rustc_hir_analysis/
constrained_generic_params.rs

1use rustc_data_structures::fx::FxHashSet;
2use rustc_middle::bug;
3use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitor};
4use rustc_middle::ty::{self, Ty, TyCtxt};
5use rustc_span::Span;
6use rustc_type_ir::fold::TypeFoldable;
7use tracing::debug;
8
9#[derive(Clone, PartialEq, Eq, Hash, Debug)]
10pub(crate) struct Parameter(pub u32);
11
12impl From<ty::ParamTy> for Parameter {
13    fn from(param: ty::ParamTy) -> Self {
14        Parameter(param.index)
15    }
16}
17
18impl From<ty::EarlyParamRegion> for Parameter {
19    fn from(param: ty::EarlyParamRegion) -> Self {
20        Parameter(param.index)
21    }
22}
23
24impl From<ty::ParamConst> for Parameter {
25    fn from(param: ty::ParamConst) -> Self {
26        Parameter(param.index)
27    }
28}
29
30/// Returns the set of parameters constrained by the impl header.
31pub(crate) fn parameters_for_impl<'tcx>(
32    tcx: TyCtxt<'tcx>,
33    impl_self_ty: Ty<'tcx>,
34    impl_trait_ref: Option<ty::TraitRef<'tcx>>,
35) -> FxHashSet<Parameter> {
36    let vec = match impl_trait_ref {
37        Some(tr) => parameters_for(tcx, tr, false),
38        None => parameters_for(tcx, impl_self_ty, false),
39    };
40    vec.into_iter().collect()
41}
42
43/// If `include_nonconstraining` is false, returns the list of parameters that are
44/// constrained by `value` - i.e., the value of each parameter in the list is
45/// uniquely determined by `value` (see RFC 447). If it is true, return the list
46/// of parameters whose values are needed in order to constrain `value` - these
47/// differ, with the latter being a superset, in the presence of projections.
48pub(crate) fn parameters_for<'tcx>(
49    tcx: TyCtxt<'tcx>,
50    value: impl TypeFoldable<TyCtxt<'tcx>>,
51    include_nonconstraining: bool,
52) -> Vec<Parameter> {
53    let mut collector = ParameterCollector { parameters: vec![], include_nonconstraining };
54    let value = if !include_nonconstraining { tcx.expand_weak_alias_tys(value) } else { value };
55    value.visit_with(&mut collector);
56    collector.parameters
57}
58
59struct ParameterCollector {
60    parameters: Vec<Parameter>,
61    include_nonconstraining: bool,
62}
63
64impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ParameterCollector {
65    fn visit_ty(&mut self, t: Ty<'tcx>) {
66        match *t.kind() {
67            // Projections are not injective in general.
68            ty::Alias(ty::Projection | ty::Inherent | ty::Opaque, _)
69                if !self.include_nonconstraining =>
70            {
71                return;
72            }
73            // All weak alias types should've been expanded beforehand.
74            ty::Alias(ty::Weak, _) if !self.include_nonconstraining => {
75                bug!("unexpected weak alias type")
76            }
77            ty::Param(param) => self.parameters.push(Parameter::from(param)),
78            _ => {}
79        }
80
81        t.super_visit_with(self)
82    }
83
84    fn visit_region(&mut self, r: ty::Region<'tcx>) {
85        if let ty::ReEarlyParam(data) = *r {
86            self.parameters.push(Parameter::from(data));
87        }
88    }
89
90    fn visit_const(&mut self, c: ty::Const<'tcx>) {
91        match c.kind() {
92            ty::ConstKind::Unevaluated(..) if !self.include_nonconstraining => {
93                // Constant expressions are not injective in general.
94                return;
95            }
96            ty::ConstKind::Param(data) => {
97                self.parameters.push(Parameter::from(data));
98            }
99            _ => {}
100        }
101
102        c.super_visit_with(self)
103    }
104}
105
106pub(crate) fn identify_constrained_generic_params<'tcx>(
107    tcx: TyCtxt<'tcx>,
108    predicates: ty::GenericPredicates<'tcx>,
109    impl_trait_ref: Option<ty::TraitRef<'tcx>>,
110    input_parameters: &mut FxHashSet<Parameter>,
111) {
112    let mut predicates = predicates.predicates.to_vec();
113    setup_constraining_predicates(tcx, &mut predicates, impl_trait_ref, input_parameters);
114}
115
116/// Order the predicates in `predicates` such that each parameter is
117/// constrained before it is used, if that is possible, and add the
118/// parameters so constrained to `input_parameters`. For example,
119/// imagine the following impl:
120/// ```ignore (illustrative)
121/// impl<T: Debug, U: Iterator<Item = T>> Trait for U
122/// ```
123/// The impl's predicates are collected from left to right. Ignoring
124/// the implicit `Sized` bounds, these are
125///   * `T: Debug`
126///   * `U: Iterator`
127///   * `<U as Iterator>::Item = T` -- a desugared ProjectionPredicate
128///
129/// When we, for example, try to go over the trait-reference
130/// `IntoIter<u32> as Trait`, we instantiate the impl parameters with fresh
131/// variables and match them with the impl trait-ref, so we know that
132/// `$U = IntoIter<u32>`.
