rustc_hir_analysis/collect/
resolve_bound_vars.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
//! Resolution of early vs late bound lifetimes.
//!
//! Name resolution for lifetimes is performed on the AST and embedded into HIR. From this
//! information, typechecking needs to transform the lifetime parameters into bound lifetimes.
//! Lifetimes can be early-bound or late-bound. Construction of typechecking terms needs to visit
//! the types in HIR to identify late-bound lifetimes and assign their Debruijn indices. This file
//! is also responsible for assigning their semantics to implicit lifetimes in trait objects.

use core::ops::ControlFlow;
use std::fmt;

use rustc_ast::visit::walk_list;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_data_structures::sorted_map::SortedMap;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{
    GenericArg, GenericParam, GenericParamKind, HirId, ItemLocalMap, LifetimeName, Node,
};
use rustc_macros::extension;
use rustc_middle::hir::nested_filter;
use rustc_middle::middle::resolve_bound_vars::*;
use rustc_middle::query::Providers;
use rustc_middle::ty::{self, TyCtxt, TypeSuperVisitable, TypeVisitor};
use rustc_middle::{bug, span_bug};
use rustc_span::Span;
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_span::symbol::{Ident, sym};
use tracing::{debug, debug_span, instrument};

use crate::errors;

#[extension(trait RegionExt)]
impl ResolvedArg {
    fn early(param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg) {
        debug!("ResolvedArg::early: def_id={:?}", param.def_id);
        (param.def_id, ResolvedArg::EarlyBound(param.def_id))
    }

    fn late(idx: u32, param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg) {
        let depth = ty::INNERMOST;
        debug!(
            "ResolvedArg::late: idx={:?}, param={:?} depth={:?} def_id={:?}",
            idx, param, depth, param.def_id,
        );
        (param.def_id, ResolvedArg::LateBound(depth, idx, param.def_id))
    }

    fn id(&self) -> Option<LocalDefId> {
        match *self {
            ResolvedArg::StaticLifetime | ResolvedArg::Error(_) => None,

            ResolvedArg::EarlyBound(id)
            | ResolvedArg::LateBound(_, _, id)
            | ResolvedArg::Free(_, id) => Some(id),
        }
    }

    fn shifted(self, amount: u32) -> ResolvedArg {
        match self {
            ResolvedArg::LateBound(debruijn, idx, id) => {
                ResolvedArg::LateBound(debruijn.shifted_in(amount), idx, id)
            }
            _ => self,
        }
    }
}

/// Maps the id of each bound variable reference to the variable decl
/// that it corresponds to.
///
/// FIXME. This struct gets converted to a `ResolveBoundVars` for
/// actual use. It has the same data, but indexed by `LocalDefId`. This
/// is silly.
#[derive(Debug, Default)]
struct NamedVarMap {
    // maps from every use of a named (not anonymous) bound var to a
    // `ResolvedArg` describing how that variable is bound
    defs: ItemLocalMap<ResolvedArg>,

    // Maps relevant hir items to the bound vars on them. These include:
    // - function defs
    // - function pointers
    // - closures
    // - trait refs
    // - bound types (like `T` in `for<'a> T<'a>: Foo`)
    late_bound_vars: ItemLocalMap<Vec<ty::BoundVariableKind>>,
}

struct BoundVarContext<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    map: &'a mut NamedVarMap,
    scope: ScopeRef<'a>,
}

#[derive(Debug)]
enum Scope<'a> {
    /// Declares lifetimes, and each can be early-bound or late-bound.
    /// The `DebruijnIndex` of late-bound lifetimes starts at `1` and
    /// it should be shifted by the number of `Binder`s in between the
    /// declaration `Binder` and the location it's referenced from.
    Binder {
        /// We use an IndexMap here because we want these lifetimes in order
        /// for diagnostics.
        bound_vars: FxIndexMap<LocalDefId, ResolvedArg>,

        scope_type: BinderScopeType,

        /// The late bound vars for a given item are stored by `HirId` to be
        /// queried later. However, if we enter an elision scope, we have to
        /// later append the elided bound vars to the list and need to know what
        /// to append to.
        hir_id: HirId,

        s: ScopeRef<'a>,

        /// If this binder comes from a where clause, specify how it was created.
        /// This is used to diagnose inaccessible lifetimes in APIT:
        /// ```ignore (illustrative)
        /// fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {}
        /// ```
        where_bound_origin: Option<hir::PredicateOrigin>,
    },

    /// Lifetimes introduced by a fn are scoped to the call-site for that fn,
    /// if this is a fn body, otherwise the original definitions are used.
    /// Unspecified lifetimes are inferred, unless an elision scope is nested,
    /// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`.
    Body {
        id: hir::BodyId,
        s: ScopeRef<'a>,
    },

    /// Use a specific lifetime (if `Some`) or leave it unset (to be
    /// inferred in a function body or potentially error outside one),
    /// for the default choice of lifetime in a trait object type.
    ObjectLifetimeDefault {
        lifetime: Option<ResolvedArg>,
        s: ScopeRef<'a>,
    },

    /// When we have nested trait refs, we concatenate late bound vars for inner
    /// trait refs from outer ones. But we also need to include any HRTB
    /// lifetimes encountered when identifying the trait that an associated type
    /// is declared on.
    Supertrait {
        bound_vars: Vec<ty::BoundVariableKind>,
        s: ScopeRef<'a>,
    },

    TraitRefBoundary {
        s: ScopeRef<'a>,
    },

    /// Disallows capturing late-bound vars from parent scopes.
    ///
    /// This is necessary for something like `for<T> [(); { /* references T */ }]:`,
    /// since we don't do something more correct like replacing any captured
    /// late-bound vars with early-bound params in the const's own generics.
    LateBoundary {
        s: ScopeRef<'a>,
        what: &'static str,
    },

    Root {
        opt_parent_item: Option<LocalDefId>,
    },
}

#[derive(Copy, Clone, Debug)]
enum BinderScopeType {
    /// Any non-concatenating binder scopes.
    Normal,
    /// Within a syntactic trait ref, there may be multiple poly trait refs that
    /// are nested (under the `associated_type_bounds` feature). The binders of
    /// the inner poly trait refs are extended from the outer poly trait refs
    /// and don't increase the late bound depth. If you had
    /// `T: for<'a>  Foo<Bar: for<'b> Baz<'a, 'b>>`, then the `for<'b>` scope
    /// would be `Concatenating`. This also used in trait refs in where clauses
    /// where we have two binders `for<> T: for<> Foo` (I've intentionally left
    /// out any lifetimes because they aren't needed to show the two scopes).
    /// The inner `for<>` has a scope of `Concatenating`.
    Concatenating,
}

// A helper struct for debugging scopes without printing parent scopes
struct TruncatedScopeDebug<'a>(&'a Scope<'a>);

impl<'a> fmt::Debug for TruncatedScopeDebug<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.0 {
            Scope::Binder { bound_vars, scope_type, hir_id, where_bound_origin, s: _ } => f
                .debug_struct("Binder")
                .field("bound_vars", bound_vars)
                .field("scope_type", scope_type)
                .field("hir_id", hir_id)
                .field("where_bound_origin", where_bound_origin)
                .field("s", &"..")
                .finish(),
            Scope::Body { id, s: _ } => {
                f.debug_struct("Body").field("id", id).field("s", &"..").finish()
            }
            Scope::ObjectLifetimeDefault { lifetime, s: _ } => f
                .debug_struct("ObjectLifetimeDefault")
                .field("lifetime", lifetime)
                .field("s", &"..")
                .finish(),
            Scope::Supertrait { bound_vars, s: _ } => f
                .debug_struct("Supertrait")
                .field("bound_vars", bound_vars)
                .field("s", &"..")
                .finish(),
            Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(),
            Scope::LateBoundary { s: _, what } => {
                f.debug_struct("LateBoundary").field("what", what).finish()
            }
            Scope::Root { opt_parent_item } => {
                f.debug_struct("Root").field("opt_parent_item", &opt_parent_item).finish()
            }
        }
    }
}

type ScopeRef<'a> = &'a Scope<'a>;

pub(crate) fn provide(providers: &mut Providers) {
    *providers = Providers {
        resolve_bound_vars,

        named_variable_map: |tcx, id| &tcx.resolve_bound_vars(id).defs,
        is_late_bound_map,
        object_lifetime_default,
        late_bound_vars_map: |tcx, id| &tcx.resolve_bound_vars(id).late_bound_vars,

        ..*providers
    };
}

/// Computes the `ResolveBoundVars` map that contains data for an entire `Item`.
/// You should not read the result of this query directly, but rather use
/// `named_variable_map`, `is_late_bound_map`, etc.
#[instrument(level = "debug", skip(tcx))]
fn resolve_bound_vars(tcx: TyCtxt<'_>, local_def_id: hir::OwnerId) -> ResolveBoundVars {
    let mut named_variable_map =
        NamedVarMap { defs: Default::default(), late_bound_vars: Default::default() };
    let mut visitor = BoundVarContext {
        tcx,
        map: &mut named_variable_map,
        scope: &Scope::Root { opt_parent_item: None },
    };
    match tcx.hir_owner_node(local_def_id) {
        hir::OwnerNode::Item(item) => visitor.visit_item(item),
        hir::OwnerNode::ForeignItem(item) => visitor.visit_foreign_item(item),
        hir::OwnerNode::TraitItem(item) => {
            let scope =
                Scope::Root { opt_parent_item: Some(tcx.local_parent(item.owner_id.def_id)) };
            visitor.scope = &scope;
            visitor.visit_trait_item(item)
        }
        hir::OwnerNode::ImplItem(item) => {
            let scope =
                Scope::Root { opt_parent_item: Some(tcx.local_parent(item.owner_id.def_id)) };
            visitor.scope = &scope;
            visitor.visit_impl_item(item)
        }
        hir::OwnerNode::Crate(_) => {}
        hir::OwnerNode::Synthetic => unreachable!(),
    }

    let defs = named_variable_map.defs.into_sorted_stable_ord();
    let late_bound_vars = named_variable_map.late_bound_vars.into_sorted_stable_ord();
    let rl = ResolveBoundVars {
        defs: SortedMap::from_presorted_elements(defs),
        late_bound_vars: SortedMap::from_presorted_elements(late_bound_vars),
    };

    debug!(?rl.defs);
    debug!(?rl.late_bound_vars);
    rl
}

fn late_arg_as_bound_arg<'tcx>(
    tcx: TyCtxt<'tcx>,
    arg: &ResolvedArg,
    param: &GenericParam<'tcx>,
) -> ty::BoundVariableKind {
    match arg {
        ResolvedArg::LateBound(_, _, def_id) => {
            let def_id = def_id.to_def_id();
            let name = tcx.item_name(def_id);
            match param.kind {
                GenericParamKind::Lifetime { .. } => {
                    ty::BoundVariableKind::Region(ty::BrNamed(def_id, name))
                }
                GenericParamKind::Type { .. } => {
                    ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id, name))
                }
                GenericParamKind::Const { .. } => ty::BoundVariableKind::Const,
            }
        }
        _ => bug!("{:?} is not a late argument", arg),
    }
}

impl<'a, 'tcx> BoundVarContext<'a, 'tcx> {
    /// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref.
    fn poly_trait_ref_binder_info(&mut self) -> (Vec<ty::BoundVariableKind>, BinderScopeType) {
        let mut scope = self.scope;
        let mut supertrait_bound_vars = vec![];
        loop {
            match scope {
                Scope::Body { .. } | Scope::Root { .. } => {
                    break (vec![], BinderScopeType::Normal);
                }

