rustc_parse/parser/
mod.rs

1pub mod attr;
2mod attr_wrapper;
3mod diagnostics;
4mod expr;
5mod generics;
6mod item;
7mod nonterminal;
8mod pat;
9mod path;
10mod stmt;
11pub mod token_type;
12mod ty;
13
14// Parsers for non-functionlike builtin macros are defined in rustc_parse so they can be used by
15// both rustc_builtin_macros and rustfmt.
16pub mod asm;
17pub mod cfg_select;
18
19use std::assert_matches::debug_assert_matches;
20use std::{fmt, mem, slice};
21
22use attr_wrapper::{AttrWrapper, UsePreAttrPos};
23pub use diagnostics::AttemptLocalParseRecovery;
24pub(crate) use expr::ForbiddenLetReason;
25// Public to use it for custom `if` expressions in rustfmt forks like https://github.com/tucant/rustfmt
26pub use expr::LetChainsPolicy;
27pub(crate) use item::{FnContext, FnParseMode};
28pub use pat::{CommaRecoveryMode, RecoverColon, RecoverComma};
29pub use path::PathStyle;
30use rustc_ast::token::{
31    self, IdentIsRaw, InvisibleOrigin, MetaVarKind, NtExprKind, NtPatKind, Token, TokenKind,
32};
33use rustc_ast::tokenstream::{
34    ParserRange, ParserReplacement, Spacing, TokenCursor, TokenStream, TokenTree, TokenTreeCursor,
35};
36use rustc_ast::util::case::Case;
37use rustc_ast::{
38    self as ast, AnonConst, AttrArgs, AttrId, BlockCheckMode, ByRef, Const, CoroutineKind,
39    DUMMY_NODE_ID, DelimArgs, Expr, ExprKind, Extern, HasAttrs, HasTokens, MgcaDisambiguation,
40    Mutability, Recovered, Safety, StrLit, Visibility, VisibilityKind,
41};
42use rustc_ast_pretty::pprust;
43use rustc_data_structures::fx::FxHashMap;
44use rustc_errors::{Applicability, Diag, FatalError, MultiSpan, PResult};
45use rustc_index::interval::IntervalSet;
46use rustc_session::parse::ParseSess;
47use rustc_span::{Ident, Span, Symbol, kw, sym};
48use thin_vec::ThinVec;
49use token_type::TokenTypeSet;
50pub use token_type::{ExpKeywordPair, ExpTokenPair, TokenType};
51use tracing::debug;
52
53use crate::errors::{self, IncorrectVisibilityRestriction, NonStringAbiLiteral};
54use crate::exp;
55
56#[cfg(test)]
57mod tests;
58
59// Ideally, these tests would be in `rustc_ast`. But they depend on having a
60// parser, so they are here.
61#[cfg(test)]
62mod tokenstream {
63    mod tests;
64}
65
66bitflags::bitflags! {
67    /// Restrictions applied while parsing.
68    ///
69    /// The parser maintains a bitset of restrictions it will honor while
70    /// parsing. This is essentially used as a way of tracking state of what
71    /// is being parsed and to change behavior based on that.
72    #[derive(#[automatically_derived]
impl ::core::clone::Clone for Restrictions {
    #[inline]
    fn clone(&self) -> Restrictions {
        let _:
                ::core::clone::AssertParamIsClone<<Restrictions as
                ::bitflags::__private::PublicFlags>::Internal>;
        *self
    }
}
impl Restrictions {
    #[doc = r" Restricts expressions for use in statement position."]
    #[doc = r""]
    #[doc =
    r" When expressions are used in various places, like statements or"]
    #[doc =
    r" match arms, this is used to stop parsing once certain tokens are"]
    #[doc = r" reached."]
    #[doc = r""]
    #[doc =
    r" For example, `if true {} & 1` with `STMT_EXPR` in effect is parsed"]
    #[doc =
    r" as two separate expression statements (`if` and a reference to 1)."]
    #[doc =
    r" Otherwise it is parsed as a bitwise AND where `if` is on the left"]
    #[doc = r" and 1 is on the right."]
    #[allow(deprecated, non_upper_case_globals,)]
    pub const STMT_EXPR: Self = Self::from_bits_retain(1 << 0);
    #[doc = r" Do not allow struct literals."]
    #[doc = r""]
    #[doc =
    r" There are several places in the grammar where we don't want to"]
    #[doc = r" allow struct literals because they can require lookahead, or"]
    #[doc = r" otherwise could be ambiguous or cause confusion. For example,"]
    #[doc =
    r" `if Foo {} {}` isn't clear if it is `Foo{}` struct literal, or"]
    #[doc = r" just `Foo` is the condition, followed by a consequent block,"]
    #[doc = r" followed by an empty block."]
    #[doc = r""]
    #[doc =
    r" See [RFC 92](https://rust-lang.github.io/rfcs/0092-struct-grammar.html)."]
    #[allow(deprecated, non_upper_case_globals,)]
    pub const NO_STRUCT_LITERAL: Self = Self::from_bits_retain(1 << 1);
    #[doc =
    r" Used to provide better error messages for const generic arguments."]
    #[doc = r""]
    #[doc =
    r" An un-braced const generic argument is limited to a very small"]
    #[doc =
    r" subset of expressions. This is used to detect the situation where"]
    #[doc =
    r" an expression outside of that subset is used, and to suggest to"]
    #[doc = r" wrap the expression in braces."]
    #[allow(deprecated, non_upper_case_globals,)]
    pub const CONST_EXPR: Self = Self::from_bits_retain(1 << 2);
    #[doc = r" Allows `let` expressions."]
    #[doc = r""]
    #[doc =
    r" `let pattern = scrutinee` is parsed as an expression, but it is"]
    #[doc = r" only allowed in let chains (`if` and `while` conditions)."]
    #[doc =
    r" Otherwise it is not an expression (note that `let` in statement"]
    #[doc =
    r" positions is treated as a `StmtKind::Let` statement, which has a"]
    #[doc = r" slightly different grammar)."]
    #[allow(deprecated, non_upper_case_globals,)]
    pub const ALLOW_LET: Self = Self::from_bits_retain(1 << 3);
    #[doc = r" Used to detect a missing `=>` in a match guard."]
    #[doc = r""]
    #[doc =
    r" This is used for error handling in a match guard to give a better"]
    #[doc =
    r" error message if the `=>` is missing. It is set when parsing the"]
    #[doc = r" guard expression."]
    #[allow(deprecated, non_upper_case_globals,)]
    pub const IN_IF_GUARD: Self = Self::from_bits_retain(1 << 4);
    #[doc = r" Used to detect the incorrect use of expressions in patterns."]
    #[doc = r""]
    #[doc =
    r" This is used for error handling while parsing a pattern. During"]
    #[doc =
    r" error recovery, this will be set to try to parse the pattern as an"]
    #[doc =
    r" expression, but halts parsing the expression when reaching certain"]
    #[doc = r" tokens like `=`."]