133///
134/// However, in order to process the `$T: Debug` predicate, we must first
135/// know the value of `$T` - which is only given by processing the
136/// projection. As we occasionally want to process predicates in a single
137/// pass, we want the projection to come first. In fact, as projections
138/// can (acyclically) depend on one another - see RFC447 for details - we
139/// need to topologically sort them.
140///
141/// We *do* have to be somewhat careful when projection targets contain
142/// projections themselves, for example in
143///
144/// ```ignore (illustrative)
145///     impl<S,U,V,W> Trait for U where
146/// /* 0 */   S: Iterator<Item = U>,
147/// /* - */   U: Iterator,
148/// /* 1 */   <U as Iterator>::Item: ToOwned<Owned=(W,<V as Iterator>::Item)>
149/// /* 2 */   W: Iterator<Item = V>
150/// /* 3 */   V: Debug
151/// ```
152///
153/// we have to evaluate the projections in the order I wrote them:
154/// `V: Debug` requires `V` to be evaluated. The only projection that
155/// *determines* `V` is 2 (1 contains it, but *does not determine it*,
156/// as it is only contained within a projection), but that requires `W`
157/// which is determined by 1, which requires `U`, that is determined
158/// by 0. I should probably pick a less tangled example, but I can't
159/// think of any.
160pub(crate) fn setup_constraining_predicates<'tcx>(
161    tcx: TyCtxt<'tcx>,
162    predicates: &mut [(ty::Clause<'tcx>, Span)],
163    impl_trait_ref: Option<ty::TraitRef<'tcx>>,
164    input_parameters: &mut FxHashSet<Parameter>,
165) {
166    // The canonical way of doing the needed topological sort
167    // would be a DFS, but getting the graph and its ownership
168    // right is annoying, so I am using an in-place fixed-point iteration,
169    // which is `O(nt)` where `t` is the depth of type-parameter constraints,
170    // remembering that `t` should be less than 7 in practice.
171    //
172    // Basically, I iterate over all projections and swap every
173    // "ready" projection to the start of the list, such that
174    // all of the projections before `i` are topologically sorted
175    // and constrain all the parameters in `input_parameters`.
176    //
177    // In the example, `input_parameters` starts by containing `U` - which
178    // is constrained by the trait-ref - and so on the first pass we
179    // observe that `<U as Iterator>::Item = T` is a "ready" projection that
180    // constrains `T` and swap it to front. As it is the sole projection,
181    // no more swaps can take place afterwards, with the result being
182    //   * <U as Iterator>::Item = T
183    //   * T: Debug
184    //   * U: Iterator
185    debug!(
186        "setup_constraining_predicates: predicates={:?} \
187            impl_trait_ref={:?} input_parameters={:?}",
188        predicates, impl_trait_ref, input_parameters
189    );
190    let mut i = 0;
191    let mut changed = true;
192    while changed {
193        changed = false;
194
195        for j in i..predicates.len() {
196            // Note that we don't have to care about binders here,
197            // as the impl trait ref never contains any late-bound regions.
198            if let ty::ClauseKind::Projection(projection) = predicates[j].0.kind().skip_binder() {
199                // Special case: watch out for some kind of sneaky attempt
200                // to project out an associated type defined by this very
201                // trait.
202                let unbound_trait_ref = projection.projection_term.trait_ref(tcx);
203                if Some(unbound_trait_ref) == impl_trait_ref {
204                    continue;
205                }
206
207                // A projection depends on its input types and determines its output
208                // type. For example, if we have
209                //     `<<T as Bar>::Baz as Iterator>::Output = <U as Iterator>::Output`
210                // Then the projection only applies if `T` is known, but it still
211                // does not determine `U`.
212                let inputs = parameters_for(tcx, projection.projection_term, true);
213                let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(p));
214                if !relies_only_on_inputs {
215                    continue;
216                }
217                input_parameters.extend(parameters_for(tcx, projection.term, false));
218            } else {
219                continue;
220            }
221            // fancy control flow to bypass borrow checker
222            predicates.swap(i, j);
223            i += 1;
224            changed = true;
225        }
226        debug!(
227            "setup_constraining_predicates: predicates={:?} \
228                i={} impl_trait_ref={:?} input_parameters={:?}",
229            predicates, i, impl_trait_ref, input_parameters
230        );
231    }
232}