rustc_hir_analysis/coherence/
builtin.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
//! Check properties that are required by built-in traits and set
//! up data structures required by type-checking/codegen.

use std::assert_matches::assert_matches;
use std::collections::BTreeMap;

use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{ErrorGuaranteed, MultiSpan};
use rustc_hir as hir;
use rustc_hir::ItemKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::lang_items::LangItem;
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::{self, RegionResolutionError, TyCtxtInferExt};
use rustc_infer::traits::Obligation;
use rustc_middle::ty::adjustment::CoerceUnsizedInfo;
use rustc_middle::ty::print::PrintTraitRefExt as _;
use rustc_middle::ty::{
    self, Ty, TyCtxt, TypeVisitableExt, TypingMode, suggest_constraining_type_params,
};
use rustc_span::{DUMMY_SP, Span};
use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
use rustc_trait_selection::traits::misc::{
    ConstParamTyImplementationError, CopyImplementationError, InfringingFieldsReason,
    type_allowed_to_implement_const_param_ty, type_allowed_to_implement_copy,
};
use rustc_trait_selection::traits::{self, ObligationCause, ObligationCtxt};
use tracing::debug;

use crate::errors;

pub(super) fn check_trait<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_def_id: DefId,
    impl_def_id: LocalDefId,
    impl_header: ty::ImplTraitHeader<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    let lang_items = tcx.lang_items();
    let checker = Checker { tcx, trait_def_id, impl_def_id, impl_header };
    checker.check(lang_items.drop_trait(), visit_implementation_of_drop)?;
    checker.check(lang_items.copy_trait(), visit_implementation_of_copy)?;
    checker.check(lang_items.const_param_ty_trait(), |checker| {
        visit_implementation_of_const_param_ty(checker, LangItem::ConstParamTy)
    })?;
    checker.check(lang_items.unsized_const_param_ty_trait(), |checker| {
        visit_implementation_of_const_param_ty(checker, LangItem::UnsizedConstParamTy)
    })?;
    checker.check(lang_items.coerce_unsized_trait(), visit_implementation_of_coerce_unsized)?;
    checker
        .check(lang_items.dispatch_from_dyn_trait(), visit_implementation_of_dispatch_from_dyn)?;
    checker.check(lang_items.pointer_like(), visit_implementation_of_pointer_like)?;
    Ok(())
}

struct Checker<'tcx> {
    tcx: TyCtxt<'tcx>,
    trait_def_id: DefId,
    impl_def_id: LocalDefId,
    impl_header: ty::ImplTraitHeader<'tcx>,
}

impl<'tcx> Checker<'tcx> {
    fn check(
        &self,
        trait_def_id: Option<DefId>,
        f: impl FnOnce(&Self) -> Result<(), ErrorGuaranteed>,
    ) -> Result<(), ErrorGuaranteed> {
        if Some(self.trait_def_id) == trait_def_id { f(self) } else { Ok(()) }
    }
}

fn visit_implementation_of_drop(checker: &Checker<'_>) -> Result<(), ErrorGuaranteed> {
    let tcx = checker.tcx;
    let impl_did = checker.impl_def_id;
    // Destructors only work on local ADT types.
    match checker.impl_header.trait_ref.instantiate_identity().self_ty().kind() {
        ty::Adt(def, _) if def.did().is_local() => return Ok(()),
        ty::Error(_) => return Ok(()),
        _ => {}
    }

    let impl_ = tcx.hir().expect_item(impl_did).expect_impl();