    #[allow(deprecated, non_upper_case_globals,)]
    pub const IS_PAT: Self = Self::from_bits_retain(1 << 5);
}
impl ::bitflags::Flags for Restrictions {
    const FLAGS: &'static [::bitflags::Flag<Restrictions>] =
        &[{

                        #[allow(deprecated, non_upper_case_globals,)]
                        ::bitflags::Flag::new("STMT_EXPR", Restrictions::STMT_EXPR)
                    },
                    {

                        #[allow(deprecated, non_upper_case_globals,)]
                        ::bitflags::Flag::new("NO_STRUCT_LITERAL",
                            Restrictions::NO_STRUCT_LITERAL)
                    },
                    {

                        #[allow(deprecated, non_upper_case_globals,)]
                        ::bitflags::Flag::new("CONST_EXPR",
                            Restrictions::CONST_EXPR)
                    },
                    {

                        #[allow(deprecated, non_upper_case_globals,)]
                        ::bitflags::Flag::new("ALLOW_LET", Restrictions::ALLOW_LET)
                    },
                    {

                        #[allow(deprecated, non_upper_case_globals,)]
                        ::bitflags::Flag::new("IN_IF_GUARD",
                            Restrictions::IN_IF_GUARD)
                    },
                    {

                        #[allow(deprecated, non_upper_case_globals,)]
                        ::bitflags::Flag::new("IS_PAT", Restrictions::IS_PAT)
                    }];
    type Bits = u8;
    fn bits(&self) -> u8 { Restrictions::bits(self) }
    fn from_bits_retain(bits: u8) -> Restrictions {
        Restrictions::from_bits_retain(bits)
    }
}
#[allow(dead_code, deprecated, unused_doc_comments, unused_attributes,
unused_mut, unused_imports, non_upper_case_globals, clippy ::
assign_op_pattern, clippy :: indexing_slicing, clippy :: same_name_method,
clippy :: iter_without_into_iter,)]
const _: () =
    {
        #[repr(transparent)]
        struct InternalBitFlags(u8);
        #[automatically_derived]
        #[doc(hidden)]
        unsafe impl ::core::clone::TrivialClone for InternalBitFlags { }
        #[automatically_derived]
        impl ::core::clone::Clone for InternalBitFlags {
            #[inline]
            fn clone(&self) -> InternalBitFlags {
                let _: ::core::clone::AssertParamIsClone<u8>;
                *self
            }
        }
        #[automatically_derived]
        impl ::core::marker::Copy for InternalBitFlags { }
        #[automatically_derived]
        impl ::core::marker::StructuralPartialEq for InternalBitFlags { }
        #[automatically_derived]
        impl ::core::cmp::PartialEq for InternalBitFlags {
            #[inline]
            fn eq(&self, other: &InternalBitFlags) -> bool {
                self.0 == other.0
            }
        }
        #[automatically_derived]
        impl ::core::cmp::Eq for InternalBitFlags {
            #[inline]
            #[doc(hidden)]
            #[coverage(off)]
            fn assert_receiver_is_total_eq(&self) -> () {
                let _: ::core::cmp::AssertParamIsEq<u8>;
            }
        }
        #[automatically_derived]
        impl ::core::cmp::PartialOrd for InternalBitFlags {
            #[inline]
            fn partial_cmp(&self, other: &InternalBitFlags)
                -> ::core::option::Option<::core::cmp::Ordering> {
                ::core::cmp::PartialOrd::partial_cmp(&self.0, &other.0)
            }
        }
        #[automatically_derived]
        impl ::core::cmp::Ord for InternalBitFlags {
            #[inline]
            fn cmp(&self, other: &InternalBitFlags) -> ::core::cmp::Ordering {
                ::core::cmp::Ord::cmp(&self.0, &other.0)
            }
        }
        #[automatically_derived]
        impl ::core::hash::Hash for InternalBitFlags {
            #[inline]
            fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) -> () {
                ::core::hash::Hash::hash(&self.0, state)
            }
        }
        impl ::bitflags::__private::PublicFlags for Restrictions {
            type Primitive = u8;
            type Internal = InternalBitFlags;
        }
        impl ::bitflags::__private::core::default::Default for
            InternalBitFlags {
            #[inline]
            fn default() -> Self { InternalBitFlags::empty() }
        }
        impl ::bitflags::__private::core::fmt::Debug for InternalBitFlags {
            fn fmt(&self,
                f: &mut ::bitflags::__private::core::fmt::Formatter<'_>)
                -> ::bitflags::__private::core::fmt::Result {
                if self.is_empty() {
                    f.write_fmt(format_args!("{0:#x}",
                            <u8 as ::bitflags::Bits>::EMPTY))
                } else {
                    ::bitflags::__private::core::fmt::Display::fmt(self, f)
                }
            }
        }
        impl ::bitflags::__private::core::fmt::Display for InternalBitFlags {
            fn fmt(&self,
                f: &mut ::bitflags::__private::core::fmt::Formatter<'_>)
                -> ::bitflags::__private::core::fmt::Result {
                ::bitflags::parser::to_writer(&Restrictions(*self), f)
            }
        }
        impl ::bitflags::__private::core::str::FromStr for InternalBitFlags {
            type Err = ::bitflags::parser::ParseError;
            fn from_str(s: &str)
                ->
                    ::bitflags::__private::core::result::Result<Self,
                    Self::Err> {
                ::bitflags::parser::from_str::<Restrictions>(s).map(|flags|
                        flags.0)
            }
        }
        impl ::bitflags::__private::core::convert::AsRef<u8> for
            InternalBitFlags {
            fn as_ref(&self) -> &u8 { &self.0 }
        }
        impl ::bitflags::__private::core::convert::From<u8> for
            InternalBitFlags {
            fn from(bits: u8) -> Self { Self::from_bits_retain(bits) }
        }
        #[allow(dead_code, deprecated, unused_attributes)]
        impl InternalBitFlags {
            /// Get a flags value with all bits unset.
            #[inline]
            pub const fn empty() -> Self {
                Self(<u8 as ::bitflags::Bits>::EMPTY)
            }
            /// Get a flags value with all known bits set.
            #[inline]
            pub const fn all() -> Self {
                let mut truncated = <u8 as ::bitflags::Bits>::EMPTY;
                let mut i = 0;
                {
                    {
                        let flag =
                            <Restrictions as
                                            ::bitflags::Flags>::FLAGS[i].value().bits();
                        truncated = truncated | flag;
                        i += 1;
                    }
                };
                {
                    {
                        let flag =
                            <Restrictions as
                                            ::bitflags::Flags>::FLAGS[i].value().bits();
                        truncated = truncated | flag;
                        i += 1;
                    }
                };
                {
                    {
                        let flag =
                            <Restrictions as
                                            ::bitflags::Flags>::FLAGS[i].value().bits();
                        truncated = truncated | flag;
                        i += 1;
                    }
                };
                {
                    {
                        let flag =
                            <Restrictions as
                                            ::bitflags::Flags>::FLAGS[i].value().bits();
                        truncated = truncated | flag;
                        i += 1;
                    }
                };
                {
                    {
                        let flag =
                            <Restrictions as
                                            ::bitflags::Flags>::FLAGS[i].value().bits();
                        truncated = truncated | flag;
                        i += 1;
                    }
                };
                {
                    {
                        let flag =
                            <Restrictions as
                                            ::bitflags::Flags>::FLAGS[i].value().bits();
                        truncated = truncated | flag;
                        i += 1;
                    }
                };
                let _ = i;
                Self(truncated)
            }
            /// Get the underlying bits value.
            ///
            /// The returned value is exactly the bits set in this flags value.
            #[inline]
            pub const fn bits(&self) -> u8 { self.0 }
            /// Convert from a bits value.
            ///
            /// This method will return `None` if any unknown bits are set.
            #[inline]
            pub const fn from_bits(bits: u8)
                -> ::bitflags::__private::core::option::Option<Self> {
                let truncated = Self::from_bits_truncate(bits).0;
                if truncated == bits {
                    ::bitflags::__private::core::option::Option::Some(Self(bits))
                } else { ::bitflags::__private::core::option::Option::None }
            }
            /// Convert from a bits value, unsetting any unknown bits.
            #[inline]
            pub const fn from_bits_truncate(bits: u8) -> Self {
                Self(bits & Self::all().0)
            }
            /// Convert from a bits value exactly.
            #[inline]
            pub const fn from_bits_retain(bits: u8) -> Self { Self(bits) }
            /// Get a flags value with the bits of a flag with the given name set.
            ///
            /// This method will return `None` if `name` is empty or doesn't
            /// correspond to any named flag.
            #[inline]
            pub fn from_name(name: &str)
                -> ::bitflags::__private::core::option::Option<Self> {
                {
                    if name == "STMT_EXPR" {
                        return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::STMT_EXPR.bits()));
                    }
                };
                ;
                {
                    if name == "NO_STRUCT_LITERAL" {
                        return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::NO_STRUCT_LITERAL.bits()));
                    }
                };
                ;
                {
                    if name == "CONST_EXPR" {
                        return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::CONST_EXPR.bits()));
                    }
                };
                ;
                {
                    if name == "ALLOW_LET" {
                        return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::ALLOW_LET.bits()));
                    }
                };
                ;
                {
                    if name == "IN_IF_GUARD" {
                        return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::IN_IF_GUARD.bits()));
                    }
                };
                ;
                {
                    if name == "IS_PAT" {
                        return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::IS_PAT.bits()));
                    }
                };
                ;
                let _ = name;
                ::bitflags::__private::core::option::Option::None
            }
            /// Whether all bits in this flags value are unset.