                Scope::ObjectLifetimeDefault { s, .. } | Scope::LateBoundary { s, .. } => {
                    scope = s;
                }

                Scope::Supertrait { s, bound_vars } => {
                    supertrait_bound_vars = bound_vars.clone();
                    scope = s;
                }

                Scope::TraitRefBoundary { .. } => {
                    // We should only see super trait lifetimes if there is a `Binder` above
                    // though this may happen when we call `poly_trait_ref_binder_info` with
                    // an (erroneous, #113423) associated return type bound in an impl header.
                    if !supertrait_bound_vars.is_empty() {
                        self.tcx.dcx().delayed_bug(format!(
                            "found supertrait lifetimes without a binder to append \
                                them to: {supertrait_bound_vars:?}"
                        ));
                    }
                    break (vec![], BinderScopeType::Normal);
                }

                Scope::Binder { hir_id, .. } => {
                    // Nested poly trait refs have the binders concatenated
                    let mut full_binders =
                        self.map.late_bound_vars.entry(hir_id.local_id).or_default().clone();
                    full_binders.extend(supertrait_bound_vars);
                    break (full_binders, BinderScopeType::Concatenating);
                }
            }
        }
    }

    fn visit_poly_trait_ref_inner(
        &mut self,
        trait_ref: &'tcx hir::PolyTraitRef<'tcx>,
        non_lifetime_binder_allowed: NonLifetimeBinderAllowed,
    ) {
        debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref);

        let (mut binders, scope_type) = self.poly_trait_ref_binder_info();

        let initial_bound_vars = binders.len() as u32;
        let mut bound_vars: FxIndexMap<LocalDefId, ResolvedArg> = FxIndexMap::default();
        let binders_iter =
            trait_ref.bound_generic_params.iter().enumerate().map(|(late_bound_idx, param)| {
                let pair = ResolvedArg::late(initial_bound_vars + late_bound_idx as u32, param);
                let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
                bound_vars.insert(pair.0, pair.1);
                r
            });
        binders.extend(binders_iter);

        if let NonLifetimeBinderAllowed::Deny(where_) = non_lifetime_binder_allowed {
            deny_non_region_late_bound(self.tcx, &mut bound_vars, where_);
        }

        debug!(?binders);
        self.record_late_bound_vars(trait_ref.trait_ref.hir_ref_id, binders);

        // Always introduce a scope here, even if this is in a where clause and
        // we introduced the binders around the bounded Ty. In that case, we
        // just reuse the concatenation functionality also present in nested trait
        // refs.
        let scope = Scope::Binder {
            hir_id: trait_ref.trait_ref.hir_ref_id,
            bound_vars,
            s: self.scope,
            scope_type,
            where_bound_origin: None,
        };
        self.with(scope, |this| {
            walk_list!(this, visit_generic_param, trait_ref.bound_generic_params);
            this.visit_trait_ref(&trait_ref.trait_ref);
        });
    }
}

enum NonLifetimeBinderAllowed {
    Deny(&'static str),
    Allow,
}

impl<'a, 'tcx> Visitor<'tcx> for BoundVarContext<'a, 'tcx> {
    type NestedFilter = nested_filter::OnlyBodies;

    fn nested_visit_map(&mut self) -> Self::Map {
        self.tcx.hir()
    }

    fn visit_nested_body(&mut self, body: hir::BodyId) {
        let body = self.tcx.hir().body(body);
        self.with(Scope::Body { id: body.id(), s: self.scope }, |this| {
            this.visit_body(body);
        });
    }

    fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) {
        if let hir::ExprKind::Closure(hir::Closure {
            binder, bound_generic_params, fn_decl, ..
        }) = e.kind
        {
            if let &hir::ClosureBinder::For { span: for_sp, .. } = binder {
                fn span_of_infer(ty: &hir::Ty<'_>) -> Option<Span> {
                    /// Look for `_` anywhere in the signature of a `for<> ||` closure.
                    /// This is currently disallowed.
                    struct FindInferInClosureWithBinder;
                    impl<'v> Visitor<'v> for FindInferInClosureWithBinder {
                        type Result = ControlFlow<Span>;
                        fn visit_ty(&mut self, t: &'v hir::Ty<'v>) -> Self::Result {
                            if matches!(t.kind, hir::TyKind::Infer) {
                                ControlFlow::Break(t.span)
                            } else {
                                intravisit::walk_ty(self, t)
                            }
                        }
                    }
                    FindInferInClosureWithBinder.visit_ty(ty).break_value()
                }

                let infer_in_rt_sp = match fn_decl.output {
                    hir::FnRetTy::DefaultReturn(sp) => Some(sp),
                    hir::FnRetTy::Return(ty) => span_of_infer(ty),
                };

                let infer_spans = fn_decl
                    .inputs
                    .into_iter()
                    .filter_map(span_of_infer)
                    .chain(infer_in_rt_sp)
                    .collect::<Vec<_>>();

                if !infer_spans.is_empty() {
                    self.tcx
                        .dcx()
                        .emit_err(errors::ClosureImplicitHrtb { spans: infer_spans, for_sp });
                }
            }

            let (mut bound_vars, binders): (FxIndexMap<LocalDefId, ResolvedArg>, Vec<_>) =
                bound_generic_params
                    .iter()
                    .enumerate()
                    .map(|(late_bound_idx, param)| {
                        let pair = ResolvedArg::late(late_bound_idx as u32, param);
                        let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
                        (pair, r)
                    })
                    .unzip();

            deny_non_region_late_bound(self.tcx, &mut bound_vars, "closures");

            self.record_late_bound_vars(e.hir_id, binders);
            let scope = Scope::Binder {
                hir_id: e.hir_id,
                bound_vars,
                s: self.scope,
                scope_type: BinderScopeType::Normal,
                where_bound_origin: None,
            };

            self.with(scope, |this| {
                // a closure has no bounds, so everything
                // contained within is scoped within its binder.
                intravisit::walk_expr(this, e)
            });
        } else {
            intravisit::walk_expr(self, e)
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_opaque_ty(&mut self, opaque: &'tcx rustc_hir::OpaqueTy<'tcx>) {
        // We want to start our early-bound indices at the end of the parent scope,
        // not including any parent `impl Trait`s.
        let mut bound_vars = FxIndexMap::default();
        debug!(?opaque.generics.params);
        for param in opaque.generics.params {
            let (def_id, reg) = ResolvedArg::early(param);
            bound_vars.insert(def_id, reg);
        }

        let hir_id = self.tcx.local_def_id_to_hir_id(opaque.def_id);
        let scope = Scope::Binder {
            hir_id,
            bound_vars,
            s: self.scope,
            scope_type: BinderScopeType::Normal,
            where_bound_origin: None,
        };
        self.with(scope, |this| {
            let scope = Scope::TraitRefBoundary { s: this.scope };
            this.with(scope, |this| intravisit::walk_opaque_ty(this, opaque))
        })
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
        match &item.kind {
            hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => {
                if let Some(of_trait) = of_trait {
                    self.record_late_bound_vars(of_trait.hir_ref_id, Vec::default());
                }
            }
            _ => {}
        }
        match item.kind {
            hir::ItemKind::Fn(_, generics, _) => {
                self.visit_early_late(item.hir_id(), generics, |this| {
                    intravisit::walk_item(this, item);
                });
            }

            hir::ItemKind::ExternCrate(_)
            | hir::ItemKind::Use(..)
            | hir::ItemKind::Macro(..)
            | hir::ItemKind::Mod(..)
            | hir::ItemKind::ForeignMod { .. }
            | hir::ItemKind::Static(..)
            | hir::ItemKind::GlobalAsm(..) => {
                // These sorts of items have no lifetime parameters at all.
                intravisit::walk_item(self, item);
            }
            hir::ItemKind::TyAlias(_, generics)
            | hir::ItemKind::Const(_, generics, _)
            | hir::ItemKind::Enum(_, generics)
            | hir::ItemKind::Struct(_, generics)
            | hir::ItemKind::Union(_, generics)
            | hir::ItemKind::Trait(_, _, generics, ..)
            | hir::ItemKind::TraitAlias(generics, ..)
            | hir::ItemKind::Impl(&hir::Impl { generics, .. }) => {
                // These kinds of items have only early-bound lifetime parameters.
                self.visit_early(item.hir_id(), generics, |this| intravisit::walk_item(this, item));
            }
        }
    }