    Err(tcx.dcx().emit_err(errors::DropImplOnWrongItem { span: impl_.self_ty.span }))
}

fn visit_implementation_of_copy(checker: &Checker<'_>) -> Result<(), ErrorGuaranteed> {
    let tcx = checker.tcx;
    let impl_header = checker.impl_header;
    let impl_did = checker.impl_def_id;
    debug!("visit_implementation_of_copy: impl_did={:?}", impl_did);

    let self_type = impl_header.trait_ref.instantiate_identity().self_ty();
    debug!("visit_implementation_of_copy: self_type={:?} (bound)", self_type);

    let param_env = tcx.param_env(impl_did);
    assert!(!self_type.has_escaping_bound_vars());

    debug!("visit_implementation_of_copy: self_type={:?} (free)", self_type);

    if let ty::ImplPolarity::Negative = impl_header.polarity {
        return Ok(());
    }

    let cause = traits::ObligationCause::misc(DUMMY_SP, impl_did);
    match type_allowed_to_implement_copy(tcx, param_env, self_type, cause) {
        Ok(()) => Ok(()),
        Err(CopyImplementationError::InfringingFields(fields)) => {
            let span = tcx.hir().expect_item(impl_did).expect_impl().self_ty.span;
            Err(infringing_fields_error(
                tcx,
                fields.into_iter().map(|(field, ty, reason)| (tcx.def_span(field.did), ty, reason)),
                LangItem::Copy,
                impl_did,
                span,
            ))
        }
        Err(CopyImplementationError::NotAnAdt) => {
            let span = tcx.hir().expect_item(impl_did).expect_impl().self_ty.span;
            Err(tcx.dcx().emit_err(errors::CopyImplOnNonAdt { span }))
        }
        Err(CopyImplementationError::HasDestructor) => {
            let span = tcx.hir().expect_item(impl_did).expect_impl().self_ty.span;
            Err(tcx.dcx().emit_err(errors::CopyImplOnTypeWithDtor { span }))
        }
    }
}

fn visit_implementation_of_const_param_ty(
    checker: &Checker<'_>,
    kind: LangItem,
) -> Result<(), ErrorGuaranteed> {
    assert_matches!(kind, LangItem::ConstParamTy | LangItem::UnsizedConstParamTy);

    let tcx = checker.tcx;
    let header = checker.impl_header;
    let impl_did = checker.impl_def_id;
    let self_type = header.trait_ref.instantiate_identity().self_ty();
    assert!(!self_type.has_escaping_bound_vars());

    let param_env = tcx.param_env(impl_did);

    if let ty::ImplPolarity::Negative | ty::ImplPolarity::Reservation = header.polarity {
        return Ok(());
    }

    let cause = traits::ObligationCause::misc(DUMMY_SP, impl_did);
    match type_allowed_to_implement_const_param_ty(tcx, param_env, self_type, kind, cause) {
        Ok(()) => Ok(()),
        Err(ConstParamTyImplementationError::InfrigingFields(fields)) => {
            let span = tcx.hir().expect_item(impl_did).expect_impl().self_ty.span;
            Err(infringing_fields_error(
                tcx,
                fields.into_iter().map(|(field, ty, reason)| (tcx.def_span(field.did), ty, reason)),
                LangItem::ConstParamTy,
                impl_did,
                span,
            ))
        }
        Err(ConstParamTyImplementationError::NotAnAdtOrBuiltinAllowed) => {
            let span = tcx.hir().expect_item(impl_did).expect_impl().self_ty.span;
            Err(tcx.dcx().emit_err(errors::ConstParamTyImplOnNonAdt { span }))
        }
        Err(ConstParamTyImplementationError::InvalidInnerTyOfBuiltinTy(infringing_tys)) => {
            let span = tcx.hir().expect_item(impl_did).expect_impl().self_ty.span;
            Err(infringing_fields_error(
                tcx,
                infringing_tys.into_iter().map(|(ty, reason)| (span, ty, reason)),
                LangItem::ConstParamTy,
                impl_did,
                span,
            ))
        }
        Err(ConstParamTyImplementationError::UnsizedConstParamsFeatureRequired) => {
            let span = tcx.hir().expect_item(impl_did).expect_impl().self_ty.span;
            Err(tcx.dcx().emit_err(errors::ConstParamTyImplOnUnsized { span }))
        }
    }
}

fn visit_implementation_of_coerce_unsized(checker: &Checker<'_>) -> Result<(), ErrorGuaranteed> {
    let tcx = checker.tcx;
    let impl_did = checker.impl_def_id;
    debug!("visit_implementation_of_coerce_unsized: impl_did={:?}", impl_did);