            #[inline]
            pub const fn is_empty(&self) -> bool {
                self.0 == <u8 as ::bitflags::Bits>::EMPTY
            }
            /// Whether all known bits in this flags value are set.
            #[inline]
            pub const fn is_all(&self) -> bool {
                Self::all().0 | self.0 == self.0
            }
            /// Whether any set bits in a source flags value are also set in a target flags value.
            #[inline]
            pub const fn intersects(&self, other: Self) -> bool {
                self.0 & other.0 != <u8 as ::bitflags::Bits>::EMPTY
            }
            /// Whether all set bits in a source flags value are also set in a target flags value.
            #[inline]
            pub const fn contains(&self, other: Self) -> bool {
                self.0 & other.0 == other.0
            }
            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            pub fn insert(&mut self, other: Self) {
                *self = Self(self.0).union(other);
            }
            /// The intersection of a source flags value with the complement of a target flags
            /// value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `remove` won't truncate `other`, but the `!` operator will.
            #[inline]
            pub fn remove(&mut self, other: Self) {
                *self = Self(self.0).difference(other);
            }
            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            pub fn toggle(&mut self, other: Self) {
                *self = Self(self.0).symmetric_difference(other);
            }
            /// Call `insert` when `value` is `true` or `remove` when `value` is `false`.
            #[inline]
            pub fn set(&mut self, other: Self, value: bool) {
                if value { self.insert(other); } else { self.remove(other); }
            }
            /// The bitwise and (`&`) of the bits in two flags values.
            #[inline]
            #[must_use]
            pub const fn intersection(self, other: Self) -> Self {
                Self(self.0 & other.0)
            }
            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            #[must_use]
            pub const fn union(self, other: Self) -> Self {
                Self(self.0 | other.0)
            }
            /// The intersection of a source flags value with the complement of a target flags
            /// value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `difference` won't truncate `other`, but the `!` operator will.
            #[inline]
            #[must_use]
            pub const fn difference(self, other: Self) -> Self {
                Self(self.0 & !other.0)
            }
            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            #[must_use]
            pub const fn symmetric_difference(self, other: Self) -> Self {
                Self(self.0 ^ other.0)
            }
            /// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
            #[inline]
            #[must_use]
            pub const fn complement(self) -> Self {
                Self::from_bits_truncate(!self.0)
            }
        }
        impl ::bitflags::__private::core::fmt::Binary for InternalBitFlags {
            fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
                -> ::bitflags::__private::core::fmt::Result {
                let inner = self.0;
                ::bitflags::__private::core::fmt::Binary::fmt(&inner, f)
            }
        }
        impl ::bitflags::__private::core::fmt::Octal for InternalBitFlags {
            fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
                -> ::bitflags::__private::core::fmt::Result {
                let inner = self.0;
                ::bitflags::__private::core::fmt::Octal::fmt(&inner, f)
            }
        }
        impl ::bitflags::__private::core::fmt::LowerHex for InternalBitFlags {
            fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
                -> ::bitflags::__private::core::fmt::Result {
                let inner = self.0;
                ::bitflags::__private::core::fmt::LowerHex::fmt(&inner, f)
            }
        }
        impl ::bitflags::__private::core::fmt::UpperHex for InternalBitFlags {
            fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
                -> ::bitflags::__private::core::fmt::Result {
                let inner = self.0;
                ::bitflags::__private::core::fmt::UpperHex::fmt(&inner, f)
            }
        }
        impl ::bitflags::__private::core::ops::BitOr for InternalBitFlags {
            type Output = Self;
            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            fn bitor(self, other: InternalBitFlags) -> Self {
                self.union(other)
            }
        }
        impl ::bitflags::__private::core::ops::BitOrAssign for
            InternalBitFlags {
            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            fn bitor_assign(&mut self, other: Self) { self.insert(other); }
        }
        impl ::bitflags::__private::core::ops::BitXor for InternalBitFlags {
            type Output = Self;
            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            fn bitxor(self, other: Self) -> Self {
                self.symmetric_difference(other)
            }
        }
        impl ::bitflags::__private::core::ops::BitXorAssign for
            InternalBitFlags {
            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            fn bitxor_assign(&mut self, other: Self) { self.toggle(other); }
        }
        impl ::bitflags::__private::core::ops::BitAnd for InternalBitFlags {
            type Output = Self;
            /// The bitwise and (`&`) of the bits in two flags values.
            #[inline]
            fn bitand(self, other: Self) -> Self { self.intersection(other) }
        }
        impl ::bitflags::__private::core::ops::BitAndAssign for
            InternalBitFlags {
            /// The bitwise and (`&`) of the bits in two flags values.
            #[inline]
            fn bitand_assign(&mut self, other: Self) {
                *self =
                    Self::from_bits_retain(self.bits()).intersection(other);
            }
        }
        impl ::bitflags::__private::core::ops::Sub for InternalBitFlags {
            type Output = Self;
            /// The intersection of a source flags value with the complement of a target flags value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `difference` won't truncate `other`, but the `!` operator will.
            #[inline]
            fn sub(self, other: Self) -> Self { self.difference(other) }
        }
        impl ::bitflags::__private::core::ops::SubAssign for InternalBitFlags
            {
            /// The intersection of a source flags value with the complement of a target flags value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `difference` won't truncate `other`, but the `!` operator will.
            #[inline]
            fn sub_assign(&mut self, other: Self) { self.remove(other); }
        }
        impl ::bitflags::__private::core::ops::Not for InternalBitFlags {
            type Output = Self;
            /// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
            #[inline]
            fn not(self) -> Self { self.complement() }
        }
        impl ::bitflags::__private::core::iter::Extend<InternalBitFlags> for
            InternalBitFlags {
            /// The bitwise or (`|`) of the bits in each flags value.
            fn extend<T: ::bitflags::__private::core::iter::IntoIterator<Item
                = Self>>(&mut self, iterator: T) {
                for item in iterator { self.insert(item) }
            }
        }
        impl ::bitflags::__private::core::iter::FromIterator<InternalBitFlags>
            for InternalBitFlags {
            /// The bitwise or (`|`) of the bits in each flags value.
            fn from_iter<T: ::bitflags::__private::core::iter::IntoIterator<Item
                = Self>>(iterator: T) -> Self {
                use ::bitflags::__private::core::iter::Extend;
                let mut result = Self::empty();
                result.extend(iterator);
                result
            }
        }
        impl InternalBitFlags {
            /// Yield a set of contained flags values.
            ///
            /// Each yielded flags value will correspond to a defined named flag. Any unknown bits
            /// will be yielded together as a final flags value.
            #[inline]
            pub const fn iter(&self) -> ::bitflags::iter::Iter<Restrictions> {
                ::bitflags::iter::Iter::__private_const_new(<Restrictions as
                        ::bitflags::Flags>::FLAGS,
                    Restrictions::from_bits_retain(self.bits()),
                    Restrictions::from_bits_retain(self.bits()))
            }
            /// Yield a set of contained named flags values.
            ///
            /// This method is like [`iter`](#method.iter), except only yields bits in contained named flags.
            /// Any unknown bits, or bits not corresponding to a contained flag will not be yielded.
            #[inline]
            pub const fn iter_names(&self)
                -> ::bitflags::iter::IterNames<Restrictions> {
                ::bitflags::iter::IterNames::__private_const_new(<Restrictions
                        as ::bitflags::Flags>::FLAGS,
                    Restrictions::from_bits_retain(self.bits()),
                    Restrictions::from_bits_retain(self.bits()))
            }
        }
        impl ::bitflags::__private::core::iter::IntoIterator for
            InternalBitFlags {
            type Item = Restrictions;
            type IntoIter = ::bitflags::iter::Iter<Restrictions>;
            fn into_iter(self) -> Self::IntoIter { self.iter() }
        }
        impl InternalBitFlags {
            /// Returns a mutable reference to the raw value of the flags currently stored.
            #[inline]
            pub fn bits_mut(&mut self) -> &mut u8 { &mut self.0 }
        }
        #[allow(dead_code, deprecated, unused_attributes)]
        impl Restrictions {
            /// Get a flags value with all bits unset.
            #[inline]
            pub const fn empty() -> Self { Self(InternalBitFlags::empty()) }
            /// Get a flags value with all known bits set.
            #[inline]
            pub const fn all() -> Self { Self(InternalBitFlags::all()) }
            /// Get the underlying bits value.
