rustc_mir_transform/ref_prop.rs
1use std::borrow::Cow;
2
3use rustc_data_structures::fx::FxHashSet;
4use rustc_index::IndexVec;
5use rustc_index::bit_set::DenseBitSet;
6use rustc_middle::bug;
7use rustc_middle::mir::visit::*;
8use rustc_middle::mir::*;
9use rustc_middle::ty::TyCtxt;
10use rustc_mir_dataflow::Analysis;
11use rustc_mir_dataflow::impls::{MaybeStorageDead, always_storage_live_locals};
12use tracing::{debug, instrument};
13
14use crate::ssa::{SsaLocals, StorageLiveLocals};
15
16/// Propagate references using SSA analysis.
17///
18/// MIR building may produce a lot of borrow-dereference patterns.
19///
20/// This pass aims to transform the following pattern:
21/// _1 = &raw? mut? PLACE;
22/// _3 = *_1;
23/// _4 = &raw? mut? *_1;
24///
25/// Into
26/// _1 = &raw? mut? PLACE;
27/// _3 = PLACE;
28/// _4 = &raw? mut? PLACE;
29///
30/// where `PLACE` is a direct or an indirect place expression.
31///
32/// There are 3 properties that need to be upheld for this transformation to be legal:
33/// - place stability: `PLACE` must refer to the same memory wherever it appears;
34/// - pointer liveness: we must not introduce dereferences of dangling pointers;
35/// - `&mut` borrow uniqueness.
36///
37/// # Stability
38///
39/// If `PLACE` is an indirect projection, if its of the form `(*LOCAL).PROJECTIONS` where:
40/// - `LOCAL` is SSA;
41/// - all projections in `PROJECTIONS` have a stable offset (no dereference and no indexing).
42///
43/// If `PLACE` is a direct projection of a local, we consider it as constant if:
44/// - the local is always live, or it has a single `StorageLive`;
45/// - all projections have a stable offset.
46///
47/// # Liveness
48///
49/// When performing an instantiation, we must take care not to introduce uses of dangling locals.
50/// To ensure this, we walk the body with the `MaybeStorageDead` dataflow analysis:
51/// - if we want to replace `*x` by reborrow `*y` and `y` may be dead, we allow replacement and
52/// mark storage statements on `y` for removal;
53/// - if we want to replace `*x` by non-reborrow `y` and `y` must be live, we allow replacement;
54/// - if we want to replace `*x` by non-reborrow `y` and `y` may be dead, we do not replace.
55///
56/// # Uniqueness
57///
58/// For `&mut` borrows, we also need to preserve the uniqueness property:
59/// we must avoid creating a state where we interleave uses of `*_1` and `_2`.
60/// To do it, we only perform full instantiation of mutable borrows:
61/// we replace either all or none of the occurrences of `*_1`.
62///
63/// Some care has to be taken when `_1` is copied in other locals.
64/// _1 = &raw? mut? _2;
65/// _3 = *_1;
66/// _4 = _1
67/// _5 = *_4
68/// In such cases, fully instantiating `_1` means fully instantiating all of the copies.
69///
70/// For immutable borrows, we do not need to preserve such uniqueness property,
71/// so we perform all the possible instantiations without removing the `_1 = &_2` statement.
72pub(super) struct ReferencePropagation;
73
74impl<'tcx> crate::MirPass<'tcx> for ReferencePropagation {
75 fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
76 sess.mir_opt_level() >= 2
77 }
78
79 #[instrument(level = "trace", skip(self, tcx, body))]
80 fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
81 debug!(def_id = ?body.source.def_id());
82 while propagate_ssa(tcx, body) {}
83 }
84
85 fn is_required(&self) -> bool {
86 false
87 }
88}
89
90fn propagate_ssa<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) -> bool {
91 let typing_env = body.typing_env(tcx);
92 let ssa = SsaLocals::new(tcx, body, typing_env);
93
94 let mut replacer = compute_replacement(tcx, body, &ssa);
95 debug!(?replacer.targets);
96 debug!(?replacer.allowed_replacements);
97 debug!(?replacer.storage_to_remove);
98
99 replacer.visit_body_preserves_cfg(body);
100
101 if replacer.any_replacement {
102 crate::simplify::remove_unused_definitions(body);
103 }
104
105 replacer.any_replacement
106}
107
108#[derive(Copy, Clone, Debug, PartialEq, Eq)]
109enum Value<'tcx> {
110 /// Not a pointer, or we can't know.
