rustc_index/
interval.rs

1use std::iter::Step;
2use std::marker::PhantomData;
3use std::ops::{Bound, Range, RangeBounds};
4
5use smallvec::SmallVec;
6
7use crate::idx::Idx;
8use crate::vec::IndexVec;
9
10#[cfg(test)]
11mod tests;
12
13/// Stores a set of intervals on the indices.
14///
15/// The elements in `map` are sorted and non-adjacent, which means
16/// the second value of the previous element is *greater* than the
17/// first value of the following element.
18#[derive(Debug, Clone)]
19pub struct IntervalSet<I> {
20    // Start, end (both inclusive)
21    map: SmallVec<[(u32, u32); 2]>,
22    domain: usize,
23    _data: PhantomData<I>,
24}
25
26#[inline]
27fn inclusive_start<T: Idx>(range: impl RangeBounds<T>) -> u32 {
28    match range.start_bound() {
29        Bound::Included(start) => start.index() as u32,
30        Bound::Excluded(start) => start.index() as u32 + 1,
31        Bound::Unbounded => 0,
32    }
33}
34
35#[inline]
36fn inclusive_end<T: Idx>(domain: usize, range: impl RangeBounds<T>) -> Option<u32> {
37    let end = match range.end_bound() {
38        Bound::Included(end) => end.index() as u32,
39        Bound::Excluded(end) => end.index().checked_sub(1)? as u32,
40        Bound::Unbounded => domain.checked_sub(1)? as u32,
41    };
42    Some(end)
43}
44
45impl<I: Idx> IntervalSet<I> {
46    pub fn new(domain: usize) -> IntervalSet<I> {
47        IntervalSet { map: SmallVec::new(), domain, _data: PhantomData }
48    }
49
50    pub fn clear(&mut self) {
51        self.map.clear();
52    }
53
54    pub fn iter(&self) -> impl Iterator<Item = I> + '_
55    where
56        I: Step,
57    {
58        self.iter_intervals().flatten()
59    }
60
61    /// Iterates through intervals stored in the set, in order.
62    pub fn iter_intervals(&self) -> impl Iterator<Item = std::ops::Range<I>> + '_
63    where
64        I: Step,
65    {
66        self.map.iter().map(|&(start, end)| I::new(start as usize)..I::new(end as usize + 1))
67    }
68
69    /// Returns true if we increased the number of elements present.
70    pub fn insert(&mut self, point: I) -> bool {
71        self.insert_range(point..=point)
72    }
73
74    /// Returns true if we increased the number of elements present.
75    pub fn insert_range(&mut self, range: impl RangeBounds<I> + Clone) -> bool {
76        let start = inclusive_start(range.clone());
77        let Some(end) = inclusive_end(self.domain, range) else {
78            // empty range
79            return false;
80        };
81        if start > end {
82            return false;
83        }
84
85        // This condition looks a bit weird, but actually makes sense.
86        //
87        // if r.0 == end + 1, then we're actually adjacent, so we want to
88        // continue to the next range. We're looking here for the first
89        // range which starts *non-adjacently* to our end.
90        let next = self.map.partition_point(|r| r.0 <= end + 1);
91        let result = if let Some(right) = next.checked_sub(1) {
92            let (prev_start, prev_end) = self.map[right];
93            if prev_end + 1 >= start {
94                // If the start for the inserted range is adjacent to the
95                // end of the previous, we can extend the previous range.
96                if start < prev_start {
97                    // The first range which ends *non-adjacently* to our start.
98                    // And we can ensure that left <= right.
99                    let left = self.map.partition_point(|l| l.1 + 1 < start);
100                    let min = std::cmp::min(self.map[left].0, start);
101                    let max = std::cmp::max(prev_end, end);
102                    self.map[right] = (min, max);
103                    if left != right {
104                        self.map.drain(left..right);
105                    }
106                    true
107                } else {
108                    // We overlap with the previous range, increase it to
109                    // include us.
110                    //
111                    // Make sure we're actually going to *increase* it though --
112                    // it may be that end is just inside the previously existing
113                    // set.
114                    if end > prev_end {
115                        self.map[right].1 = end;
116                        true
117                    } else {
118                        false
119                    }
120                }
121            } else {
122                // Otherwise, we don't overlap, so just insert
123                self.map.insert(right + 1, (start, end));
124                true
125            }
126        } else {
127            if self.map.is_empty() {
128                // Quite common in practice, and expensive to call memcpy
129                // with length zero.
130                self.map.push((start, end));
131            } else {
132                self.map.insert(next, (start, end));
133            }
134            true
135        };
136        debug_assert!(
137            self.check_invariants(),
138            "wrong intervals after insert {start:?}..={end:?} to {self:?}"
139        );
140        result
141    }
142
143    pub fn contains(&self, needle: I) -> bool {
144        let needle = needle.index() as u32;
145        let Some(last) = self.map.partition_point(|r| r.0 <= needle).checked_sub(1) else {
146            // All ranges in the map start after the new range's end
147            return false;
148        };
149        let (_, prev_end) = &self.map[last];
150        needle <= *prev_end
151    }
152
153    pub fn superset(&self, other: &IntervalSet<I>) -> bool
154    where
155        I: Step,
156    {
157        let mut sup_iter = self.iter_intervals();
158        let mut current = None;
159        let contains = |sup: Range<I>, sub: Range<I>, current: &mut Option<Range<I>>| {
160            if sup.end < sub.start {
161                // if `sup.end == sub.start`, the next sup doesn't contain `sub.start`
162                None // continue to the next sup
163            } else if sup.end >= sub.end && sup.start <= sub.start {
164                *current = Some(sup); // save the current sup
165                Some(true)
166            } else {
167                Some(false)
168            }
169        };
170        other.iter_intervals().all(|sub| {
171            current
172                .take()
173                .and_then(|sup| contains(sup, sub.clone(), &mut current))
174                .or_else(|| sup_iter.find_map(|sup| contains(sup, sub.clone(), &mut current)))
175                .unwrap_or(false)
176        })
177    }
178
179    pub fn is_empty(&self) -> bool {
180        self.map.is_empty()
181    }
182
183    /// Equivalent to `range.iter().find(|i| !self.contains(i))`.