            ///
            /// The returned value is exactly the bits set in this flags value.
            #[inline]
            pub const fn bits(&self) -> u8 { self.0.bits() }
            /// Convert from a bits value.
            ///
            /// This method will return `None` if any unknown bits are set.
            #[inline]
            pub const fn from_bits(bits: u8)
                -> ::bitflags::__private::core::option::Option<Self> {
                match InternalBitFlags::from_bits(bits) {
                    ::bitflags::__private::core::option::Option::Some(bits) =>
                        ::bitflags::__private::core::option::Option::Some(Self(bits)),
                    ::bitflags::__private::core::option::Option::None =>
                        ::bitflags::__private::core::option::Option::None,
                }
            }
            /// Convert from a bits value, unsetting any unknown bits.
            #[inline]
            pub const fn from_bits_truncate(bits: u8) -> Self {
                Self(InternalBitFlags::from_bits_truncate(bits))
            }
            /// Convert from a bits value exactly.
            #[inline]
            pub const fn from_bits_retain(bits: u8) -> Self {
                Self(InternalBitFlags::from_bits_retain(bits))
            }
            /// Get a flags value with the bits of a flag with the given name set.
            ///
            /// This method will return `None` if `name` is empty or doesn't
            /// correspond to any named flag.
            #[inline]
            pub fn from_name(name: &str)
                -> ::bitflags::__private::core::option::Option<Self> {
                match InternalBitFlags::from_name(name) {
                    ::bitflags::__private::core::option::Option::Some(bits) =>
                        ::bitflags::__private::core::option::Option::Some(Self(bits)),
                    ::bitflags::__private::core::option::Option::None =>
                        ::bitflags::__private::core::option::Option::None,
                }
            }
            /// Whether all bits in this flags value are unset.
            #[inline]
            pub const fn is_empty(&self) -> bool { self.0.is_empty() }
            /// Whether all known bits in this flags value are set.
            #[inline]
            pub const fn is_all(&self) -> bool { self.0.is_all() }
            /// Whether any set bits in a source flags value are also set in a target flags value.
            #[inline]
            pub const fn intersects(&self, other: Self) -> bool {
                self.0.intersects(other.0)
            }
            /// Whether all set bits in a source flags value are also set in a target flags value.
            #[inline]
            pub const fn contains(&self, other: Self) -> bool {
                self.0.contains(other.0)
            }
            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            pub fn insert(&mut self, other: Self) { self.0.insert(other.0) }
            /// The intersection of a source flags value with the complement of a target flags
            /// value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `remove` won't truncate `other`, but the `!` operator will.
            #[inline]
            pub fn remove(&mut self, other: Self) { self.0.remove(other.0) }
            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            pub fn toggle(&mut self, other: Self) { self.0.toggle(other.0) }
            /// Call `insert` when `value` is `true` or `remove` when `value` is `false`.
            #[inline]
            pub fn set(&mut self, other: Self, value: bool) {
                self.0.set(other.0, value)
            }
            /// The bitwise and (`&`) of the bits in two flags values.
            #[inline]
            #[must_use]
            pub const fn intersection(self, other: Self) -> Self {
                Self(self.0.intersection(other.0))
            }
            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            #[must_use]
            pub const fn union(self, other: Self) -> Self {
                Self(self.0.union(other.0))
            }
            /// The intersection of a source flags value with the complement of a target flags
            /// value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `difference` won't truncate `other`, but the `!` operator will.
            #[inline]
            #[must_use]
            pub const fn difference(self, other: Self) -> Self {
                Self(self.0.difference(other.0))
            }
            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            #[must_use]
            pub const fn symmetric_difference(self, other: Self) -> Self {
                Self(self.0.symmetric_difference(other.0))
            }
            /// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
            #[inline]
            #[must_use]
            pub const fn complement(self) -> Self {
                Self(self.0.complement())
            }
        }
        impl ::bitflags::__private::core::fmt::Binary for Restrictions {
            fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
                -> ::bitflags::__private::core::fmt::Result {
                let inner = self.0;
                ::bitflags::__private::core::fmt::Binary::fmt(&inner, f)
            }
        }
        impl ::bitflags::__private::core::fmt::Octal for Restrictions {
            fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
                -> ::bitflags::__private::core::fmt::Result {
                let inner = self.0;
                ::bitflags::__private::core::fmt::Octal::fmt(&inner, f)
            }
        }
        impl ::bitflags::__private::core::fmt::LowerHex for Restrictions {
            fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
                -> ::bitflags::__private::core::fmt::Result {
                let inner = self.0;
                ::bitflags::__private::core::fmt::LowerHex::fmt(&inner, f)
            }
        }
        impl ::bitflags::__private::core::fmt::UpperHex for Restrictions {
            fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
                -> ::bitflags::__private::core::fmt::Result {
                let inner = self.0;
                ::bitflags::__private::core::fmt::UpperHex::fmt(&inner, f)
            }
        }
        impl ::bitflags::__private::core::ops::BitOr for Restrictions {
            type Output = Self;
            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            fn bitor(self, other: Restrictions) -> Self { self.union(other) }
        }
        impl ::bitflags::__private::core::ops::BitOrAssign for Restrictions {
            /// The bitwise or (`|`) of the bits in two flags values.
            #[inline]
            fn bitor_assign(&mut self, other: Self) { self.insert(other); }
        }
        impl ::bitflags::__private::core::ops::BitXor for Restrictions {
            type Output = Self;
            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            fn bitxor(self, other: Self) -> Self {
                self.symmetric_difference(other)
            }
        }
        impl ::bitflags::__private::core::ops::BitXorAssign for Restrictions {
            /// The bitwise exclusive-or (`^`) of the bits in two flags values.
            #[inline]
            fn bitxor_assign(&mut self, other: Self) { self.toggle(other); }
        }
        impl ::bitflags::__private::core::ops::BitAnd for Restrictions {
            type Output = Self;
            /// The bitwise and (`&`) of the bits in two flags values.
            #[inline]
            fn bitand(self, other: Self) -> Self { self.intersection(other) }
        }
        impl ::bitflags::__private::core::ops::BitAndAssign for Restrictions {
            /// The bitwise and (`&`) of the bits in two flags values.
            #[inline]
            fn bitand_assign(&mut self, other: Self) {
                *self =
                    Self::from_bits_retain(self.bits()).intersection(other);
            }
        }
        impl ::bitflags::__private::core::ops::Sub for Restrictions {
            type Output = Self;
            /// The intersection of a source flags value with the complement of a target flags value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `difference` won't truncate `other`, but the `!` operator will.
            #[inline]
            fn sub(self, other: Self) -> Self { self.difference(other) }
        }
        impl ::bitflags::__private::core::ops::SubAssign for Restrictions {
            /// The intersection of a source flags value with the complement of a target flags value (`&!`).
            ///
            /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
            /// `difference` won't truncate `other`, but the `!` operator will.
            #[inline]
            fn sub_assign(&mut self, other: Self) { self.remove(other); }
        }
        impl ::bitflags::__private::core::ops::Not for Restrictions {
            type Output = Self;
            /// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
            #[inline]
            fn not(self) -> Self { self.complement() }
        }
        impl ::bitflags::__private::core::iter::Extend<Restrictions> for
            Restrictions {
            /// The bitwise or (`|`) of the bits in each flags value.
            fn extend<T: ::bitflags::__private::core::iter::IntoIterator<Item
                = Self>>(&mut self, iterator: T) {
                for item in iterator { self.insert(item) }
            }
        }
        impl ::bitflags::__private::core::iter::FromIterator<Restrictions> for
            Restrictions {
            /// The bitwise or (`|`) of the bits in each flags value.
            fn from_iter<T: ::bitflags::__private::core::iter::IntoIterator<Item
                = Self>>(iterator: T) -> Self {
                use ::bitflags::__private::core::iter::Extend;
                let mut result = Self::empty();
                result.extend(iterator);
                result
            }
        }
        impl Restrictions {
            /// Yield a set of contained flags values.
            ///
            /// Each yielded flags value will correspond to a defined named flag. Any unknown bits
            /// will be yielded together as a final flags value.
            #[inline]
            pub const fn iter(&self) -> ::bitflags::iter::Iter<Restrictions> {
                ::bitflags::iter::Iter::__private_const_new(<Restrictions as
                        ::bitflags::Flags>::FLAGS,
                    Restrictions::from_bits_retain(self.bits()),
                    Restrictions::from_bits_retain(self.bits()))
            }
            /// Yield a set of contained named flags values.