111 Unknown,
112 /// We know the value to be a pointer to this place.
113 /// The boolean indicates whether the reference is mutable, subject the uniqueness rule.
114 Pointer(Place<'tcx>, bool),
115}
116
117/// For each local, save the place corresponding to `*local`.
118#[instrument(level = "trace", skip(tcx, body, ssa))]
119fn compute_replacement<'tcx>(
120 tcx: TyCtxt<'tcx>,
121 body: &Body<'tcx>,
122 ssa: &SsaLocals,
123) -> Replacer<'tcx> {
124 let always_live_locals = always_storage_live_locals(body);
125
126 // Compute which locals have a single `StorageLive` statement ever.
127 let storage_live = StorageLiveLocals::new(body, &always_live_locals);
128
129 // Compute `MaybeStorageDead` dataflow to check that we only replace when the pointee is
130 // definitely live.
131 let mut maybe_dead = MaybeStorageDead::new(Cow::Owned(always_live_locals))
132 .iterate_to_fixpoint(tcx, body, None)
133 .into_results_cursor(body);
134
135 // Map for each local to the pointee.
136 let mut targets = IndexVec::from_elem(Value::Unknown, &body.local_decls);
137 // Set of locals for which we will remove their storage statement. This is useful for
138 // reborrowed references.
139 let mut storage_to_remove = DenseBitSet::new_empty(body.local_decls.len());
140
141 let fully_replacable_locals = fully_replacable_locals(ssa);
142
143 // Returns true iff we can use `place` as a pointee.
144 //
145 // Note that we only need to verify that there is a single `StorageLive` statement, and we do
146 // not need to verify that it dominates all uses of that local.
147 //
148 // Consider the three statements:
149 // SL : StorageLive(a)
150 // DEF: b = &raw? mut? a
151 // USE: stuff that uses *b
152 //
153 // First, we recall that DEF is checked to dominate USE. Now imagine for the sake of
154 // contradiction there is a DEF -> SL -> USE path. Consider two cases:
155 //
156 // - DEF dominates SL. We always have UB the first time control flow reaches DEF,
157 // because the storage of `a` is dead. Since DEF dominates USE, that means we cannot
158 // reach USE and so our optimization is ok.
159 //
160 // - DEF does not dominate SL. Then there is a `START_BLOCK -> SL` path not including DEF.
161 // But we can extend this path to USE, meaning there is also a `START_BLOCK -> USE` path not
162 // including DEF. This violates the DEF dominates USE condition, and so is impossible.
163 let is_constant_place = |place: Place<'_>| {
164 // We only allow `Deref` as the first projection, to avoid surprises.
165 if place.projection.first() == Some(&PlaceElem::Deref) {
166 // `place == (*some_local).xxx`, it is constant only if `some_local` is constant.
167 // We approximate constness using SSAness.
168 ssa.is_ssa(place.local) && place.projection[1..].iter().all(PlaceElem::is_stable_offset)
169 } else {
170 storage_live.has_single_storage(place.local)
171 && place.projection[..].iter().all(PlaceElem::is_stable_offset)
172 }
173 };
174
175 let mut can_perform_opt = |target: Place<'tcx>, loc: Location| {
176 if target.projection.first() == Some(&PlaceElem::Deref) {
177 // We are creating a reborrow. As `place.local` is a reference, removing the storage
178 // statements should not make it much harder for LLVM to optimize.
179 storage_to_remove.insert(target.local);
180 true
181 } else {
182 // This is a proper dereference. We can only allow it if `target` is live.
183 maybe_dead.seek_after_primary_effect(loc);
184 let maybe_dead = maybe_dead.get().contains(target.local);
185 !maybe_dead
186 }
187 };
188
189 for (local, rvalue, location) in ssa.assignments(body) {
190 debug!(?local);
191
192 // Only visit if we have something to do.