    fn visit_precise_capturing_arg(
        &mut self,
        arg: &'tcx hir::PreciseCapturingArg<'tcx>,
    ) -> Self::Result {
        match *arg {
            hir::PreciseCapturingArg::Lifetime(lt) => match lt.res {
                LifetimeName::Param(def_id) => {
                    self.resolve_lifetime_ref(def_id, lt);
                }
                LifetimeName::Error => {}
                LifetimeName::ImplicitObjectLifetimeDefault
                | LifetimeName::Infer
                | LifetimeName::Static => {
                    self.tcx.dcx().emit_err(errors::BadPreciseCapture {
                        span: lt.ident.span,
                        kind: "lifetime",
                        found: format!("`{}`", lt.ident.name),
                    });
                }
            },
            hir::PreciseCapturingArg::Param(param) => match param.res {
                Res::Def(DefKind::TyParam | DefKind::ConstParam, def_id)
                | Res::SelfTyParam { trait_: def_id } => {
                    self.resolve_type_ref(def_id.expect_local(), param.hir_id);
                }
                Res::SelfTyAlias { alias_to, .. } => {
                    self.tcx.dcx().emit_err(errors::PreciseCaptureSelfAlias {
                        span: param.ident.span,
                        self_span: self.tcx.def_span(alias_to),
                        what: self.tcx.def_descr(alias_to),
                    });
                }
                res => {
                    self.tcx.dcx().span_delayed_bug(
                        param.ident.span,
                        format!("expected type or const param, found {res:?}"),
                    );
                }
            },
        }
    }

    fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
        match item.kind {
            hir::ForeignItemKind::Fn(_, _, generics) => {
                self.visit_early_late(item.hir_id(), generics, |this| {
                    intravisit::walk_foreign_item(this, item);
                })
            }
            hir::ForeignItemKind::Static(..) => {
                intravisit::walk_foreign_item(self, item);
            }
            hir::ForeignItemKind::Type => {
                intravisit::walk_foreign_item(self, item);
            }
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
        match ty.kind {
            hir::TyKind::BareFn(c) => {
                let (mut bound_vars, binders): (FxIndexMap<LocalDefId, ResolvedArg>, Vec<_>) = c
                    .generic_params
                    .iter()
                    .enumerate()
                    .map(|(late_bound_idx, param)| {
                        let pair = ResolvedArg::late(late_bound_idx as u32, param);
                        let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
                        (pair, r)
                    })
                    .unzip();

                deny_non_region_late_bound(self.tcx, &mut bound_vars, "function pointer types");

                self.record_late_bound_vars(ty.hir_id, binders);
                let scope = Scope::Binder {
                    hir_id: ty.hir_id,
                    bound_vars,
                    s: self.scope,
                    scope_type: BinderScopeType::Normal,
                    where_bound_origin: None,
                };
                self.with(scope, |this| {
                    // a bare fn has no bounds, so everything
                    // contained within is scoped within its binder.
                    intravisit::walk_ty(this, ty);
                });
            }
            hir::TyKind::TraitObject(bounds, lifetime, _) => {
                debug!(?bounds, ?lifetime, "TraitObject");
                let scope = Scope::TraitRefBoundary { s: self.scope };
                self.with(scope, |this| {
                    for (bound, _) in bounds {
                        this.visit_poly_trait_ref_inner(
                            bound,
                            NonLifetimeBinderAllowed::Deny("trait object types"),
                        );
                    }
                });
                match lifetime.res {
                    LifetimeName::ImplicitObjectLifetimeDefault => {
                        // If the user does not write *anything*, we
                        // use the object lifetime defaulting
                        // rules. So e.g., `Box<dyn Debug>` becomes
                        // `Box<dyn Debug + 'static>`.
                        self.resolve_object_lifetime_default(lifetime)
                    }
                    LifetimeName::Infer => {
                        // If the user writes `'_`, we use the *ordinary* elision
                        // rules. So the `'_` in e.g., `Box<dyn Debug + '_>` will be
                        // resolved the same as the `'_` in `&'_ Foo`.
                        //
                        // cc #48468
                    }
                    LifetimeName::Param(..) | LifetimeName::Static => {
                        // If the user wrote an explicit name, use that.
                        self.visit_lifetime(lifetime);
                    }
                    LifetimeName::Error => {}
                }
            }
            hir::TyKind::Ref(lifetime_ref, ref mt) => {
                self.visit_lifetime(lifetime_ref);
                let scope = Scope::ObjectLifetimeDefault {
                    lifetime: self.map.defs.get(&lifetime_ref.hir_id.local_id).cloned(),
                    s: self.scope,
                };
                self.with(scope, |this| this.visit_ty(mt.ty));
            }
            hir::TyKind::OpaqueDef(opaque_ty, lifetimes) => {
                self.visit_opaque_ty(opaque_ty);

                // Resolve the lifetimes in the bounds to the lifetime defs in the generics.
                // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
                // `type MyAnonTy<'b> = impl MyTrait<'b>;`
                //                 ^                  ^ this gets resolved in the scope of
                //                                      the opaque_ty generics

                // Resolve the lifetimes that are applied to the opaque type.
                // These are resolved in the current scope.
                // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
                // `fn foo<'a>() -> MyAnonTy<'a> { ... }`
                //          ^                 ^this gets resolved in the current scope
                for lifetime in lifetimes {
                    let hir::GenericArg::Lifetime(lifetime) = lifetime else { continue };
                    self.visit_lifetime(lifetime);

                    // Check for predicates like `impl for<'a> Trait<impl OtherTrait<'a>>`
                    // and ban them. Type variables instantiated inside binders aren't
                    // well-supported at the moment, so this doesn't work.
                    // In the future, this should be fixed and this error should be removed.
                    let def = self.map.defs.get(&lifetime.hir_id.local_id).copied();
                    let Some(ResolvedArg::LateBound(_, _, lifetime_def_id)) = def else { continue };
                    let lifetime_hir_id = self.tcx.local_def_id_to_hir_id(lifetime_def_id);

                    let bad_place = match self.tcx.hir_node(self.tcx.parent_hir_id(lifetime_hir_id))
                    {
                        // Opaques do not declare their own lifetimes, so if a lifetime comes from an opaque
                        // it must be a reified late-bound lifetime from a trait goal.
                        hir::Node::OpaqueTy(_) => "higher-ranked lifetime from outer `impl Trait`",
                        // Other items are fine.
                        hir::Node::Item(_) | hir::Node::TraitItem(_) | hir::Node::ImplItem(_) => {
                            continue;
                        }
                        hir::Node::Ty(hir::Ty { kind: hir::TyKind::BareFn(_), .. }) => {
                            "higher-ranked lifetime from function pointer"
                        }
                        hir::Node::Ty(hir::Ty { kind: hir::TyKind::TraitObject(..), .. }) => {
                            "higher-ranked lifetime from `dyn` type"
                        }
                        _ => "higher-ranked lifetime",
                    };

                    let (span, label) = if lifetime.ident.span == self.tcx.def_span(lifetime_def_id)
                    {
                        (opaque_ty.span, Some(opaque_ty.span))
                    } else {
                        (lifetime.ident.span, None)
                    };

                    // Ensure that the parent of the def is an item, not HRTB
                    self.tcx.dcx().emit_err(errors::OpaqueCapturesHigherRankedLifetime {
                        span,
                        label,
                        decl_span: self.tcx.def_span(lifetime_def_id),
                        bad_place,
                    });
                    self.uninsert_lifetime_on_error(lifetime, def.unwrap());
                }
            }
            _ => intravisit::walk_ty(self, ty),
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_pattern_type_pattern(&mut self, p: &'tcx hir::Pat<'tcx>) {
        intravisit::walk_pat(self, p)
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
        use self::hir::TraitItemKind::*;
        match trait_item.kind {
            Fn(_, _) => {
                self.visit_early_late(trait_item.hir_id(), trait_item.generics, |this| {
                    intravisit::walk_trait_item(this, trait_item)
                });
            }
            Type(bounds, ty) => {
                self.visit_early(trait_item.hir_id(), trait_item.generics, |this| {
                    this.visit_generics(trait_item.generics);
                    for bound in bounds {
                        this.visit_param_bound(bound);
                    }
                    if let Some(ty) = ty {
                        this.visit_ty(ty);
                    }
                })
            }
            Const(_, _) => self.visit_early(trait_item.hir_id(), trait_item.generics, |this| {
                intravisit::walk_trait_item(this, trait_item)
            }),
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
        use self::hir::ImplItemKind::*;
        match impl_item.kind {
            Fn(..) => self.visit_early_late(impl_item.hir_id(), impl_item.generics, |this| {
                intravisit::walk_impl_item(this, impl_item)
            }),
            Type(ty) => self.visit_early(impl_item.hir_id(), impl_item.generics, |this| {
                this.visit_generics(impl_item.generics);
                this.visit_ty(ty);
            }),
            Const(_, _) => self.visit_early(impl_item.hir_id(), impl_item.generics, |this| {
                intravisit::walk_impl_item(this, impl_item)
            }),
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
        match lifetime_ref.res {
            hir::LifetimeName::Static => {
                self.insert_lifetime(lifetime_ref, ResolvedArg::StaticLifetime)
            }
            hir::LifetimeName::Param(param_def_id) => {
                self.resolve_lifetime_ref(param_def_id, lifetime_ref)
            }
            // If we've already reported an error, just ignore `lifetime_ref`.
            hir::LifetimeName::Error => {}
            // Those will be resolved by typechecking.
            hir::LifetimeName::ImplicitObjectLifetimeDefault | hir::LifetimeName::Infer => {}
        }
    }

    fn visit_path(&mut self, path: &hir::Path<'tcx>, hir_id: HirId) {
        for (i, segment) in path.segments.iter().enumerate() {
            let depth = path.segments.len() - i - 1;
            if let Some(args) = segment.args {
                self.visit_segment_args(path.res, depth, args);
            }
        }
        if let Res::Def(DefKind::TyParam | DefKind::ConstParam, param_def_id) = path.res {
            self.resolve_type_ref(param_def_id.expect_local(), hir_id);
        }
    }