    // Just compute this for the side-effects, in particular reporting
    // errors; other parts of the code may demand it for the info of
    // course.
    let span = tcx.def_span(impl_did);
    tcx.at(span).ensure().coerce_unsized_info(impl_did)
}

fn visit_implementation_of_dispatch_from_dyn(checker: &Checker<'_>) -> Result<(), ErrorGuaranteed> {
    let tcx = checker.tcx;
    let impl_did = checker.impl_def_id;
    let trait_ref = checker.impl_header.trait_ref.instantiate_identity();
    debug!("visit_implementation_of_dispatch_from_dyn: impl_did={:?}", impl_did);

    let span = tcx.def_span(impl_did);

    let dispatch_from_dyn_trait = tcx.require_lang_item(LangItem::DispatchFromDyn, Some(span));

    let source = trait_ref.self_ty();
    assert!(!source.has_escaping_bound_vars());
    let target = {
        assert_eq!(trait_ref.def_id, dispatch_from_dyn_trait);

        trait_ref.args.type_at(1)
    };

    debug!("visit_implementation_of_dispatch_from_dyn: {:?} -> {:?}", source, target);

    let param_env = tcx.param_env(impl_did);

    let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
    let cause = ObligationCause::misc(span, impl_did);

    // Later parts of the compiler rely on all DispatchFromDyn types to be ABI-compatible with raw
    // pointers. This is enforced here: we only allow impls for references, raw pointers, and things
    // that are effectively repr(transparent) newtypes around types that already hav a
    // DispatchedFromDyn impl. We cannot literally use repr(transparent) on those types since some
    // of them support an allocator, but we ensure that for the cases where the type implements this
    // trait, they *do* satisfy the repr(transparent) rules, and then we assume that everything else
    // in the compiler (in particular, all the call ABI logic) will treat them as repr(transparent)
    // even if they do not carry that attribute.
    use rustc_type_ir::TyKind::*;
    match (source.kind(), target.kind()) {
        (&Ref(r_a, _, mutbl_a), Ref(r_b, _, mutbl_b)) if r_a == *r_b && mutbl_a == *mutbl_b => {
            Ok(())
        }
        (&RawPtr(_, a_mutbl), &RawPtr(_, b_mutbl)) if a_mutbl == b_mutbl => Ok(()),
        (&Adt(def_a, args_a), &Adt(def_b, args_b)) if def_a.is_struct() && def_b.is_struct() => {
            if def_a != def_b {
                let source_path = tcx.def_path_str(def_a.did());
                let target_path = tcx.def_path_str(def_b.did());

                return Err(tcx.dcx().emit_err(errors::DispatchFromDynCoercion {
                    span,
                    trait_name: "DispatchFromDyn",
                    note: true,
                    source_path,
                    target_path,
                }));
            }

            let mut res = Ok(());
            if def_a.repr().c() || def_a.repr().packed() {
                res = Err(tcx.dcx().emit_err(errors::DispatchFromDynRepr { span }));
            }

            let fields = &def_a.non_enum_variant().fields;

            let coerced_fields = fields
                .iter()
                .filter(|field| {
                    let ty_a = field.ty(tcx, args_a);
                    let ty_b = field.ty(tcx, args_b);

                    if let Ok(layout) =
                        tcx.layout_of(infcx.typing_env(param_env).as_query_input(ty_a))
                    {
                        if layout.is_1zst() {
                            // ignore 1-ZST fields
                            return false;
                        }
                    }

                    if ty_a == ty_b {
                        res = Err(tcx.dcx().emit_err(errors::DispatchFromDynZST {
                            span,
                            name: field.name,
                            ty: ty_a,
                        }));