193 let Value::Unknown = targets[local] else { bug!() };
194
195 let ty = body.local_decls[local].ty;
196
197 // If this is not a reference or pointer, do nothing.
198 if !ty.is_any_ptr() {
199 debug!("not a reference or pointer");
200 continue;
201 }
202
203 // Whether the current local is subject to the uniqueness rule.
204 let needs_unique = ty.is_mutable_ptr();
205
206 // If this a mutable reference that we cannot fully replace, mark it as unknown.
207 if needs_unique && !fully_replacable_locals.contains(local) {
208 debug!("not fully replaceable");
209 continue;
210 }
211
212 debug!(?rvalue);
213 match rvalue {
214 // This is a copy, just use the value we have in store for the previous one.
215 // As we are visiting in `assignment_order`, ie. reverse postorder, `rhs` should
216 // have been visited before.
217 Rvalue::Use(Operand::Copy(place) | Operand::Move(place))
218 | Rvalue::CopyForDeref(place) => {
219 if let Some(rhs) = place.as_local()
220 && ssa.is_ssa(rhs)
221 {
222 let target = targets[rhs];
223 // Only see through immutable reference and pointers, as we do not know yet if
224 // mutable references are fully replaced.
225 if !needs_unique && matches!(target, Value::Pointer(..)) {
226 targets[local] = target;
227 } else {
228 targets[local] =
229 Value::Pointer(tcx.mk_place_deref(rhs.into()), needs_unique);
230 }
231 }
232 }
233 Rvalue::Ref(_, _, place) | Rvalue::RawPtr(_, place) => {
234 let mut place = *place;
235 // Try to see through `place` in order to collapse reborrow chains.
236 if place.projection.first() == Some(&PlaceElem::Deref)
237 && let Value::Pointer(target, inner_needs_unique) = targets[place.local]
238 // Only see through immutable reference and pointers, as we do not know yet if
239 // mutable references are fully replaced.
240 && !inner_needs_unique
241 // Only collapse chain if the pointee is definitely live.
242 && can_perform_opt(target, location)
243 {
244 place = target.project_deeper(&place.projection[1..], tcx);
245 }
246 assert_ne!(place.local, local);
247 if is_constant_place(place) {
248 targets[local] = Value::Pointer(place, needs_unique);
249 }
250 }
251 // We do not know what to do, so keep as not-a-pointer.
252 _ => {}
253 }
254 }
255
256 debug!(?targets);
257
258 let mut finder =
259 ReplacementFinder { targets, can_perform_opt, allowed_replacements: FxHashSet::default() };
260 let reachable_blocks = traversal::reachable_as_bitset(body);
261 for (bb, bbdata) in body.basic_blocks.iter_enumerated() {
262 // Only visit reachable blocks as we rely on dataflow.
263 if reachable_blocks.contains(bb) {
264 finder.visit_basic_block_data(bb, bbdata);
265 }
266 }
267
268 let allowed_replacements = finder.allowed_replacements;
269 return Replacer {
270 tcx,
271 targets: finder.targets,
272 storage_to_remove,
273 allowed_replacements,
274 any_replacement: false,
275 };
276
277 struct ReplacementFinder<'tcx, F> {
278 targets: IndexVec<Local, Value<'tcx>>,
279 can_perform_opt: F,
280 allowed_replacements: FxHashSet<(Local, Location)>,
281 }
282
283 impl<'tcx, F> Visitor<'tcx> for ReplacementFinder<'tcx, F>
284 where
285 F: FnMut(Place<'tcx>, Location) -> bool,
286 {
287 fn visit_place(&mut self, place: &Place<'tcx>, ctxt: PlaceContext, loc: Location) {
288 if matches!(ctxt, PlaceContext::NonUse(_)) {
289 // There is no need to check liveness for non-uses.
290 return;
291 }
292
293 if place.projection.first() != Some(&PlaceElem::Deref) {
294 // This is not a dereference, nothing to do.
295 return;
296 }
297
298 let mut place = place.as_ref();
299 loop {
300 if let Value::Pointer(target, needs_unique) = self.targets[place.local] {
301 let perform_opt = (self.can_perform_opt)(target, loc);
302 debug!(?place, ?target, ?needs_unique, ?perform_opt);
303
304 // This a reborrow chain, recursively allow the replacement.