            ///
            /// This method is like [`iter`](#method.iter), except only yields bits in contained named flags.
            /// Any unknown bits, or bits not corresponding to a contained flag will not be yielded.
            #[inline]
            pub const fn iter_names(&self)
                -> ::bitflags::iter::IterNames<Restrictions> {
                ::bitflags::iter::IterNames::__private_const_new(<Restrictions
                        as ::bitflags::Flags>::FLAGS,
                    Restrictions::from_bits_retain(self.bits()),
                    Restrictions::from_bits_retain(self.bits()))
            }
        }
        impl ::bitflags::__private::core::iter::IntoIterator for Restrictions
            {
            type Item = Restrictions;
            type IntoIter = ::bitflags::iter::Iter<Restrictions>;
            fn into_iter(self) -> Self::IntoIter { self.iter() }
        }
    };Clone, #[automatically_derived]
impl ::core::marker::Copy for Restrictions { }Copy, #[automatically_derived]
impl ::core::fmt::Debug for Restrictions {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::debug_tuple_field1_finish(f, "Restrictions",
            &&self.0)
    }
}Debug)]
73    struct Restrictions: u8 {
74        /// Restricts expressions for use in statement position.
75        ///
76        /// When expressions are used in various places, like statements or
77        /// match arms, this is used to stop parsing once certain tokens are
78        /// reached.
79        ///
80        /// For example, `if true {} & 1` with `STMT_EXPR` in effect is parsed
81        /// as two separate expression statements (`if` and a reference to 1).
82        /// Otherwise it is parsed as a bitwise AND where `if` is on the left
83        /// and 1 is on the right.
84        const STMT_EXPR         = 1 << 0;
85        /// Do not allow struct literals.
86        ///
87        /// There are several places in the grammar where we don't want to
88        /// allow struct literals because they can require lookahead, or
89        /// otherwise could be ambiguous or cause confusion. For example,
90        /// `if Foo {} {}` isn't clear if it is `Foo{}` struct literal, or
91        /// just `Foo` is the condition, followed by a consequent block,
92        /// followed by an empty block.
93        ///
94        /// See [RFC 92](https://rust-lang.github.io/rfcs/0092-struct-grammar.html).
95        const NO_STRUCT_LITERAL = 1 << 1;
96        /// Used to provide better error messages for const generic arguments.
97        ///
98        /// An un-braced const generic argument is limited to a very small
99        /// subset of expressions. This is used to detect the situation where
100        /// an expression outside of that subset is used, and to suggest to
101        /// wrap the expression in braces.
102        const CONST_EXPR        = 1 << 2;
103        /// Allows `let` expressions.
104        ///
105        /// `let pattern = scrutinee` is parsed as an expression, but it is
106        /// only allowed in let chains (`if` and `while` conditions).
107        /// Otherwise it is not an expression (note that `let` in statement
108        /// positions is treated as a `StmtKind::Let` statement, which has a
109        /// slightly different grammar).
110        const ALLOW_LET         = 1 << 3;
111        /// Used to detect a missing `=>` in a match guard.
112        ///
113        /// This is used for error handling in a match guard to give a better
114        /// error message if the `=>` is missing. It is set when parsing the
115        /// guard expression.
116        const IN_IF_GUARD       = 1 << 4;
117        /// Used to detect the incorrect use of expressions in patterns.
118        ///
119        /// This is used for error handling while parsing a pattern. During
120        /// error recovery, this will be set to try to parse the pattern as an
121        /// expression, but halts parsing the expression when reaching certain
122        /// tokens like `=`.
123        const IS_PAT            = 1 << 5;
124    }
125}
126
127#[derive(#[automatically_derived]
impl ::core::clone::Clone for SemiColonMode {
    #[inline]
    fn clone(&self) -> SemiColonMode { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for SemiColonMode { }Copy, #[automatically_derived]
impl ::core::cmp::PartialEq for SemiColonMode {
    #[inline]
    fn eq(&self, other: &SemiColonMode) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq, #[automatically_derived]
impl ::core::fmt::Debug for SemiColonMode {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                SemiColonMode::Break => "Break",
                SemiColonMode::Ignore => "Ignore",
                SemiColonMode::Comma => "Comma",
            })
    }
}Debug)]
128enum SemiColonMode {
129    Break,
130    Ignore,
131    Comma,
132}
133
134#[derive(#[automatically_derived]
impl ::core::clone::Clone for BlockMode {
    #[inline]
    fn clone(&self) -> BlockMode { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for BlockMode { }Copy, #[automatically_derived]
impl ::core::cmp::PartialEq for BlockMode {
    #[inline]
    fn eq(&self, other: &BlockMode) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq, #[automatically_derived]
impl ::core::fmt::Debug for BlockMode {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                BlockMode::Break => "Break",
                BlockMode::Ignore => "Ignore",
            })
    }
}Debug)]
135enum BlockMode {
136    Break,
137    Ignore,
138}
139
140/// Whether or not we should force collection of tokens for an AST node,
141/// regardless of whether or not it has attributes
142#[derive(#[automatically_derived]
impl ::core::clone::Clone for ForceCollect {
    #[inline]
    fn clone(&self) -> ForceCollect { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for ForceCollect { }Copy, #[automatically_derived]
impl ::core::fmt::Debug for ForceCollect {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                ForceCollect::Yes => "Yes",
                ForceCollect::No => "No",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for ForceCollect {
    #[inline]
    fn eq(&self, other: &ForceCollect) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
143pub enum ForceCollect {
144    Yes,
145    No,
146}
147
148/// If the next tokens are ill-formed `$ty::` recover them as `<$ty>::`.
149#[macro_export]
150macro_rules! maybe_recover_from_interpolated_ty_qpath {
151    ($self: expr, $allow_qpath_recovery: expr) => {
152        if $allow_qpath_recovery
153            && $self.may_recover()
154            && let Some(mv_kind) = $self.token.is_metavar_seq()
155            && let token::MetaVarKind::Ty { .. } = mv_kind
156            && $self.check_noexpect_past_close_delim(&token::PathSep)
157        {
158            // Reparse the type, then move to recovery.
159            let ty = $self
160                .eat_metavar_seq(mv_kind, |this| this.parse_ty_no_question_mark_recover())
161                .expect("metavar seq ty");
162
163            return $self.maybe_recover_from_bad_qpath_stage_2($self.prev_token.span, ty);
164        }
165    };
166}
167
168#[derive(#[automatically_derived]
impl ::core::clone::Clone for Recovery {
    #[inline]
    fn clone(&self) -> Recovery { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for Recovery { }Copy, #[automatically_derived]
impl ::core::fmt::Debug for Recovery {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                Recovery::Allowed => "Allowed",
                Recovery::Forbidden => "Forbidden",
            })
    }
}Debug)]
169pub enum Recovery {
170    Allowed,
171    Forbidden,
172}
173
174#[derive(#[automatically_derived]
impl<'a> ::core::clone::Clone for Parser<'a> {
    #[inline]
    fn clone(&self) -> Parser<'a> {
        Parser {
            psess: ::core::clone::Clone::clone(&self.psess),
            token: ::core::clone::Clone::clone(&self.token),
            token_spacing: ::core::clone::Clone::clone(&self.token_spacing),
            prev_token: ::core::clone::Clone::clone(&self.prev_token),
            capture_cfg: ::core::clone::Clone::clone(&self.capture_cfg),
            restrictions: ::core::clone::Clone::clone(&self.restrictions),
            expected_token_types: ::core::clone::Clone::clone(&self.expected_token_types),
            token_cursor: ::core::clone::Clone::clone(&self.token_cursor),
            num_bump_calls: ::core::clone::Clone::clone(&self.num_bump_calls),
            break_last_token: ::core::clone::Clone::clone(&self.break_last_token),
            unmatched_angle_bracket_count: ::core::clone::Clone::clone(&self.unmatched_angle_bracket_count),
            angle_bracket_nesting: ::core::clone::Clone::clone(&self.angle_bracket_nesting),
            last_unexpected_token_span: ::core::clone::Clone::clone(&self.last_unexpected_token_span),
            subparser_name: ::core::clone::Clone::clone(&self.subparser_name),
            capture_state: ::core::clone::Clone::clone(&self.capture_state),
            current_closure: ::core::clone::Clone::clone(&self.current_closure),
            recovery: ::core::clone::Clone::clone(&self.recovery),
        }
    }
}Clone)]
175pub struct Parser<'a> {
176    pub psess: &'a ParseSess,
177    /// The current token.