    fn visit_fn(
        &mut self,
        fk: intravisit::FnKind<'tcx>,
        fd: &'tcx hir::FnDecl<'tcx>,
        body_id: hir::BodyId,
        _: Span,
        def_id: LocalDefId,
    ) {
        let output = match fd.output {
            hir::FnRetTy::DefaultReturn(_) => None,
            hir::FnRetTy::Return(ty) => Some(ty),
        };
        if let Some(ty) = output
            && let hir::TyKind::InferDelegation(sig_id, _) = ty.kind
        {
            let bound_vars: Vec<_> =
                self.tcx.fn_sig(sig_id).skip_binder().bound_vars().iter().collect();
            let hir_id = self.tcx.local_def_id_to_hir_id(def_id);
            self.map.late_bound_vars.insert(hir_id.local_id, bound_vars);
        }
        self.visit_fn_like_elision(fd.inputs, output, matches!(fk, intravisit::FnKind::Closure));
        intravisit::walk_fn_kind(self, fk);
        self.visit_nested_body(body_id)
    }

    fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
        let scope = Scope::TraitRefBoundary { s: self.scope };
        self.with(scope, |this| {
            walk_list!(this, visit_generic_param, generics.params);
            walk_list!(this, visit_where_predicate, generics.predicates);
        })
    }

    fn visit_where_predicate(&mut self, predicate: &'tcx hir::WherePredicate<'tcx>) {
        match predicate {
            &hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
                hir_id,
                bounded_ty,
                bounds,
                bound_generic_params,
                origin,
                ..
            }) => {
                let (bound_vars, binders): (FxIndexMap<LocalDefId, ResolvedArg>, Vec<_>) =
                    bound_generic_params
                        .iter()
                        .enumerate()
                        .map(|(late_bound_idx, param)| {
                            let pair = ResolvedArg::late(late_bound_idx as u32, param);
                            let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
                            (pair, r)
                        })
                        .unzip();

                self.record_late_bound_vars(hir_id, binders);

                // If this is an RTN type in the self type, then append those to the binder.
                self.try_append_return_type_notation_params(hir_id, bounded_ty);

                // Even if there are no lifetimes defined here, we still wrap it in a binder
                // scope. If there happens to be a nested poly trait ref (an error), that
                // will be `Concatenating` anyways, so we don't have to worry about the depth
                // being wrong.
                let scope = Scope::Binder {
                    hir_id,
                    bound_vars,
                    s: self.scope,
                    scope_type: BinderScopeType::Normal,
                    where_bound_origin: Some(origin),
                };
                self.with(scope, |this| {
                    walk_list!(this, visit_generic_param, bound_generic_params);
                    this.visit_ty(bounded_ty);
                    walk_list!(this, visit_param_bound, bounds);
                })
            }
            &hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
                lifetime,
                bounds,
                ..
            }) => {
                self.visit_lifetime(lifetime);
                walk_list!(self, visit_param_bound, bounds);
            }
            &hir::WherePredicate::EqPredicate(hir::WhereEqPredicate { lhs_ty, rhs_ty, .. }) => {
                self.visit_ty(lhs_ty);
                self.visit_ty(rhs_ty);
            }
        }
    }

    fn visit_poly_trait_ref(&mut self, trait_ref: &'tcx hir::PolyTraitRef<'tcx>) {
        self.visit_poly_trait_ref_inner(trait_ref, NonLifetimeBinderAllowed::Allow);
    }

    fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
        self.with(Scope::LateBoundary { s: self.scope, what: "constant" }, |this| {
            intravisit::walk_anon_const(this, c);
        });
    }

    fn visit_generic_param(&mut self, p: &'tcx GenericParam<'tcx>) {
        match p.kind {
            GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
                self.resolve_type_ref(p.def_id, p.hir_id);
            }
            GenericParamKind::Lifetime { .. } => {
                // No need to resolve lifetime params, we don't use them for things
                // like implicit `?Sized` or const-param-has-ty predicates.
            }
        }

        match p.kind {
            GenericParamKind::Lifetime { .. } => {}
            GenericParamKind::Type { default, .. } => {
                if let Some(ty) = default {
                    self.visit_ty(ty);
                }
            }
            GenericParamKind::Const { ty, default, .. } => {
                self.visit_ty(ty);
                if let Some(default) = default {
                    self.visit_const_arg(default);
                }
            }
        }
    }
}

fn object_lifetime_default(tcx: TyCtxt<'_>, param_def_id: LocalDefId) -> ObjectLifetimeDefault {
    debug_assert_eq!(tcx.def_kind(param_def_id), DefKind::TyParam);
    let hir::Node::GenericParam(param) = tcx.hir_node_by_def_id(param_def_id) else {
        bug!("expected GenericParam for object_lifetime_default");
    };
    match param.source {
        hir::GenericParamSource::Generics => {
            let parent_def_id = tcx.local_parent(param_def_id);
            let generics = tcx.hir().get_generics(parent_def_id).unwrap();
            let param_hir_id = tcx.local_def_id_to_hir_id(param_def_id);
            let param = generics.params.iter().find(|p| p.hir_id == param_hir_id).unwrap();

            // Scan the bounds and where-clauses on parameters to extract bounds
            // of the form `T:'a` so as to determine the `ObjectLifetimeDefault`
            // for each type parameter.
            match param.kind {
                GenericParamKind::Type { .. } => {
                    let mut set = Set1::Empty;

                    // Look for `type: ...` where clauses.
                    for bound in generics.bounds_for_param(param_def_id) {
                        // Ignore `for<'a> type: ...` as they can change what
                        // lifetimes mean (although we could "just" handle it).
                        if !bound.bound_generic_params.is_empty() {
                            continue;
                        }

                        for bound in bound.bounds {
                            if let hir::GenericBound::Outlives(lifetime) = bound {
                                set.insert(lifetime.res);
                            }
                        }
                    }

                    match set {
                        Set1::Empty => ObjectLifetimeDefault::Empty,
                        Set1::One(hir::LifetimeName::Static) => ObjectLifetimeDefault::Static,
                        Set1::One(hir::LifetimeName::Param(param_def_id)) => {
                            ObjectLifetimeDefault::Param(param_def_id.to_def_id())
                        }
                        _ => ObjectLifetimeDefault::Ambiguous,
                    }
                }
                _ => {
                    bug!("object_lifetime_default_raw must only be called on a type parameter")
                }
            }
        }
        hir::GenericParamSource::Binder => ObjectLifetimeDefault::Empty,
    }
}

impl<'a, 'tcx> BoundVarContext<'a, 'tcx> {
    fn with<F>(&mut self, wrap_scope: Scope<'_>, f: F)
    where
        F: for<'b> FnOnce(&mut BoundVarContext<'b, 'tcx>),
    {
        let BoundVarContext { tcx, map, .. } = self;
        let mut this = BoundVarContext { tcx: *tcx, map, scope: &wrap_scope };
        let span = debug_span!("scope", scope = ?TruncatedScopeDebug(this.scope));
        {
            let _enter = span.enter();
            f(&mut this);
        }
    }

    fn record_late_bound_vars(&mut self, hir_id: HirId, binder: Vec<ty::BoundVariableKind>) {
        if let Some(old) = self.map.late_bound_vars.insert(hir_id.local_id, binder) {
            bug!(
                "overwrote bound vars for {hir_id:?}:\nold={old:?}\nnew={:?}",
                self.map.late_bound_vars[&hir_id.local_id]
            )
        }
    }

    /// Visits self by adding a scope and handling recursive walk over the contents with `walk`.
    ///
    /// Handles visiting fns and methods. These are a bit complicated because we must distinguish
    /// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear
    /// within type bounds; those are early bound lifetimes, and the rest are late bound.
    ///
    /// For example:
    ///
    ///    fn foo<'a,'b,'c,T:Trait<'b>>(...)
    ///
    /// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound
    /// lifetimes may be interspersed together.
    ///
    /// If early bound lifetimes are present, we separate them into their own list (and likewise
    /// for late bound). They will be numbered sequentially, starting from the lowest index that is
    /// already in scope (for a fn item, that will be 0, but for a method it might not be). Late
    /// bound lifetimes are resolved by name and associated with a binder ID (`binder_id`), so the
    /// ordering is not important there.
    fn visit_early_late<F>(&mut self, hir_id: HirId, generics: &'tcx hir::Generics<'tcx>, walk: F)
    where
        F: for<'b, 'c> FnOnce(&'b mut BoundVarContext<'c, 'tcx>),
    {
        let mut named_late_bound_vars = 0;
        let bound_vars: FxIndexMap<LocalDefId, ResolvedArg> = generics
            .params
            .iter()
            .map(|param| match param.kind {
                GenericParamKind::Lifetime { .. } => {
                    if self.tcx.is_late_bound(param.hir_id) {
                        let late_bound_idx = named_late_bound_vars;
                        named_late_bound_vars += 1;
                        ResolvedArg::late(late_bound_idx, param)
                    } else {
                        ResolvedArg::early(param)
                    }
                }
                GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
                    ResolvedArg::early(param)
                }
            })
            .collect();

        let binders: Vec<_> = generics
            .params
            .iter()
            .filter(|param| {
                matches!(param.kind, GenericParamKind::Lifetime { .. })
                    && self.tcx.is_late_bound(param.hir_id)
            })
            .enumerate()
            .map(|(late_bound_idx, param)| {
                let pair = ResolvedArg::late(late_bound_idx as u32, param);
                late_arg_as_bound_arg(self.tcx, &pair.1, param)
            })
            .collect();
        self.record_late_bound_vars(hir_id, binders);
        let scope = Scope::Binder {
            hir_id,
            bound_vars,
            s: self.scope,
            scope_type: BinderScopeType::Normal,
            where_bound_origin: None,
        };
        self.with(scope, walk);
    }

    fn visit_early<F>(&mut self, hir_id: HirId, generics: &'tcx hir::Generics<'tcx>, walk: F)
    where
        F: for<'b, 'c> FnOnce(&'b mut BoundVarContext<'c, 'tcx>),
    {
        let bound_vars = generics.params.iter().map(ResolvedArg::early).collect();
        self.record_late_bound_vars(hir_id, vec![]);
        let scope = Scope::Binder {
            hir_id,
            bound_vars,
            s: self.scope,
            scope_type: BinderScopeType::Normal,
            where_bound_origin: None,
        };
        self.with(scope, |this| {
            let scope = Scope::TraitRefBoundary { s: this.scope };
            this.with(scope, walk)
        });
    }