                        return false;
                    }

                    true
                })
                .collect::<Vec<_>>();

            if coerced_fields.is_empty() {
                res = Err(tcx.dcx().emit_err(errors::DispatchFromDynSingle {
                    span,
                    trait_name: "DispatchFromDyn",
                    note: true,
                }));
            } else if coerced_fields.len() > 1 {
                res = Err(tcx.dcx().emit_err(errors::DispatchFromDynMulti {
                    span,
                    coercions_note: true,
                    number: coerced_fields.len(),
                    coercions: coerced_fields
                        .iter()
                        .map(|field| {
                            format!(
                                "`{}` (`{}` to `{}`)",
                                field.name,
                                field.ty(tcx, args_a),
                                field.ty(tcx, args_b),
                            )
                        })
                        .collect::<Vec<_>>()
                        .join(", "),
                }));
            } else {
                let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
                for field in coerced_fields {
                    ocx.register_obligation(Obligation::new(
                        tcx,
                        cause.clone(),
                        param_env,
                        ty::TraitRef::new(tcx, dispatch_from_dyn_trait, [
                            field.ty(tcx, args_a),
                            field.ty(tcx, args_b),
                        ]),
                    ));
                }
                let errors = ocx.select_all_or_error();
                if !errors.is_empty() {
                    res = Err(infcx.err_ctxt().report_fulfillment_errors(errors));
                }

                // Finally, resolve all regions.
                let outlives_env = OutlivesEnvironment::new(param_env);
                res = res.and(ocx.resolve_regions_and_report_errors(impl_did, &outlives_env));
            }
            res
        }
        _ => Err(tcx
            .dcx()
            .emit_err(errors::CoerceUnsizedMay { span, trait_name: "DispatchFromDyn" })),
    }
}

pub(crate) fn coerce_unsized_info<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_did: LocalDefId,
) -> Result<CoerceUnsizedInfo, ErrorGuaranteed> {
    debug!("compute_coerce_unsized_info(impl_did={:?})", impl_did);
    let span = tcx.def_span(impl_did);

    let coerce_unsized_trait = tcx.require_lang_item(LangItem::CoerceUnsized, Some(span));

    let unsize_trait = tcx.require_lang_item(LangItem::Unsize, Some(span));

    let source = tcx.type_of(impl_did).instantiate_identity();
    let trait_ref = tcx.impl_trait_ref(impl_did).unwrap().instantiate_identity();
    assert_eq!(trait_ref.def_id, coerce_unsized_trait);
    let target = trait_ref.args.type_at(1);
    debug!("visit_implementation_of_coerce_unsized: {:?} -> {:?} (bound)", source, target);

    let param_env = tcx.param_env(impl_did);
    assert!(!source.has_escaping_bound_vars());

    debug!("visit_implementation_of_coerce_unsized: {:?} -> {:?} (free)", source, target);

    let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
    let cause = ObligationCause::misc(span, impl_did);
    let check_mutbl = |mt_a: ty::TypeAndMut<'tcx>,
                       mt_b: ty::TypeAndMut<'tcx>,
                       mk_ptr: &dyn Fn(Ty<'tcx>) -> Ty<'tcx>| {
        if mt_a.mutbl < mt_b.mutbl {
            infcx
                .err_ctxt()
                .report_mismatched_types(
                    &cause,
                    param_env,
                    mk_ptr(mt_b.ty),
                    target,
                    ty::error::TypeError::Mutability,
                )
                .emit();
        }
        (mt_a.ty, mt_b.ty, unsize_trait, None)
    };
    let (source, target, trait_def_id, kind) = match (source.kind(), target.kind()) {
        (&ty::Ref(r_a, ty_a, mutbl_a), &ty::Ref(r_b, ty_b, mutbl_b)) => {
            infcx.sub_regions(infer::RelateObjectBound(span), r_b, r_a);
            let mt_a = ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a };
            let mt_b = ty::TypeAndMut { ty: ty_b, mutbl: mutbl_b };
            check_mutbl(mt_a, mt_b, &|ty| Ty::new_imm_ref(tcx, r_b, ty))
        }

        (&ty::Ref(_, ty_a, mutbl_a), &ty::RawPtr(ty_b, mutbl_b)) => check_mutbl(
            ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a },
            ty::TypeAndMut { ty: ty_b, mutbl: mutbl_b },
            &|ty| Ty::new_imm_ptr(tcx, ty),
        ),

