures: impl IntoIterator<Item = &'a CapturedPlace<'tcx>>,
child_captures: impl IntoIterator<Item = &'a CapturedPlace<'tcx>>,
mut for_each: impl FnMut((usize, &'a CapturedPlace<'tcx>), (usize, &'a CapturedPlace<'tcx>)) -> T,
) -> impl Iterator<Item = T> + Captures<'a> + Captures<'tcx> {
std::iter::from_coroutine(
#[coroutine]
move || {
let mut child_captures = child_captures.into_iter().enumerate().peekable();
// One parent capture may correspond to several child captures if we end up
// refining the set of captures via edition-2021 precise captures. We want to
// match up any number of child captures with one parent capture, so we keep
// peeking off this `Peekable` until the child doesn't match anymore.
for (parent_field_idx, parent_capture) in parent_captures.into_iter().enumerate() {
// Make sure we use every field at least once, b/c why are we capturing something
// if it's not used in the inner coroutine.
let mut field_used_at_least_once = false;
// A parent matches a child if they share the same prefix of projections.
// The child may have more, if it is capturing sub-fields out of
// something that is captured by-move in the parent closure.
while child_captures.peek().map_or(false, |(_, child_capture)| {
child_prefix_matches_parent_projections(parent_capture, child_capture)
}) {
let (child_field_idx, child_capture) = child_captures.next().unwrap();
// This analysis only makes sense if the parent capture is a
// prefix of the child capture.
assert!(
child_capture.place.projections.len()
>= parent_capture.place.projections.len(),
"parent capture ({parent_capture:#?}) expected to be prefix of \
child capture ({child_capture:#?})"
);
yield for_each(
(parent_field_idx, parent_capture),
(child_field_idx, child_capture),
);
field_used_at_least_once = true;
}
// Make sure the field was used at least once.
assert!(
field_used_at_least_once,
"we captured {parent_capture:#?} but it was not used in the child coroutine?"
);
}
assert_eq!(child_captures.next(), None, "leftover child captures?");
},
)
}
fn child_prefix_matches_parent_projections(
parent_capture: &ty::CapturedPlace<'_>,
child_capture: &ty::CapturedPlace<'_>,
) -> bool {
let HirPlaceBase::Upvar(parent_base) = parent_capture.place.base else {
bug!("expected capture to be an upvar");
};
let HirPlaceBase::Upvar(child_base) = child_capture.place.base else {
bug!("expected capture to be an upvar");
};
parent_base.var_path.hir_id == child_base.var_path.hir_id
&& std::iter::zip(&child_capture.place.projections, &parent_capture.place.projections)
.all(|(child, parent)| child.kind == parent.kind)
}
pub fn provide(providers: &mut Providers) {
*providers = Providers { closure_typeinfo, ..*providers }
}