    #[instrument(level = "debug", skip(self))]
    fn resolve_lifetime_ref(
        &mut self,
        region_def_id: LocalDefId,
        lifetime_ref: &'tcx hir::Lifetime,
    ) {
        // Walk up the scope chain, tracking the number of fn scopes
        // that we pass through, until we find a lifetime with the
        // given name or we run out of scopes.
        // search.
        let mut late_depth = 0;
        let mut scope = self.scope;
        let mut outermost_body = None;
        let mut crossed_late_boundary = None;
        let result = loop {
            match *scope {
                Scope::Body { id, s } => {
                    outermost_body = Some(id);
                    scope = s;
                }

                Scope::Root { opt_parent_item } => {
                    if let Some(parent_item) = opt_parent_item
                        && let parent_generics = self.tcx.generics_of(parent_item)
                        && parent_generics
                            .param_def_id_to_index(self.tcx, region_def_id.to_def_id())
                            .is_some()
                    {
                        break Some(ResolvedArg::EarlyBound(region_def_id));
                    }
                    break None;
                }

                Scope::Binder { ref bound_vars, scope_type, s, where_bound_origin, .. } => {
                    if let Some(&def) = bound_vars.get(&region_def_id) {
                        break Some(def.shifted(late_depth));
                    }
                    match scope_type {
                        BinderScopeType::Normal => late_depth += 1,
                        BinderScopeType::Concatenating => {}
                    }
                    // Fresh lifetimes in APIT used to be allowed in async fns and forbidden in
                    // regular fns.
                    if let Some(hir::PredicateOrigin::ImplTrait) = where_bound_origin
                        && let hir::LifetimeName::Param(param_id) = lifetime_ref.res
                        && let Some(generics) =
                            self.tcx.hir().get_generics(self.tcx.local_parent(param_id))
                        && let Some(param) = generics.params.iter().find(|p| p.def_id == param_id)
                        && param.is_elided_lifetime()
                        && !self.tcx.asyncness(lifetime_ref.hir_id.owner.def_id).is_async()
                        && !self.tcx.features().anonymous_lifetime_in_impl_trait
                    {
                        let mut diag: rustc_errors::Diag<'_> = rustc_session::parse::feature_err(
                            &self.tcx.sess,
                            sym::anonymous_lifetime_in_impl_trait,
                            lifetime_ref.ident.span,
                            "anonymous lifetimes in `impl Trait` are unstable",
                        );

                        if let Some(generics) =
                            self.tcx.hir().get_generics(lifetime_ref.hir_id.owner.def_id)
                        {
                            let new_param_sugg =
                                if let Some(span) = generics.span_for_lifetime_suggestion() {
                                    (span, "'a, ".to_owned())
                                } else {
                                    (generics.span, "<'a>".to_owned())
                                };

                            let lifetime_sugg = lifetime_ref.suggestion("'a");
                            let suggestions = vec![lifetime_sugg, new_param_sugg];

                            diag.span_label(
                                lifetime_ref.ident.span,
                                "expected named lifetime parameter",
                            );
                            diag.multipart_suggestion(
                                "consider introducing a named lifetime parameter",
                                suggestions,
                                rustc_errors::Applicability::MaybeIncorrect,
                            );
                        }

                        diag.emit();
                        return;
                    }
                    scope = s;
                }

                Scope::ObjectLifetimeDefault { s, .. }
                | Scope::Supertrait { s, .. }
                | Scope::TraitRefBoundary { s, .. } => {
                    scope = s;
                }

                Scope::LateBoundary { s, what } => {
                    crossed_late_boundary = Some(what);
                    scope = s;
                }
            }
        };

        if let Some(mut def) = result {
            if let ResolvedArg::EarlyBound(..) = def {
                // Do not free early-bound regions, only late-bound ones.
            } else if let ResolvedArg::LateBound(_, _, param_def_id) = def
                && let Some(what) = crossed_late_boundary
            {
                let use_span = lifetime_ref.ident.span;
                let def_span = self.tcx.def_span(param_def_id);
                let guar = match self.tcx.def_kind(param_def_id) {
                    DefKind::LifetimeParam => {
                        self.tcx.dcx().emit_err(errors::CannotCaptureLateBound::Lifetime {
                            use_span,
                            def_span,
                            what,
                        })
                    }
                    kind => span_bug!(
                        use_span,
                        "did not expect to resolve lifetime to {}",
                        kind.descr(param_def_id.to_def_id())
                    ),
                };
                def = ResolvedArg::Error(guar);
            } else if let Some(body_id) = outermost_body {
                let fn_id = self.tcx.hir().body_owner(body_id);
                match self.tcx.hir_node(fn_id) {
                    Node::Item(hir::Item { owner_id, kind: hir::ItemKind::Fn(..), .. })
                    | Node::TraitItem(hir::TraitItem {
                        owner_id,
                        kind: hir::TraitItemKind::Fn(..),
                        ..
                    })
                    | Node::ImplItem(hir::ImplItem {
                        owner_id,
                        kind: hir::ImplItemKind::Fn(..),
                        ..
                    }) => {
                        def = ResolvedArg::Free(owner_id.def_id, def.id().unwrap());
                    }
                    Node::Expr(hir::Expr { kind: hir::ExprKind::Closure(closure), .. }) => {
                        def = ResolvedArg::Free(closure.def_id, def.id().unwrap());
                    }
                    _ => {}
                }
            }

            self.insert_lifetime(lifetime_ref, def);
            return;
        }

        // We may fail to resolve higher-ranked lifetimes that are mentioned by APIT.
        // AST-based resolution does not care for impl-trait desugaring, which are the
        // responsibility of lowering. This may create a mismatch between the resolution
        // AST found (`region_def_id`) which points to HRTB, and what HIR allows.
        // ```
        // fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {}
        // ```
        //
        // In such case, walk back the binders to diagnose it properly.
        let mut scope = self.scope;
        loop {
            match *scope {
                Scope::Binder {
                    where_bound_origin: Some(hir::PredicateOrigin::ImplTrait), ..
                } => {
                    self.tcx.dcx().emit_err(errors::LateBoundInApit::Lifetime {
                        span: lifetime_ref.ident.span,
                        param_span: self.tcx.def_span(region_def_id),
                    });
                    return;
                }
                Scope::Root { .. } => break,
                Scope::Binder { s, .. }
                | Scope::Body { s, .. }
                | Scope::ObjectLifetimeDefault { s, .. }
                | Scope::Supertrait { s, .. }
                | Scope::TraitRefBoundary { s, .. }
                | Scope::LateBoundary { s, .. } => {
                    scope = s;
                }
            }
        }

        self.tcx.dcx().span_delayed_bug(
            lifetime_ref.ident.span,
            format!("Could not resolve {:?} in scope {:#?}", lifetime_ref, self.scope,),
        );
    }

    fn resolve_type_ref(&mut self, param_def_id: LocalDefId, hir_id: HirId) {
        // Walk up the scope chain, tracking the number of fn scopes
        // that we pass through, until we find a lifetime with the
        // given name or we run out of scopes.
        // search.
        let mut late_depth = 0;
        let mut scope = self.scope;
        let mut crossed_late_boundary = None;

        let result = loop {
            match *scope {
                Scope::Body { s, .. } => {
                    scope = s;
                }

                Scope::Root { opt_parent_item } => {
                    if let Some(parent_item) = opt_parent_item
                        && let parent_generics = self.tcx.generics_of(parent_item)
                        && parent_generics
                            .param_def_id_to_index(self.tcx, param_def_id.to_def_id())
                            .is_some()
                    {
                        break Some(ResolvedArg::EarlyBound(param_def_id));
                    }
                    break None;
                }

                Scope::Binder { ref bound_vars, scope_type, s, .. } => {
                    if let Some(&def) = bound_vars.get(&param_def_id) {
                        break Some(def.shifted(late_depth));
                    }
                    match scope_type {
                        BinderScopeType::Normal => late_depth += 1,
                        BinderScopeType::Concatenating => {}
                    }
                    scope = s;
                }

                Scope::ObjectLifetimeDefault { s, .. }
                | Scope::Supertrait { s, .. }
                | Scope::TraitRefBoundary { s, .. } => {
                    scope = s;
                }

                Scope::LateBoundary { s, what } => {
                    crossed_late_boundary = Some(what);
                    scope = s;
                }
            }
        };

        if let Some(def) = result {
            if let ResolvedArg::LateBound(..) = def
                && let Some(what) = crossed_late_boundary
            {
                let use_span = self.tcx.hir().span(hir_id);
                let def_span = self.tcx.def_span(param_def_id);
                let guar = match self.tcx.def_kind(param_def_id) {
                    DefKind::ConstParam => {
                        self.tcx.dcx().emit_err(errors::CannotCaptureLateBound::Const {
                            use_span,
                            def_span,
                            what,
                        })
                    }
                    DefKind::TyParam => {
                        self.tcx.dcx().emit_err(errors::CannotCaptureLateBound::Type {
                            use_span,
                            def_span,
                            what,
                        })
                    }
                    kind => span_bug!(
                        use_span,
                        "did not expect to resolve non-lifetime param to {}",
                        kind.descr(param_def_id.to_def_id())
                    ),
                };
                self.map.defs.insert(hir_id.local_id, ResolvedArg::Error(guar));
            } else {
                self.map.defs.insert(hir_id.local_id, def);
            }
            return;
        }