        (&ty::RawPtr(ty_a, mutbl_a), &ty::RawPtr(ty_b, mutbl_b)) => check_mutbl(
            ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a },
            ty::TypeAndMut { ty: ty_b, mutbl: mutbl_b },
            &|ty| Ty::new_imm_ptr(tcx, ty),
        ),

        (&ty::Adt(def_a, args_a), &ty::Adt(def_b, args_b))
            if def_a.is_struct() && def_b.is_struct() =>
        {
            if def_a != def_b {
                let source_path = tcx.def_path_str(def_a.did());
                let target_path = tcx.def_path_str(def_b.did());
                return Err(tcx.dcx().emit_err(errors::DispatchFromDynSame {
                    span,
                    trait_name: "CoerceUnsized",
                    note: true,
                    source_path,
                    target_path,
                }));
            }

            // Here we are considering a case of converting
            // `S<P0...Pn>` to `S<Q0...Qn>`. As an example, let's imagine a struct `Foo<T, U>`,
            // which acts like a pointer to `U`, but carries along some extra data of type `T`:
            //
            //     struct Foo<T, U> {
            //         extra: T,
            //         ptr: *mut U,
            //     }
            //
            // We might have an impl that allows (e.g.) `Foo<T, [i32; 3]>` to be unsized
            // to `Foo<T, [i32]>`. That impl would look like:
            //
            //   impl<T, U: Unsize<V>, V> CoerceUnsized<Foo<T, V>> for Foo<T, U> {}
            //
            // Here `U = [i32; 3]` and `V = [i32]`. At runtime,
            // when this coercion occurs, we would be changing the
            // field `ptr` from a thin pointer of type `*mut [i32;
            // 3]` to a wide pointer of type `*mut [i32]` (with
            // extra data `3`). **The purpose of this check is to
            // make sure that we know how to do this conversion.**
            //
            // To check if this impl is legal, we would walk down
            // the fields of `Foo` and consider their types with
            // both generic parameters. We are looking to find that
            // exactly one (non-phantom) field has changed its
            // type, which we will expect to be the pointer that
            // is becoming fat (we could probably generalize this
            // to multiple thin pointers of the same type becoming
            // fat, but we don't). In this case:
            //
            // - `extra` has type `T` before and type `T` after
            // - `ptr` has type `*mut U` before and type `*mut V` after
            //
            // Since just one field changed, we would then check
            // that `*mut U: CoerceUnsized<*mut V>` is implemented
            // (in other words, that we know how to do this
            // conversion). This will work out because `U:
            // Unsize<V>`, and we have a builtin rule that `*mut
            // U` can be coerced to `*mut V` if `U: Unsize<V>`.
            let fields = &def_a.non_enum_variant().fields;
            let diff_fields = fields
                .iter_enumerated()
                .filter_map(|(i, f)| {
                    let (a, b) = (f.ty(tcx, args_a), f.ty(tcx, args_b));

                    if tcx.type_of(f.did).instantiate_identity().is_phantom_data() {
                        // Ignore PhantomData fields
                        return None;
                    }

                    // Ignore fields that aren't changed; it may
                    // be that we could get away with subtyping or
                    // something more accepting, but we use
                    // equality because we want to be able to
                    // perform this check without computing
                    // variance or constraining opaque types' hidden types.
                    // (This is because we may have to evaluate constraint
                    // expressions in the course of execution.)
                    // See e.g., #41936.
                    if a == b {
                        return None;
                    }