184    pub fn first_unset_in(&self, range: impl RangeBounds<I> + Clone) -> Option<I> {
185        let start = inclusive_start(range.clone());
186        let Some(end) = inclusive_end(self.domain, range) else {
187            // empty range
188            return None;
189        };
190        if start > end {
191            return None;
192        }
193        let Some(last) = self.map.partition_point(|r| r.0 <= start).checked_sub(1) else {
194            // All ranges in the map start after the new range's end
195            return Some(I::new(start as usize));
196        };
197        let (_, prev_end) = self.map[last];
198        if start > prev_end {
199            Some(I::new(start as usize))
200        } else if prev_end < end {
201            Some(I::new(prev_end as usize + 1))
202        } else {
203            None
204        }
205    }
206
207    /// Returns the maximum (last) element present in the set from `range`.
208    pub fn last_set_in(&self, range: impl RangeBounds<I> + Clone) -> Option<I> {
209        let start = inclusive_start(range.clone());
210        let Some(end) = inclusive_end(self.domain, range) else {
211            // empty range
212            return None;
213        };
214        if start > end {
215            return None;
216        }
217        let Some(last) = self.map.partition_point(|r| r.0 <= end).checked_sub(1) else {
218            // All ranges in the map start after the new range's end
219            return None;
220        };
221        let (_, prev_end) = &self.map[last];
222        if start <= *prev_end { Some(I::new(std::cmp::min(*prev_end, end) as usize)) } else { None }
223    }
224
225    pub fn insert_all(&mut self) {
226        self.clear();
227        if let Some(end) = self.domain.checked_sub(1) {
228            self.map.push((0, end.try_into().unwrap()));
229        }
230        debug_assert!(self.check_invariants());
231    }
232
233    pub fn union(&mut self, other: &IntervalSet<I>) -> bool
234    where
235        I: Step,
236    {
237        assert_eq!(self.domain, other.domain);
238        if self.map.len() < other.map.len() {
239            let backup = self.clone();
240            self.map.clone_from(&other.map);
241            return self.union(&backup);
242        }
243
244        let mut did_insert = false;
245        for range in other.iter_intervals() {
246            did_insert |= self.insert_range(range);
247        }
248        debug_assert!(self.check_invariants());
249        did_insert
250    }
251
252    // Check the intervals are valid, sorted and non-adjacent
253    fn check_invariants(&self) -> bool {
254        let mut current: Option<u32> = None;
255        for (start, end) in &self.map {
256            if start > end || current.is_some_and(|x| x + 1 >= *start) {
257                return false;
258            }
259            current = Some(*end);
260        }
261        current.is_none_or(|x| x < self.domain as u32)
262    }
263}
264
265/// This data structure optimizes for cases where the stored bits in each row
266/// are expected to be highly contiguous (long ranges of 1s or 0s), in contrast
267/// to BitMatrix and SparseBitMatrix which are optimized for
268/// "random"/non-contiguous bits and cheap(er) point queries at the expense of
269/// memory usage.
270#[derive(Clone)]
271pub struct SparseIntervalMatrix<R, C>
272where
273    R: Idx,
274    C: Idx,
275{
276    rows: IndexVec<R, IntervalSet<C>>,
277    column_size: usize,
278}
279
280impl<R: Idx, C: Step + Idx> SparseIntervalMatrix<R, C> {
281    pub fn new(column_size: usize) -> SparseIntervalMatrix<R, C> {
282        SparseIntervalMatrix { rows: IndexVec::new(), column_size }
283    }
284
285    pub fn rows(&self) -> impl Iterator<Item = R> {
286        self.rows.indices()
287    }
288
289    pub fn row(&self, row: R) -> Option<&IntervalSet<C>> {
290        self.rows.get(row)
291    }
292
293    fn ensure_row(&mut self, row: R) -> &mut IntervalSet<C> {
294        self.rows.ensure_contains_elem(row, || IntervalSet::new(self.column_size))
295    }
296
297    pub fn union_row(&mut self, row: R, from: &IntervalSet<C>) -> bool
298    where
299        C: Step,
300    {
301        self.ensure_row(row).union(from)
302    }
303
304    pub fn union_rows(&mut self, read: R, write: R) -> bool
305    where
306        C: Step,
307    {
308        if read == write || self.rows.get(read).is_none() {
309            return false;
310        }
311        self.ensure_row(write);
312        let (read_row, write_row) = self.rows.pick2_mut(read, write);
313        write_row.union(read_row)
314    }
315
316    pub fn insert_all_into_row(&mut self, row: R) {
317        self.ensure_row(row).insert_all();
318    }
319
320    pub fn insert_range(&mut self, row: R, range: impl RangeBounds<C> + Clone) {
321        self.ensure_row(row).insert_range(range);
322    }
323
324    pub fn insert(&mut self, row: R, point: C) -> bool {
325        self.ensure_row(row).insert(point)
326    }
327
328    pub fn contains(&self, row: R, point: C) -> bool {
329        self.row(row).is_some_and(|r| r.contains(point))
330    }
331}