        // We may fail to resolve higher-ranked ty/const vars that are mentioned by APIT.
        // AST-based resolution does not care for impl-trait desugaring, which are the
        // responsibility of lowering. This may create a mismatch between the resolution
        // AST found (`param_def_id`) which points to HRTB, and what HIR allows.
        // ```
        // fn foo(x: impl for<T> Trait<Assoc = impl Trait2<T>>) {}
        // ```
        //
        // In such case, walk back the binders to diagnose it properly.
        let mut scope = self.scope;
        loop {
            match *scope {
                Scope::Binder {
                    where_bound_origin: Some(hir::PredicateOrigin::ImplTrait), ..
                } => {
                    let guar = self.tcx.dcx().emit_err(match self.tcx.def_kind(param_def_id) {
                        DefKind::TyParam => errors::LateBoundInApit::Type {
                            span: self.tcx.hir().span(hir_id),
                            param_span: self.tcx.def_span(param_def_id),
                        },
                        DefKind::ConstParam => errors::LateBoundInApit::Const {
                            span: self.tcx.hir().span(hir_id),
                            param_span: self.tcx.def_span(param_def_id),
                        },
                        kind => {
                            bug!("unexpected def-kind: {}", kind.descr(param_def_id.to_def_id()))
                        }
                    });
                    self.map.defs.insert(hir_id.local_id, ResolvedArg::Error(guar));
                    return;
                }
                Scope::Root { .. } => break,
                Scope::Binder { s, .. }
                | Scope::Body { s, .. }
                | Scope::ObjectLifetimeDefault { s, .. }
                | Scope::Supertrait { s, .. }
                | Scope::TraitRefBoundary { s, .. }
                | Scope::LateBoundary { s, .. } => {
                    scope = s;
                }
            }
        }

        self.tcx
            .dcx()
            .span_bug(self.tcx.hir().span(hir_id), format!("could not resolve {param_def_id:?}"));
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_segment_args(
        &mut self,
        res: Res,
        depth: usize,
        generic_args: &'tcx hir::GenericArgs<'tcx>,
    ) {
        if let Some((inputs, output)) = generic_args.paren_sugar_inputs_output() {
            self.visit_fn_like_elision(inputs, Some(output), false);
            return;
        }

        for arg in generic_args.args {
            if let hir::GenericArg::Lifetime(lt) = arg {
                self.visit_lifetime(lt);
            }
        }

        // Figure out if this is a type/trait segment,
        // which requires object lifetime defaults.
        let type_def_id = match res {
            Res::Def(DefKind::AssocTy, def_id) if depth == 1 => Some(self.tcx.parent(def_id)),
            Res::Def(DefKind::Variant, def_id) if depth == 0 => Some(self.tcx.parent(def_id)),
            Res::Def(
                DefKind::Struct
                | DefKind::Union
                | DefKind::Enum
                | DefKind::TyAlias
                | DefKind::Trait,
                def_id,
            ) if depth == 0 => Some(def_id),
            _ => None,
        };

        debug!(?type_def_id);

        // Compute a vector of defaults, one for each type parameter,
        // per the rules given in RFCs 599 and 1156. Example:
        //
        // ```rust
        // struct Foo<'a, T: 'a, U> { }
        // ```
        //
        // If you have `Foo<'x, dyn Bar, dyn Baz>`, we want to default
        // `dyn Bar` to `dyn Bar + 'x` (because of the `T: 'a` bound)
        // and `dyn Baz` to `dyn Baz + 'static` (because there is no
        // such bound).
        //
        // Therefore, we would compute `object_lifetime_defaults` to a
        // vector like `['x, 'static]`. Note that the vector only
        // includes type parameters.
        let object_lifetime_defaults = type_def_id.map_or_else(Vec::new, |def_id| {
            let in_body = {
                let mut scope = self.scope;
                loop {
                    match *scope {
                        Scope::Root { .. } => break false,

                        Scope::Body { .. } => break true,

                        Scope::Binder { s, .. }
                        | Scope::ObjectLifetimeDefault { s, .. }
                        | Scope::Supertrait { s, .. }
                        | Scope::TraitRefBoundary { s, .. }
                        | Scope::LateBoundary { s, .. } => {
                            scope = s;
                        }
                    }
                }
            };

            let map = &self.map;
            let generics = self.tcx.generics_of(def_id);

            // `type_def_id` points to an item, so there is nothing to inherit generics from.
            debug_assert_eq!(generics.parent_count, 0);

            let set_to_region = |set: ObjectLifetimeDefault| match set {
                ObjectLifetimeDefault::Empty => {
                    if in_body {
                        None
                    } else {
                        Some(ResolvedArg::StaticLifetime)
                    }
                }
                ObjectLifetimeDefault::Static => Some(ResolvedArg::StaticLifetime),
                ObjectLifetimeDefault::Param(param_def_id) => {
                    // This index can be used with `generic_args` since `parent_count == 0`.
                    let index = generics.param_def_id_to_index[&param_def_id] as usize;
                    generic_args.args.get(index).and_then(|arg| match arg {
                        GenericArg::Lifetime(lt) => map.defs.get(&lt.hir_id.local_id).copied(),
                        _ => None,
                    })
                }
                ObjectLifetimeDefault::Ambiguous => None,
            };
            generics
                .own_params
                .iter()
                .filter_map(|param| {
                    match self.tcx.def_kind(param.def_id) {
                        // Generic consts don't impose any constraints.
                        //
                        // We still store a dummy value here to allow generic parameters
                        // in an arbitrary order.
                        DefKind::ConstParam => Some(ObjectLifetimeDefault::Empty),
                        DefKind::TyParam => Some(self.tcx.object_lifetime_default(param.def_id)),
                        // We may also get a `Trait` or `TraitAlias` because of how generics `Self` parameter
                        // works. Ignore it because it can't have a meaningful lifetime default.
                        DefKind::LifetimeParam | DefKind::Trait | DefKind::TraitAlias => None,
                        dk => bug!("unexpected def_kind {:?}", dk),
                    }
                })
                .map(set_to_region)
                .collect()
        });

        debug!(?object_lifetime_defaults);

        let mut i = 0;
        for arg in generic_args.args {
            match arg {
                GenericArg::Lifetime(_) => {}
                GenericArg::Type(ty) => {
                    if let Some(&lt) = object_lifetime_defaults.get(i) {
                        let scope = Scope::ObjectLifetimeDefault { lifetime: lt, s: self.scope };
                        self.with(scope, |this| this.visit_ty(ty));
                    } else {
                        self.visit_ty(ty);
                    }
                    i += 1;
                }
                GenericArg::Const(ct) => {
                    self.visit_const_arg(ct);
                    i += 1;
                }
                GenericArg::Infer(inf) => {
                    self.visit_id(inf.hir_id);
                    i += 1;
                }
            }
        }

        // Hack: When resolving the type `XX` in an assoc ty binding like
        // `dyn Foo<'b, Item = XX>`, the current object-lifetime default
        // would be to examine the trait `Foo` to check whether it has
        // a lifetime bound declared on `Item`. e.g., if `Foo` is
        // declared like so, then the default object lifetime bound in
        // `XX` should be `'b`:
        //
        // ```rust
        // trait Foo<'a> {
        //   type Item: 'a;
        // }
        // ```
        //
        // but if we just have `type Item;`, then it would be
        // `'static`. However, we don't get all of this logic correct.
        //
        // Instead, we do something hacky: if there are no lifetime parameters
        // to the trait, then we simply use a default object lifetime
        // bound of `'static`, because there is no other possibility. On the other hand,
        // if there ARE lifetime parameters, then we require the user to give an
        // explicit bound for now.
        //
        // This is intended to leave room for us to implement the
        // correct behavior in the future.
        let has_lifetime_parameter =
            generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)));

        // Resolve lifetimes found in the bindings, so either in the type `XX` in `Item = XX` or
        // in the trait ref `YY<...>` in `Item: YY<...>`.
        for constraint in generic_args.constraints {
            let scope = Scope::ObjectLifetimeDefault {
                lifetime: if has_lifetime_parameter {
                    None
                } else {
                    Some(ResolvedArg::StaticLifetime)
                },
                s: self.scope,
            };
            // If the args are parenthesized, then this must be `feature(return_type_notation)`.
            // In that case, introduce a binder over all of the function's early and late bound vars.
            //
            // For example, given
            // ```
            // trait Foo {
            //     async fn x<'r, T>();
            // }
            // ```
            // and a bound that looks like:
            //    `for<'a> T::Trait<'a, x(..): for<'b> Other<'b>>`
            // this is going to expand to something like:
            //    `for<'a> for<'r> <T as Trait<'a>>::x::<'r, T>::{opaque#0}: for<'b> Other<'b>`.
            if constraint.gen_args.parenthesized == hir::GenericArgsParentheses::ReturnTypeNotation
            {
                let bound_vars = if let Some(type_def_id) = type_def_id
                    && self.tcx.def_kind(type_def_id) == DefKind::Trait
                    && let Some((mut bound_vars, assoc_fn)) = BoundVarContext::supertrait_hrtb_vars(
                        self.tcx,
                        type_def_id,
                        constraint.ident,
                        ty::AssocKind::Fn,
                    ) {
                    bound_vars.extend(self.tcx.generics_of(assoc_fn.def_id).own_params.iter().map(
                        |param| match param.kind {
                            ty::GenericParamDefKind::Lifetime => ty::BoundVariableKind::Region(
                                ty::BoundRegionKind::BrNamed(param.def_id, param.name),
                            ),
                            ty::GenericParamDefKind::Type { .. } => ty::BoundVariableKind::Ty(
                                ty::BoundTyKind::Param(param.def_id, param.name),
                            ),
                            ty::GenericParamDefKind::Const { .. } => ty::BoundVariableKind::Const,
                        },
                    ));
                    bound_vars.extend(
                        self.tcx.fn_sig(assoc_fn.def_id).instantiate_identity().bound_vars(),
                    );
                    bound_vars
                } else {
                    self.tcx
                        .dcx()
                        .span_delayed_bug(constraint.ident.span, "bad return type notation here");
                    vec![]
                };
                self.with(scope, |this| {
                    let scope = Scope::Supertrait { bound_vars, s: this.scope };
                    this.with(scope, |this| {
                        let (bound_vars, _) = this.poly_trait_ref_binder_info();
                        this.record_late_bound_vars(constraint.hir_id, bound_vars);
                        this.visit_assoc_item_constraint(constraint)
                    });
                });
            } else if let Some(type_def_id) = type_def_id {
                let bound_vars = BoundVarContext::supertrait_hrtb_vars(
                    self.tcx,
                    type_def_id,
                    constraint.ident,
                    ty::AssocKind::Type,
                )
                .map(|(bound_vars, _)| bound_vars);
                self.with(scope, |this| {
                    let scope = Scope::Supertrait {
                        bound_vars: bound_vars.unwrap_or_default(),
                        s: this.scope,
                    };
                    this.with(scope, |this| this.visit_assoc_item_constraint(constraint));
                });
            } else {
                self.with(scope, |this| this.visit_assoc_item_constraint(constraint));
            }
        }
    }