                    // Collect up all fields that were significantly changed
                    // i.e., those that contain T in coerce_unsized T -> U
                    Some((i, a, b))
                })
                .collect::<Vec<_>>();

            if diff_fields.is_empty() {
                return Err(tcx.dcx().emit_err(errors::CoerceUnsizedOneField {
                    span,
                    trait_name: "CoerceUnsized",
                    note: true,
                }));
            } else if diff_fields.len() > 1 {
                let item = tcx.hir().expect_item(impl_did);
                let span = if let ItemKind::Impl(hir::Impl { of_trait: Some(t), .. }) = &item.kind {
                    t.path.span
                } else {
                    tcx.def_span(impl_did)
                };

                return Err(tcx.dcx().emit_err(errors::CoerceUnsizedMulti {
                    span,
                    coercions_note: true,
                    number: diff_fields.len(),
                    coercions: diff_fields
                        .iter()
                        .map(|&(i, a, b)| format!("`{}` (`{}` to `{}`)", fields[i].name, a, b))
                        .collect::<Vec<_>>()
                        .join(", "),
                }));
            }

            let (i, a, b) = diff_fields[0];
            let kind = ty::adjustment::CustomCoerceUnsized::Struct(i);
            (a, b, coerce_unsized_trait, Some(kind))
        }

        _ => {
            return Err(tcx
                .dcx()
                .emit_err(errors::DispatchFromDynStruct { span, trait_name: "CoerceUnsized" }));
        }
    };

    // Register an obligation for `A: Trait<B>`.
    let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
    let cause = traits::ObligationCause::misc(span, impl_did);
    let obligation = Obligation::new(
        tcx,
        cause,
        param_env,
        ty::TraitRef::new(tcx, trait_def_id, [source, target]),
    );
    ocx.register_obligation(obligation);
    let errors = ocx.select_all_or_error();
    if !errors.is_empty() {
        infcx.err_ctxt().report_fulfillment_errors(errors);
    }

    // Finally, resolve all regions.
    let outlives_env = OutlivesEnvironment::new(param_env);
    let _ = ocx.resolve_regions_and_report_errors(impl_did, &outlives_env);

    Ok(CoerceUnsizedInfo { custom_kind: kind })
}

fn infringing_fields_error<'tcx>(
    tcx: TyCtxt<'tcx>,
    infringing_tys: impl Iterator<Item = (Span, Ty<'tcx>, InfringingFieldsReason<'tcx>)>,
    lang_item: LangItem,
    impl_did: LocalDefId,
    impl_span: Span,
) -> ErrorGuaranteed {
    let trait_did = tcx.require_lang_item(lang_item, Some(impl_span));

    let trait_name = tcx.def_path_str(trait_did);

    // We'll try to suggest constraining type parameters to fulfill the requirements of
    // their `Copy` implementation.
    let mut errors: BTreeMap<_, Vec<_>> = Default::default();
    let mut bounds = vec![];

    let mut seen_tys = FxHashSet::default();

    let mut label_spans = Vec::new();

    for (span, ty, reason) in infringing_tys {
        // Only report an error once per type.
        if !seen_tys.insert(ty) {
            continue;
        }

        label_spans.push(span);

        match reason {
            InfringingFieldsReason::Fulfill(fulfillment_errors) => {
                for error in fulfillment_errors {
                    let error_predicate = error.obligation.predicate;
                    // Only note if it's not the root obligation, otherwise it's trivial and
                    // should be self-explanatory (i.e. a field literally doesn't implement Copy).