305 //
306 // This also allows to detect cases where `target.local` is not replacable,
307 // and mark it as such.
308 if let &[PlaceElem::Deref] = &target.projection[..] {
309 assert!(perform_opt);
310 self.allowed_replacements.insert((target.local, loc));
311 place.local = target.local;
312 continue;
313 } else if perform_opt {
314 self.allowed_replacements.insert((target.local, loc));
315 } else if needs_unique {
316 // This mutable reference is not fully replacable, so drop it.
317 self.targets[place.local] = Value::Unknown;
318 }
319 }
320
321 break;
322 }
323 }
324 }
325}
326
327/// Compute the set of locals that can be fully replaced.
328///
329/// We consider a local to be replacable iff it's only used in a `Deref` projection `*_local` or
330/// non-use position (like storage statements and debuginfo).
331fn fully_replacable_locals(ssa: &SsaLocals) -> DenseBitSet<Local> {
332 let mut replacable = DenseBitSet::new_empty(ssa.num_locals());
333
334 // First pass: for each local, whether its uses can be fully replaced.
335 for local in ssa.locals() {
336 if ssa.num_direct_uses(local) == 0 {
337 replacable.insert(local);
338 }
339 }
340
341 // Second pass: a local can only be fully replaced if all its copies can.
342 ssa.meet_copy_equivalence(&mut replacable);
343
344 replacable
345}
346
347/// Utility to help performing substitution of `*pattern` by `target`.
348struct Replacer<'tcx> {
349 tcx: TyCtxt<'tcx>,
350 targets: IndexVec<Local, Value<'tcx>>,
351 storage_to_remove: DenseBitSet<Local>,
352 allowed_replacements: FxHashSet<(Local, Location)>,
353 any_replacement: bool,
354}
355
356impl<'tcx> MutVisitor<'tcx> for Replacer<'tcx> {
357 fn tcx(&self) -> TyCtxt<'tcx> {
358 self.tcx
359 }
360
361 fn visit_var_debug_info(&mut self, debuginfo: &mut VarDebugInfo<'tcx>) {
362 // If the debuginfo is a pointer to another place:
363 // - if it's a reborrow, see through it;
364 // - if it's a direct borrow, increase `debuginfo.references`.
365 while let VarDebugInfoContents::Place(ref mut place) = debuginfo.value
366 && place.projection.is_empty()
367 && let Value::Pointer(target, _) = self.targets[place.local]
368 && target.projection.iter().all(|p| p.can_use_in_debuginfo())
369 {
370 if let Some((&PlaceElem::Deref, rest)) = target.projection.split_last() {
371 *place = Place::from(target.local).project_deeper(rest, self.tcx);
372 self.any_replacement = true;
373 } else {
374 break;
375 }
376 }
377
378 // Simplify eventual projections left inside `debuginfo`.
379 self.super_var_debug_info(debuginfo);
380 }
381
382 fn visit_place(&mut self, place: &mut Place<'tcx>, ctxt: PlaceContext, loc: Location) {
383 loop {
384 if place.projection.first() != Some(&PlaceElem::Deref) {
385 return;
386 }
387
388 let Value::Pointer(target, _) = self.targets[place.local] else { return };
389
390 let perform_opt = match ctxt {
391 PlaceContext::NonUse(NonUseContext::VarDebugInfo) => {
392 target.projection.iter().all(|p| p.can_use_in_debuginfo())
393 }
394 PlaceContext::NonUse(_) => true,
395 _ => self.allowed_replacements.contains(&(target.local, loc)),
396 };
397
398 if !perform_opt {
399 return;
400 }
401
402 *place = target.project_deeper(&place.projection[1..], self.tcx);
403 self.any_replacement = true;
404 }
405 }
406
407 fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, loc: Location) {
408 match stmt.kind {
409 StatementKind::StorageLive(l) | StatementKind::StorageDead(l)
410 if self.storage_to_remove.contains(l) =>
411 {
412 stmt.make_nop();
413 }
414 // Do not remove assignments as they may still be useful for debuginfo.
415 _ => self.super_statement(stmt, loc),
416 }
417 }
418}