    /// Returns all the late-bound vars that come into scope from supertrait HRTBs, based on the
    /// associated type name and starting trait.
    /// For example, imagine we have
    /// ```ignore (illustrative)
    /// trait Foo<'a, 'b> {
    ///   type As;
    /// }
    /// trait Bar<'b>: for<'a> Foo<'a, 'b> {}
    /// trait Bar: for<'b> Bar<'b> {}
    /// ```
    /// In this case, if we wanted to the supertrait HRTB lifetimes for `As` on
    /// the starting trait `Bar`, we would return `Some(['b, 'a])`.
    fn supertrait_hrtb_vars(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        assoc_name: Ident,
        assoc_kind: ty::AssocKind,
    ) -> Option<(Vec<ty::BoundVariableKind>, &'tcx ty::AssocItem)> {
        let trait_defines_associated_item_named = |trait_def_id: DefId| {
            tcx.associated_items(trait_def_id).find_by_name_and_kind(
                tcx,
                assoc_name,
                assoc_kind,
                trait_def_id,
            )
        };

        use smallvec::{SmallVec, smallvec};
        let mut stack: SmallVec<[(DefId, SmallVec<[ty::BoundVariableKind; 8]>); 8]> =
            smallvec![(def_id, smallvec![])];
        let mut visited: FxHashSet<DefId> = FxHashSet::default();
        loop {
            let Some((def_id, bound_vars)) = stack.pop() else {
                break None;
            };
            // See issue #83753. If someone writes an associated type on a non-trait, just treat it as
            // there being no supertrait HRTBs.
            match tcx.def_kind(def_id) {
                DefKind::Trait | DefKind::TraitAlias | DefKind::Impl { .. } => {}
                _ => break None,
            }

            if let Some(assoc_item) = trait_defines_associated_item_named(def_id) {
                break Some((bound_vars.into_iter().collect(), assoc_item));
            }
            let predicates = tcx.explicit_supertraits_containing_assoc_item((def_id, assoc_name));
            let obligations = predicates.iter_identity_copied().filter_map(|(pred, _)| {
                let bound_predicate = pred.kind();
                match bound_predicate.skip_binder() {
                    ty::ClauseKind::Trait(data) => {
                        // The order here needs to match what we would get from
                        // `rustc_middle::ty::predicate::Clause::instantiate_supertrait`
                        let pred_bound_vars = bound_predicate.bound_vars();
                        let mut all_bound_vars = bound_vars.clone();
                        all_bound_vars.extend(pred_bound_vars.iter());
                        let super_def_id = data.trait_ref.def_id;
                        Some((super_def_id, all_bound_vars))
                    }
                    _ => None,
                }
            });

            let obligations = obligations.filter(|o| visited.insert(o.0));
            stack.extend(obligations);
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_fn_like_elision(
        &mut self,
        inputs: &'tcx [hir::Ty<'tcx>],
        output: Option<&'tcx hir::Ty<'tcx>>,
        in_closure: bool,
    ) {
        self.with(
            Scope::ObjectLifetimeDefault {
                lifetime: Some(ResolvedArg::StaticLifetime),
                s: self.scope,
            },
            |this| {
                for input in inputs {
                    this.visit_ty(input);
                }
                if !in_closure && let Some(output) = output {
                    this.visit_ty(output);
                }
            },
        );
        if in_closure && let Some(output) = output {
            self.visit_ty(output);
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn resolve_object_lifetime_default(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
        let mut late_depth = 0;
        let mut scope = self.scope;
        let lifetime = loop {
            match *scope {
                Scope::Binder { s, scope_type, .. } => {
                    match scope_type {
                        BinderScopeType::Normal => late_depth += 1,
                        BinderScopeType::Concatenating => {}
                    }
                    scope = s;
                }

                Scope::Root { .. } => break ResolvedArg::StaticLifetime,

                Scope::Body { .. } | Scope::ObjectLifetimeDefault { lifetime: None, .. } => return,

                Scope::ObjectLifetimeDefault { lifetime: Some(l), .. } => break l,

                Scope::Supertrait { s, .. }
                | Scope::TraitRefBoundary { s, .. }
                | Scope::LateBoundary { s, .. } => {
                    scope = s;
                }
            }
        };
        self.insert_lifetime(lifetime_ref, lifetime.shifted(late_depth));
    }

    #[instrument(level = "debug", skip(self))]
    fn insert_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime, def: ResolvedArg) {
        debug!(span = ?lifetime_ref.ident.span);
        self.map.defs.insert(lifetime_ref.hir_id.local_id, def);
    }

    /// Sometimes we resolve a lifetime, but later find that it is an
    /// error (esp. around impl trait). In that case, we remove the
    /// entry into `map.defs` so as not to confuse later code.
    fn uninsert_lifetime_on_error(
        &mut self,
        lifetime_ref: &'tcx hir::Lifetime,
        bad_def: ResolvedArg,
    ) {
        let old_value = self.map.defs.remove(&lifetime_ref.hir_id.local_id);
        assert_eq!(old_value, Some(bad_def));
    }

    // When we have a return type notation type in a where clause, like
    // `where <T as Trait>::method(..): Send`, we need to introduce new bound
    // vars to the existing where clause's binder, to represent the lifetimes
    // elided by the return-type-notation syntax.
    //
    // For example, given
    // ```
    // trait Foo {
    //     async fn x<'r>();
    // }
    // ```
    // and a bound that looks like:
    //    `for<'a, 'b> <T as Trait<'a>>::x(): Other<'b>`
    // this is going to expand to something like:
    //    `for<'a, 'b, 'r> <T as Trait<'a>>::x::<'r, T>::{opaque#0}: Other<'b>`.
    //
    // We handle this similarly for associated-type-bound style return-type-notation
    // in `visit_segment_args`.
    fn try_append_return_type_notation_params(
        &mut self,
        hir_id: HirId,
        hir_ty: &'tcx hir::Ty<'tcx>,
    ) {
        let hir::TyKind::Path(qpath) = hir_ty.kind else {
            // We only care about path types here. All other self types
            // (including nesting the RTN type in another type) don't do
            // anything.
            return;
        };

        let (mut bound_vars, item_def_id, item_segment) = match qpath {
            // If we have a fully qualified method, then we don't need to do any special lookup.
            hir::QPath::Resolved(_, path)
                if let [.., item_segment] = &path.segments[..]
                    && item_segment.args.is_some_and(|args| {
                        matches!(
                            args.parenthesized,
                            hir::GenericArgsParentheses::ReturnTypeNotation
                        )
                    }) =>
            {
                match path.res {
                    Res::Err => return,
                    Res::Def(DefKind::AssocFn, item_def_id) => (vec![], item_def_id, item_segment),
                    _ => bug!("only expected method resolution for fully qualified RTN"),
                }
            }

            // If we have a type-dependent path, then we do need to do some lookup.
            hir::QPath::TypeRelative(qself, item_segment)
                if item_segment.args.is_some_and(|args| {
                    matches!(args.parenthesized, hir::GenericArgsParentheses::ReturnTypeNotation)
                }) =>
            {
                // First, ignore a qself that isn't a type or `Self` param. Those are the
                // only ones that support `T::Assoc` anyways in HIR lowering.
                let hir::TyKind::Path(hir::QPath::Resolved(None, path)) = qself.kind else {
                    return;
                };
                match path.res {
                    Res::Def(DefKind::TyParam, _) | Res::SelfTyParam { trait_: _ } => {
                        // Get the generics of this type's hir owner. This is *different*
                        // from the generics of the parameter's definition, since we want
                        // to be able to resolve an RTN path on a nested body (e.g. method
                        // inside an impl) using the where clauses on the method.
                        // FIXME(return_type_notation): Think of some better way of doing this.
                        let Some(generics) = self.tcx.hir_owner_node(hir_id.owner).generics()
                        else {
                            return;
                        };

                        // Look for the first bound that contains an associated type that
                        // matches the segment that we're looking for. We ignore any subsequent
                        // bounds since we'll be emitting a hard error in HIR lowering, so this
                        // is purely speculative.
                        let one_bound = generics.predicates.iter().find_map(|predicate| {
                            let hir::WherePredicate::BoundPredicate(predicate) = predicate else {
                                return None;
                            };
                            let hir::TyKind::Path(hir::QPath::Resolved(None, bounded_path)) =
                                predicate.bounded_ty.kind
                            else {
                                return None;
                            };
                            if bounded_path.res != path.res {
                                return None;
                            }
                            predicate.bounds.iter().find_map(|bound| {
                                let hir::GenericBound::Trait(trait_, _) = bound else {
                                    return None;
                                };
                                BoundVarContext::supertrait_hrtb_vars(
                                    self.tcx,
                                    trait_.trait_ref.trait_def_id()?,
                                    item_segment.ident,
                                    ty::AssocKind::Fn,
                                )
                            })
                        });
                        let Some((bound_vars, assoc_item)) = one_bound else {
                            return;
                        };
                        (bound_vars, assoc_item.def_id, item_segment)
                    }
                    // If we have a self type alias (in an impl), try to resolve an
                    // associated item from one of the supertraits of the impl's trait.
                    Res::SelfTyAlias { alias_to: impl_def_id, is_trait_impl: true, .. } => {
                        let hir::ItemKind::Impl(hir::Impl { of_trait: Some(trait_ref), .. }) = self
                            .tcx
                            .hir_node_by_def_id(impl_def_id.expect_local())
                            .expect_item()
                            .kind
                        else {
                            return;
                        };
                        let Some(trait_def_id) = trait_ref.trait_def_id() else {
                            return;
                        };
                        let Some((bound_vars, assoc_item)) = BoundVarContext::supertrait_hrtb_vars(
                            self.tcx,
                            trait_def_id,
                            item_segment.ident,
                            ty::AssocKind::Fn,
                        ) else {
                            return;
                        };
                        (bound_vars, assoc_item.def_id, item_segment)
                    }
                    _ => return,
                }
            }

            _ => return,
        };