178    pub token: Token,
179    /// The spacing for the current token.
180    token_spacing: Spacing,
181    /// The previous token.
182    pub prev_token: Token,
183    pub capture_cfg: bool,
184    restrictions: Restrictions,
185    expected_token_types: TokenTypeSet,
186    token_cursor: TokenCursor,
187    // The number of calls to `bump`, i.e. the position in the token stream.
188    num_bump_calls: u32,
189    // During parsing we may sometimes need to "unglue" a glued token into two
190    // or three component tokens (e.g. `>>` into `>` and `>`, or `>>=` into `>`
191    // and `>` and `=`), so the parser can consume them one at a time. This
192    // process bypasses the normal capturing mechanism (e.g. `num_bump_calls`
193    // will not be incremented), since the "unglued" tokens due not exist in
194    // the original `TokenStream`.
195    //
196    // If we end up consuming all the component tokens, this is not an issue,
197    // because we'll end up capturing the single "glued" token.
198    //
199    // However, sometimes we may want to capture not all of the original
200    // token. For example, capturing the `Vec<u8>` in `Option<Vec<u8>>`
201    // requires us to unglue the trailing `>>` token. The `break_last_token`
202    // field is used to track these tokens. They get appended to the captured
203    // stream when we evaluate a `LazyAttrTokenStream`.
204    //
205    // This value is always 0, 1, or 2. It can only reach 2 when splitting
206    // `>>=` or `<<=`.
207    break_last_token: u32,
208    /// This field is used to keep track of how many left angle brackets we have seen. This is
209    /// required in order to detect extra leading left angle brackets (`<` characters) and error
210    /// appropriately.
211    ///
212    /// See the comments in the `parse_path_segment` function for more details.
213    unmatched_angle_bracket_count: u16,
214    angle_bracket_nesting: u16,
215
216    last_unexpected_token_span: Option<Span>,
217    /// If present, this `Parser` is not parsing Rust code but rather a macro call.
218    subparser_name: Option<&'static str>,
219    capture_state: CaptureState,
220    /// This allows us to recover when the user forget to add braces around
221    /// multiple statements in the closure body.
222    current_closure: Option<ClosureSpans>,
223    /// Whether the parser is allowed to do recovery.
224    /// This is disabled when parsing macro arguments, see #103534
225    recovery: Recovery,
226}
227
228// This type is used a lot, e.g. it's cloned when matching many declarative macro rules with
229// nonterminals. Make sure it doesn't unintentionally get bigger. We only check a few arches
230// though, because `TokenTypeSet(u128)` alignment varies on others, changing the total size.
231#[cfg(all(target_pointer_width = "64", any(target_arch = "aarch64", target_arch = "x86_64")))]
232const _: [(); 288] = [(); ::std::mem::size_of::<Parser<'_>>()];rustc_data_structures::static_assert_size!(Parser<'_>, 288);
233
234/// Stores span information about a closure.
235#[derive(#[automatically_derived]
impl ::core::clone::Clone for ClosureSpans {
    #[inline]
    fn clone(&self) -> ClosureSpans {
        ClosureSpans {
            whole_closure: ::core::clone::Clone::clone(&self.whole_closure),
            closing_pipe: ::core::clone::Clone::clone(&self.closing_pipe),
            body: ::core::clone::Clone::clone(&self.body),
        }
    }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for ClosureSpans {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::debug_struct_field3_finish(f, "ClosureSpans",
            "whole_closure", &self.whole_closure, "closing_pipe",
            &self.closing_pipe, "body", &&self.body)
    }
}Debug)]
236struct ClosureSpans {
237    whole_closure: Span,
238    closing_pipe: Span,
239    body: Span,
240}
241
242/// Controls how we capture tokens. Capturing can be expensive,
243/// so we try to avoid performing capturing in cases where
244/// we will never need an `AttrTokenStream`.
245#[derive(#[automatically_derived]
impl ::core::marker::Copy for Capturing { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Capturing {
    #[inline]
    fn clone(&self) -> Capturing { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Capturing {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self { Capturing::No => "No", Capturing::Yes => "Yes", })
    }
}Debug)]
246enum Capturing {
247    /// We aren't performing any capturing - this is the default mode.
248    No,
249    /// We are capturing tokens
250    Yes,
251}
252
253// This state is used by `Parser::collect_tokens`.
254#[derive(#[automatically_derived]
impl ::core::clone::Clone for CaptureState {
    #[inline]
    fn clone(&self) -> CaptureState {
        CaptureState {
            capturing: ::core::clone::Clone::clone(&self.capturing),
            parser_replacements: ::core::clone::Clone::clone(&self.parser_replacements),
            inner_attr_parser_ranges: ::core::clone::Clone::clone(&self.inner_attr_parser_ranges),
            seen_attrs: ::core::clone::Clone::clone(&self.seen_attrs),
        }
    }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for CaptureState {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::debug_struct_field4_finish(f, "CaptureState",
            "capturing", &self.capturing, "parser_replacements",
            &self.parser_replacements, "inner_attr_parser_ranges",
            &self.inner_attr_parser_ranges, "seen_attrs", &&self.seen_attrs)
    }
}Debug)]
255struct CaptureState {
256    capturing: Capturing,
257    parser_replacements: Vec<ParserReplacement>,
258    inner_attr_parser_ranges: FxHashMap<AttrId, ParserRange>,
259    // `IntervalSet` is good for perf because attrs are mostly added to this
260    // set in contiguous ranges.
261    seen_attrs: IntervalSet<AttrId>,
262}
263
264/// A sequence separator.
265#[derive(#[automatically_derived]
impl ::core::fmt::Debug for SeqSep {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::debug_struct_field2_finish(f, "SeqSep", "sep",
            &self.sep, "trailing_sep_allowed", &&self.trailing_sep_allowed)
    }
}Debug)]
266struct SeqSep {
267    /// The separator token.
268    sep: Option<ExpTokenPair>,
269    /// `true` if a trailing separator is allowed.
270    trailing_sep_allowed: bool,
271}
272
273impl SeqSep {
274    fn trailing_allowed(sep: ExpTokenPair) -> SeqSep {
275        SeqSep { sep: Some(sep), trailing_sep_allowed: true }
276    }
277
278    fn none() -> SeqSep {
279        SeqSep { sep: None, trailing_sep_allowed: false }
280    }
281}
282
283#[derive(#[automatically_derived]
impl ::core::fmt::Debug for FollowedByType {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                FollowedByType::Yes => "Yes",
                FollowedByType::No => "No",
            })
    }
}Debug)]
284pub enum FollowedByType {
285    Yes,
286    No,
287}
288
289#[derive(#[automatically_derived]
impl ::core::marker::Copy for Trailing { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Trailing {
    #[inline]
    fn clone(&self) -> Trailing { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Trailing {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self { Trailing::No => "No", Trailing::Yes => "Yes", })
    }
}Debug)]
290pub enum Trailing {
291    No,
292    Yes,
293}
294
295impl From<bool> for Trailing {
296    fn from(b: bool) -> Trailing {
297        if b { Trailing::Yes } else { Trailing::No }
298    }
299}
300
301#[derive(#[automatically_derived]
impl ::core::clone::Clone for TokenDescription {
    #[inline]
    fn clone(&self) -> TokenDescription {
        let _: ::core::clone::AssertParamIsClone<MetaVarKind>;
        *self
    }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for TokenDescription { }Copy, #[automatically_derived]
impl ::core::fmt::Debug for TokenDescription {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        match self {
            TokenDescription::ReservedIdentifier =>
                ::core::fmt::Formatter::write_str(f, "ReservedIdentifier"),
            TokenDescription::Keyword =>
                ::core::fmt::Formatter::write_str(f, "Keyword"),
            TokenDescription::ReservedKeyword =>
                ::core::fmt::Formatter::write_str(f, "ReservedKeyword"),
            TokenDescription::DocComment =>
                ::core::fmt::Formatter::write_str(f, "DocComment"),
            TokenDescription::MetaVar(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f,
                    "MetaVar", &__self_0),
        }
    }
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for TokenDescription {
    #[inline]
    fn eq(&self, other: &TokenDescription) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr &&
            match (self, other) {
                (TokenDescription::MetaVar(__self_0),
                    TokenDescription::MetaVar(__arg1_0)) =>
                    __self_0 == __arg1_0,
                _ => true,
            }
    }
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for TokenDescription {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {
        let _: ::core::cmp::AssertParamIsEq<MetaVarKind>;
    }
}Eq)]
302pub(super) enum TokenDescription {
303    ReservedIdentifier,
304    Keyword,
305    ReservedKeyword,
306    DocComment,
307
308    // Expanded metavariables are wrapped in invisible delimiters which aren't
309    // pretty-printed. In error messages we must handle these specially
310    // otherwise we get confusing things in messages like "expected `(`, found
311    // ``". It's better to say e.g. "expected `(`, found type metavariable".