                    // FIXME: This error could be more descriptive, especially if the error_predicate
                    // contains a foreign type or if it's a deeply nested type...
                    if error_predicate != error.root_obligation.predicate {
                        errors
                            .entry((ty.to_string(), error_predicate.to_string()))
                            .or_default()
                            .push(error.obligation.cause.span);
                    }
                    if let ty::PredicateKind::Clause(ty::ClauseKind::Trait(ty::TraitPredicate {
                        trait_ref,
                        polarity: ty::PredicatePolarity::Positive,
                        ..
                    })) = error_predicate.kind().skip_binder()
                    {
                        let ty = trait_ref.self_ty();
                        if let ty::Param(_) = ty.kind() {
                            bounds.push((
                                format!("{ty}"),
                                trait_ref.print_trait_sugared().to_string(),
                                Some(trait_ref.def_id),
                            ));
                        }
                    }
                }
            }
            InfringingFieldsReason::Regions(region_errors) => {
                for error in region_errors {
                    let ty = ty.to_string();
                    match error {
                        RegionResolutionError::ConcreteFailure(origin, a, b) => {
                            let predicate = format!("{b}: {a}");
                            errors
                                .entry((ty.clone(), predicate.clone()))
                                .or_default()
                                .push(origin.span());
                            if let ty::RegionKind::ReEarlyParam(ebr) = *b
                                && ebr.has_name()
                            {
                                bounds.push((b.to_string(), a.to_string(), None));
                            }
                        }
                        RegionResolutionError::GenericBoundFailure(origin, a, b) => {
                            let predicate = format!("{a}: {b}");
                            errors
                                .entry((ty.clone(), predicate.clone()))
                                .or_default()
                                .push(origin.span());
                            if let infer::region_constraints::GenericKind::Param(_) = a {
                                bounds.push((a.to_string(), b.to_string(), None));
                            }
                        }
                        _ => continue,
                    }
                }
            }
        }
    }
    let mut notes = Vec::new();
    for ((ty, error_predicate), spans) in errors {
        let span: MultiSpan = spans.into();
        notes.push(errors::ImplForTyRequires {
            span,
            error_predicate,
            trait_name: trait_name.clone(),
            ty,
        });
    }

    let mut err = tcx.dcx().create_err(errors::TraitCannotImplForTy {
        span: impl_span,
        trait_name,
        label_spans,
        notes,
    });

    suggest_constraining_type_params(
        tcx,
        tcx.hir().get_generics(impl_did).expect("impls always have generics"),
        &mut err,
        bounds
            .iter()
            .map(|(param, constraint, def_id)| (param.as_str(), constraint.as_str(), *def_id)),
        None,
    );

    err.emit()
}

fn visit_implementation_of_pointer_like(checker: &Checker<'_>) -> Result<(), ErrorGuaranteed> {
    let tcx = checker.tcx;
    let typing_env = ty::TypingEnv::non_body_analysis(tcx, checker.impl_def_id);
    let impl_span = tcx.def_span(checker.impl_def_id);
    let self_ty = tcx.impl_trait_ref(checker.impl_def_id).unwrap().instantiate_identity().self_ty();

    // If an ADT is repr(transparent)...
    if let ty::Adt(def, args) = *self_ty.kind()
        && def.repr().transparent()
    {
        // FIXME(compiler-errors): This should and could be deduplicated into a query.
        // Find the nontrivial field.
        let adt_typing_env = ty::TypingEnv::non_body_analysis(tcx, def.did());
        let nontrivial_field = def.all_fields().find(|field_def| {
            let field_ty = tcx.type_of(field_def.did).instantiate_identity();
            !tcx.layout_of(adt_typing_env.as_query_input(field_ty))
                .is_ok_and(|layout| layout.layout.is_1zst())
        });

        if let Some(nontrivial_field) = nontrivial_field {
            // Check that the nontrivial field implements `PointerLike`.
            let nontrivial_field = nontrivial_field.ty(tcx, args);
            let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
            let ocx = ObligationCtxt::new(&infcx);
            ocx.register_bound(
                ObligationCause::misc(impl_span, checker.impl_def_id),
                param_env,
                nontrivial_field,
                tcx.lang_items().pointer_like().unwrap(),
            );
            // FIXME(dyn-star): We should regionck this implementation.
            if ocx.select_all_or_error().is_empty() {
                return Ok(());
            }
        }
    }

    let is_permitted_primitive = match *self_ty.kind() {
        ty::Adt(def, _) => def.is_box(),
        ty::Uint(..) | ty::Int(..) | ty::RawPtr(..) | ty::Ref(..) | ty::FnPtr(..) => true,
        _ => false,
    };

    if is_permitted_primitive
        && let Ok(layout) = tcx.layout_of(typing_env.as_query_input(self_ty))
        && layout.layout.is_pointer_like(&tcx.data_layout)
    {
        return Ok(());
    }

    Err(tcx
        .dcx()
        .struct_span_err(
            impl_span,
            "implementation must be applied to type that has the same ABI as a pointer, \
            or is `repr(transparent)` and whose field is `PointerLike`",
        )
        .emit())
}