        // Append the early-bound vars on the function, and then the late-bound ones.
        // We actually turn type parameters into higher-ranked types here, but we
        // deny them later in HIR lowering.
        bound_vars.extend(self.tcx.generics_of(item_def_id).own_params.iter().map(|param| {
            match param.kind {
                ty::GenericParamDefKind::Lifetime => ty::BoundVariableKind::Region(
                    ty::BoundRegionKind::BrNamed(param.def_id, param.name),
                ),
                ty::GenericParamDefKind::Type { .. } => {
                    ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(param.def_id, param.name))
                }
                ty::GenericParamDefKind::Const { .. } => ty::BoundVariableKind::Const,
            }
        }));
        bound_vars.extend(self.tcx.fn_sig(item_def_id).instantiate_identity().bound_vars());

        // SUBTLE: Stash the old bound vars onto the *item segment* before appending
        // the new bound vars. We do this because we need to know how many bound vars
        // are present on the binder explicitly (i.e. not return-type-notation vars)
        // to do bound var shifting correctly in HIR lowering.
        //
        // For example, in `where for<'a> <T as Trait<'a>>::method(..): Other`,
        // the `late_bound_vars` of the where clause predicate (i.e. this HIR ty's
        // parent) will include `'a` AND all the early- and late-bound vars of the
        // method. But when lowering the RTN type, we just want the list of vars
        // we used to resolve the trait ref. We explicitly stored those back onto
        // the item segment, since there's no other good place to put them.
        //
        // See where these vars are used in `HirTyLowerer::lower_ty_maybe_return_type_notation`.
        // And this is exercised in:
        // `tests/ui/associated-type-bounds/return-type-notation/higher-ranked-bound-works.rs`.
        let existing_bound_vars = self.map.late_bound_vars.get_mut(&hir_id.local_id).unwrap();
        let existing_bound_vars_saved = existing_bound_vars.clone();
        existing_bound_vars.extend(bound_vars);
        self.record_late_bound_vars(item_segment.hir_id, existing_bound_vars_saved);
    }
}

/// Detects late-bound lifetimes and inserts them into
/// `late_bound`.
///
/// A region declared on a fn is **late-bound** if:
/// - it is constrained by an argument type;
/// - it does not appear in a where-clause.
///
/// "Constrained" basically means that it appears in any type but
/// not amongst the inputs to a projection. In other words, `<&'a
/// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`.
fn is_late_bound_map(
    tcx: TyCtxt<'_>,
    owner_id: hir::OwnerId,
) -> Option<&FxIndexSet<hir::ItemLocalId>> {
    let decl = tcx.hir().fn_decl_by_hir_id(owner_id.into())?;
    let generics = tcx.hir().get_generics(owner_id.def_id)?;

    let mut late_bound = FxIndexSet::default();

    let mut constrained_by_input = ConstrainedCollector { regions: Default::default(), tcx };
    for arg_ty in decl.inputs {
        constrained_by_input.visit_ty(arg_ty);
    }

    let mut appears_in_output = AllCollector::default();
    intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output);

    debug!(?constrained_by_input.regions);

    // Walk the lifetimes that appear in where clauses.
    //
    // Subtle point: because we disallow nested bindings, we can just
    // ignore binders here and scrape up all names we see.
    let mut appears_in_where_clause = AllCollector::default();
    appears_in_where_clause.visit_generics(generics);
    debug!(?appears_in_where_clause.regions);

    // Late bound regions are those that:
    // - appear in the inputs
    // - do not appear in the where-clauses
    // - are not implicitly captured by `impl Trait`
    for param in generics.params {
        match param.kind {
            hir::GenericParamKind::Lifetime { .. } => { /* fall through */ }

            // Neither types nor consts are late-bound.
            hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => continue,
        }

        // appears in the where clauses? early-bound.
        if appears_in_where_clause.regions.contains(&param.def_id) {
            continue;
        }

        // does not appear in the inputs, but appears in the return type? early-bound.
        if !constrained_by_input.regions.contains(&param.def_id)
            && appears_in_output.regions.contains(&param.def_id)
        {
            continue;
        }

        debug!("lifetime {:?} with id {:?} is late-bound", param.name.ident(), param.def_id);

        let inserted = late_bound.insert(param.hir_id.local_id);
        assert!(inserted, "visited lifetime {:?} twice", param.def_id);
    }

    debug!(?late_bound);
    return Some(tcx.arena.alloc(late_bound));

    /// Visits a `ty::Ty` collecting information about what generic parameters are constrained.
    ///
    /// The visitor does not operate on `hir::Ty` so that it can be called on the rhs of a `type Alias<...> = ...;`
    /// which may live in a separate crate so there would not be any hir available. Instead we use the `type_of`
    /// query to obtain a `ty::Ty` which will be present even in cross crate scenarios. It also naturally
    /// handles cycle detection as we go through the query system.
    ///
    /// This is necessary in the first place for the following case:
    /// ```rust,ignore (pseudo-Rust)
    /// type Alias<'a, T> = <T as Trait<'a>>::Assoc;
    /// fn foo<'a>(_: Alias<'a, ()>) -> Alias<'a, ()> { ... }
    /// ```
    ///
    /// If we conservatively considered `'a` unconstrained then we could break users who had written code before
    /// we started correctly handling aliases. If we considered `'a` constrained then it would become late bound
    /// causing an error during HIR ty lowering as the `'a` is not constrained by the input type `<() as Trait<'a>>::Assoc`
    /// but appears in the output type `<() as Trait<'a>>::Assoc`.
    ///
    /// We must therefore "look into" the `Alias` to see whether we should consider `'a` constrained or not.
    ///
    /// See #100508 #85533 #47511 for additional context
    struct ConstrainedCollectorPostHirTyLowering {
        arg_is_constrained: Box<[bool]>,
    }

    use ty::Ty;
    impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ConstrainedCollectorPostHirTyLowering {
        fn visit_ty(&mut self, t: Ty<'tcx>) {
            match t.kind() {
                ty::Param(param_ty) => {
                    self.arg_is_constrained[param_ty.index as usize] = true;
                }
                ty::Alias(ty::Projection | ty::Inherent, _) => return,
                _ => (),
            }
            t.super_visit_with(self)
        }

        fn visit_const(&mut self, _: ty::Const<'tcx>) {}

        fn visit_region(&mut self, r: ty::Region<'tcx>) {
            debug!("r={:?}", r.kind());
            if let ty::RegionKind::ReEarlyParam(region) = r.kind() {
                self.arg_is_constrained[region.index as usize] = true;
            }
        }
    }

    struct ConstrainedCollector<'tcx> {
        tcx: TyCtxt<'tcx>,
        regions: FxHashSet<LocalDefId>,
    }

    impl<'v> Visitor<'v> for ConstrainedCollector<'_> {
        fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
            match ty.kind {
                hir::TyKind::Path(
                    hir::QPath::Resolved(Some(_), _) | hir::QPath::TypeRelative(..),
                ) => {
                    // ignore lifetimes appearing in associated type
                    // projections, as they are not *constrained*
                    // (defined above)
                }

                hir::TyKind::Path(hir::QPath::Resolved(
                    None,
                    hir::Path { res: Res::Def(DefKind::TyAlias, alias_def), segments, span },
                )) => {
                    // See comments on `ConstrainedCollectorPostHirTyLowering` for why this arm does not
                    // just consider args to be unconstrained.
                    let generics = self.tcx.generics_of(alias_def);
                    let mut walker = ConstrainedCollectorPostHirTyLowering {
                        arg_is_constrained: vec![false; generics.own_params.len()]
                            .into_boxed_slice(),
                    };
                    walker.visit_ty(self.tcx.type_of(alias_def).instantiate_identity());

                    match segments.last() {
                        Some(hir::PathSegment { args: Some(args), .. }) => {
                            let tcx = self.tcx;
                            for constrained_arg in
                                args.args.iter().enumerate().flat_map(|(n, arg)| {
                                    match walker.arg_is_constrained.get(n) {
                                        Some(true) => Some(arg),
                                        Some(false) => None,
                                        None => {
                                            tcx.dcx().span_delayed_bug(
                                                *span,
                                                format!(
                                                    "Incorrect generic arg count for alias {alias_def:?}"
                                                ),
                                            );
                                            None
                                        }
                                    }
                                })
                            {
                                self.visit_generic_arg(constrained_arg);
                            }
                        }
                        Some(_) => (),
                        None => bug!("Path with no segments or self type"),
                    }
                }

                hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
                    // consider only the lifetimes on the final
                    // segment; I am not sure it's even currently
                    // valid to have them elsewhere, but even if it
                    // is, those would be potentially inputs to
                    // projections
                    if let Some(last_segment) = path.segments.last() {
                        self.visit_path_segment(last_segment);
                    }
                }

                _ => {
                    intravisit::walk_ty(self, ty);
                }
            }
        }

        fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
            if let hir::LifetimeName::Param(def_id) = lifetime_ref.res {
                self.regions.insert(def_id);
            }
        }
    }

    #[derive(Default)]
    struct AllCollector {
        regions: FxHashSet<LocalDefId>,
    }

    impl<'v> Visitor<'v> for AllCollector {
        fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
            if let hir::LifetimeName::Param(def_id) = lifetime_ref.res {
                self.regions.insert(def_id);
            }
        }
    }
}

fn deny_non_region_late_bound(
    tcx: TyCtxt<'_>,
    bound_vars: &mut FxIndexMap<LocalDefId, ResolvedArg>,
    where_: &str,
) {
    let mut first = true;

    for (var, arg) in bound_vars {
        let Node::GenericParam(param) = tcx.hir_node_by_def_id(*var) else {
            span_bug!(tcx.def_span(*var), "expected bound-var def-id to resolve to param");
        };

        let what = match param.kind {
            hir::GenericParamKind::Type { .. } => "type",
            hir::GenericParamKind::Const { .. } => "const",
            hir::GenericParamKind::Lifetime { .. } => continue,
        };

        let diag = tcx.dcx().struct_span_err(
            param.span,
            format!("late-bound {what} parameter not allowed on {where_}"),
        );

        let guar = diag.emit_unless(!tcx.features().non_lifetime_binders || !first);

        first = false;
        *arg = ResolvedArg::Error(guar);
    }
}