312    MetaVar(MetaVarKind),
313}
314
315impl TokenDescription {
316    pub(super) fn from_token(token: &Token) -> Option<Self> {
317        match token.kind {
318            _ if token.is_special_ident() => Some(TokenDescription::ReservedIdentifier),
319            _ if token.is_used_keyword() => Some(TokenDescription::Keyword),
320            _ if token.is_unused_keyword() => Some(TokenDescription::ReservedKeyword),
321            token::DocComment(..) => Some(TokenDescription::DocComment),
322            token::OpenInvisible(InvisibleOrigin::MetaVar(kind)) => {
323                Some(TokenDescription::MetaVar(kind))
324            }
325            _ => None,
326        }
327    }
328}
329
330pub fn token_descr(token: &Token) -> String {
331    let s = pprust::token_to_string(token).to_string();
332
333    match (TokenDescription::from_token(token), &token.kind) {
334        (Some(TokenDescription::ReservedIdentifier), _) => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("reserved identifier `{0}`", s))
    })format!("reserved identifier `{s}`"),
335        (Some(TokenDescription::Keyword), _) => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("keyword `{0}`", s))
    })format!("keyword `{s}`"),
336        (Some(TokenDescription::ReservedKeyword), _) => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("reserved keyword `{0}`", s))
    })format!("reserved keyword `{s}`"),
337        (Some(TokenDescription::DocComment), _) => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("doc comment `{0}`", s))
    })format!("doc comment `{s}`"),
338        // Deliberately doesn't print `s`, which is empty.
339        (Some(TokenDescription::MetaVar(kind)), _) => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` metavariable", kind))
    })format!("`{kind}` metavariable"),
340        (None, TokenKind::NtIdent(..)) => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("identifier `{0}`", s))
    })format!("identifier `{s}`"),
341        (None, TokenKind::NtLifetime(..)) => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("lifetime `{0}`", s))
    })format!("lifetime `{s}`"),
342        (None, _) => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}`", s))
    })format!("`{s}`"),
343    }
344}
345
346impl<'a> Parser<'a> {
347    pub fn new(
348        psess: &'a ParseSess,
349        stream: TokenStream,
350        subparser_name: Option<&'static str>,
351    ) -> Self {
352        let mut parser = Parser {
353            psess,
354            token: Token::dummy(),
355            token_spacing: Spacing::Alone,
356            prev_token: Token::dummy(),
357            capture_cfg: false,
358            restrictions: Restrictions::empty(),
359            expected_token_types: TokenTypeSet::new(),
360            token_cursor: TokenCursor { curr: TokenTreeCursor::new(stream), stack: Vec::new() },
361            num_bump_calls: 0,
362            break_last_token: 0,
363            unmatched_angle_bracket_count: 0,
364            angle_bracket_nesting: 0,
365            last_unexpected_token_span: None,
366            subparser_name,
367            capture_state: CaptureState {
368                capturing: Capturing::No,
369                parser_replacements: Vec::new(),
370                inner_attr_parser_ranges: Default::default(),
371                seen_attrs: IntervalSet::new(u32::MAX as usize),
372            },
373            current_closure: None,
374            recovery: Recovery::Allowed,
375        };
376
377        // Make parser point to the first token.
378        parser.bump();
379
380        // Change this from 1 back to 0 after the bump. This eases debugging of
381        // `Parser::collect_tokens` because 0-indexed token positions are nicer
382        // than 1-indexed token positions.
383        parser.num_bump_calls = 0;
384
385        parser
386    }
387
388    #[inline]
389    pub fn recovery(mut self, recovery: Recovery) -> Self {
390        self.recovery = recovery;
391        self
392    }
393
394    #[inline]
395    fn with_recovery<T>(&mut self, recovery: Recovery, f: impl FnOnce(&mut Self) -> T) -> T {
396        let old = mem::replace(&mut self.recovery, recovery);
397        let res = f(self);
398        self.recovery = old;
399        res
400    }
401
402    /// Whether the parser is allowed to recover from broken code.
403    ///
404    /// If this returns false, recovering broken code into valid code (especially if this recovery does lookahead)
405    /// is not allowed. All recovery done by the parser must be gated behind this check.
406    ///
407    /// Technically, this only needs to restrict eager recovery by doing lookahead at more tokens.
408    /// But making the distinction is very subtle, and simply forbidding all recovery is a lot simpler to uphold.
409    #[inline]
410    fn may_recover(&self) -> bool {
411        #[allow(non_exhaustive_omitted_patterns)] match self.recovery {
    Recovery::Allowed => true,
    _ => false,
}matches!(self.recovery, Recovery::Allowed)
412    }
413
414    /// Version of [`unexpected`](Parser::unexpected) that "returns" any type in the `Ok`
415    /// (both those functions never return "Ok", and so can lie like that in the type).
416    pub fn unexpected_any<T>(&mut self) -> PResult<'a, T> {
417        match self.expect_one_of(&[], &[]) {
418            Err(e) => Err(e),
419            // We can get `Ok(true)` from `recover_closing_delimiter`
420            // which is called in `expected_one_of_not_found`.
421            Ok(_) => FatalError.raise(),
422        }
423    }
424
425    pub fn unexpected(&mut self) -> PResult<'a, ()> {
426        self.unexpected_any()
427    }
428
429    /// Expects and consumes the token `t`. Signals an error if the next token is not `t`.
430    pub fn expect(&mut self, exp: ExpTokenPair) -> PResult<'a, Recovered> {
431        if self.expected_token_types.is_empty() {
432            if self.token == exp.tok {
433                self.bump();
434                Ok(Recovered::No)
435            } else {
436                self.unexpected_try_recover(&exp.tok)
437            }
438        } else {
439            self.expect_one_of(slice::from_ref(&exp), &[])
440        }
441    }
442
443    /// Expect next token to be edible or inedible token. If edible,
444    /// then consume it; if inedible, then return without consuming
445    /// anything. Signal a fatal error if next token is unexpected.
446    fn expect_one_of(
447        &mut self,
448        edible: &[ExpTokenPair],
449        inedible: &[ExpTokenPair],
450    ) -> PResult<'a, Recovered> {
451        if edible.iter().any(|exp| exp.tok == self.token.kind) {
452            self.bump();
453            Ok(Recovered::No)
454        } else if inedible.iter().any(|exp| exp.tok == self.token.kind) {
455            // leave it in the input
456            Ok(Recovered::No)
457        } else if self.token != token::Eof
458            && self.last_unexpected_token_span == Some(self.token.span)
459        {
460            FatalError.raise();
461        } else {
462            self.expected_one_of_not_found(edible, inedible)
463                .map(|error_guaranteed| Recovered::Yes(error_guaranteed))
464        }
465    }
466
467    // Public for rustfmt usage.
468    pub fn parse_ident(&mut self) -> PResult<'a, Ident> {
469        self.parse_ident_common(self.may_recover())
470    }
471
472    fn parse_ident_common(&mut self, recover: bool) -> PResult<'a, Ident> {
473        let (ident, is_raw) = self.ident_or_err(recover)?;
474
475        if is_raw == IdentIsRaw::No && ident.is_reserved() {
476            let err = self.expected_ident_found_err();
477            if recover {
478                err.emit();
479            } else {
480                return Err(err);
481            }
482        }
483        self.bump();
484        Ok(ident)
485    }
486
487    fn ident_or_err(&mut self, recover: bool) -> PResult<'a, (Ident, IdentIsRaw)> {
488        match self.token.ident() {
489            Some(ident) => Ok(ident),
490            None => self.expected_ident_found(recover),
491        }
492    }
493
494    /// Checks if the next token is `tok`, and returns `true` if so.
495    ///
496    /// This method will automatically add `tok` to `expected_token_types` if `tok` is not
497    /// encountered.
498    #[inline]
499    pub fn check(&mut self, exp: ExpTokenPair) -> bool {
500        let is_present = self.token == exp.tok;
501        if !is_present {
502            self.expected_token_types.insert(exp.token_type);
503        }
504        is_present
505    }
506
507    #[inline]
508    #[must_use]
509    fn check_noexpect(&self, tok: &TokenKind) -> bool {
510        self.token == *tok
511    }
512
513    // Check the first token after the delimiter that closes the current
514    // delimited sequence. (Panics if used in the outermost token stream, which
515    // has no delimiters.) It uses a clone of the relevant tree cursor to skip
516    // past the entire `TokenTree::Delimited` in a single step, avoiding the
517    // need for unbounded token lookahead.
518    //
519    // Primarily used when `self.token` matches `OpenInvisible(_))`, to look
520    // ahead through the current metavar expansion.
521    fn check_noexpect_past_close_delim(&self, tok: &TokenKind) -> bool {
522        let mut tree_cursor = self.token_cursor.stack.last().unwrap().clone();
523        tree_cursor.bump();
524        #[allow(non_exhaustive_omitted_patterns)] match tree_cursor.curr() {
    Some(TokenTree::Token(token::Token { kind, .. }, _)) if kind == tok =>
        true,
    _ => false,
}matches!(
525            tree_cursor.curr(),
526            Some(TokenTree::Token(token::Token { kind, .. }, _)) if kind == tok
527        )
528    }
529
530    /// Consumes a token 'tok' if it exists. Returns whether the given token was present.
531    ///
532    /// the main purpose of this function is to reduce the cluttering of the suggestions list
533    /// which using the normal eat method could introduce in some cases.
534    #[inline]
535    #[must_use]
536    fn eat_noexpect(&mut self, tok: &TokenKind) -> bool {
537        let is_present = self.check_noexpect(tok);
538        if is_present {
539            self.bump()
540        }
541        is_present
542    }
543
544    /// Consumes a token 'tok' if it exists. Returns whether the given token was present.
545    #[inline]
546    #[must_use]
547    pub fn eat(&mut self, exp: ExpTokenPair) -> bool {
548        let is_present = self.check(exp);
549        if is_present {
550            self.bump()
551        }
552        is_present
553    }
554
555    /// If the next token is the given keyword, returns `true` without eating it.
556    /// An expectation is also added for diagnostics purposes.
557    #[inline]
558    #[must_use]
559    fn check_keyword(&mut self, exp: ExpKeywordPair) -> bool {
560        let is_keyword = self.token.is_keyword(exp.kw);
561        if !is_keyword {
562            self.expected_token_types.insert(exp.token_type);
563        }
564        is_keyword
565    }
566
567    #[inline]
568    #[must_use]
569    fn check_keyword_case(&mut self, exp: ExpKeywordPair, case: Case) -> bool {
570        if self.check_keyword(exp) {
571            true
572        } else if case == Case::Insensitive
573            && let Some((ident, IdentIsRaw::No)) = self.token.ident()
574            // Do an ASCII case-insensitive match, because all keywords are ASCII.
575            && ident.as_str().eq_ignore_ascii_case(exp.kw.as_str())
576        {
577            true
578        } else {
579            false
580        }
581    }
582
583    /// If the next token is the given keyword, eats it and returns `true`.
584    /// Otherwise, returns `false`. An expectation is also added for diagnostics purposes.
585    // Public for rustc_builtin_macros and rustfmt usage.
586    #[inline]
587    #[must_use]
588    pub fn eat_keyword(&mut self, exp: ExpKeywordPair) -> bool {
589        let is_keyword = self.check_keyword(exp);
590        if is_keyword {
591            self.bump();
592        }
593        is_keyword
594    }
595
596    /// Eats a keyword, optionally ignoring the case.
597    /// If the case differs (and is ignored) an error is issued.
598    /// This is useful for recovery.
599    #[inline]
600    #[must_use]
601    fn eat_keyword_case(&mut self, exp: ExpKeywordPair, case: Case) -> bool {
602        if self.eat_keyword(exp) {
603            true
604        } else if case == Case::Insensitive
605            && let Some((ident, IdentIsRaw::No)) = self.token.ident()
606            // Do an ASCII case-insensitive match, because all keywords are ASCII.
607            && ident.as_str().eq_ignore_ascii_case(exp.kw.as_str())
608        {
609            let kw = exp.kw.as_str();
610            let is_upper = kw.chars().all(char::is_uppercase);
611            let is_lower = kw.chars().all(char::is_lowercase);
612
613            let case = match (is_upper, is_lower) {
614                (true, true) => {
615                    {
    ::core::panicking::panic_fmt(format_args!("internal error: entered unreachable code: {0}",
            format_args!("keyword that is both fully upper- and fully lowercase")));
}unreachable!("keyword that is both fully upper- and fully lowercase")
616                }
617                (true, false) => errors::Case::Upper,
618                (false, true) => errors::Case::Lower,
619                (false, false) => errors::Case::Mixed,
620            };
621
622            self.dcx().emit_err(errors::KwBadCase { span: ident.span, kw, case });
623            self.bump();
624            true
625        } else {
626            false
627        }
628    }
629
630    /// If the next token is the given keyword, eats it and returns `true`.
631    /// Otherwise, returns `false`. No expectation is added.
632    // Public for rustc_builtin_macros usage.
633    #[inline]
634    #[must_use]
635    pub fn eat_keyword_noexpect(&mut self, kw: Symbol) -> bool {
636        let is_keyword = self.token.is_keyword(kw);
637        if is_keyword {
638            self.bump();
639        }
640        is_keyword
641    }
642
643    /// If the given word is not a keyword, signals an error.
644    /// If the next token is not the given word, signals an error.
645    /// Otherwise, eats it.
646    pub fn expect_keyword(&mut self, exp: ExpKeywordPair) -> PResult<'a, ()> {
647        if !self.eat_keyword(exp) { self.unexpected() } else { Ok(()) }
648    }
649
650    /// Consume a sequence produced by a metavar expansion, if present.
651    pub fn eat_metavar_seq<T>(
652        &mut self,
653        mv_kind: MetaVarKind,
654        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
655    ) -> Option<T> {
656        self.eat_metavar_seq_with_matcher(|mvk| mvk == mv_kind, f)
657    }
658
659    /// A slightly more general form of `eat_metavar_seq`, for use with the
660    /// `MetaVarKind` variants that have parameters, where an exact match isn't
661    /// desired.
662    fn eat_metavar_seq_with_matcher<T>(
663        &mut self,
664        match_mv_kind: impl Fn(MetaVarKind) -> bool,
665        mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
666    ) -> Option<T> {
667        if let token::OpenInvisible(InvisibleOrigin::MetaVar(mv_kind)) = self.token.kind
668            && match_mv_kind(mv_kind)
669        {
670            self.bump();
671
672            // Recovery is disabled when parsing macro arguments, so it must
673            // also be disabled when reparsing pasted macro arguments,
674            // otherwise we get inconsistent results (e.g. #137874).
675            let res = self.with_recovery(Recovery::Forbidden, |this| f(this));
676
677            let res = match res {
678                Ok(res) => res,
679                Err(err) => {
680                    // This can occur in unusual error cases, e.g. #139445.
681                    err.delay_as_bug();
682                    return None;
683                }
684            };
685
686            if let token::CloseInvisible(InvisibleOrigin::MetaVar(mv_kind)) = self.token.kind
687                && match_mv_kind(mv_kind)
688            {
689                self.bump();
690                Some(res)
691            } else {
692                // This can occur when invalid syntax is passed to a decl macro. E.g. see #139248,
693                // where the reparse attempt of an invalid expr consumed the trailing invisible
694                // delimiter.
695                self.dcx()
696                    .span_delayed_bug(self.token.span, "no close delim with reparsing {mv_kind:?}");
697                None
698            }
699        } else {
700            None
701        }
702    }
703
704    /// Is the given keyword `kw` followed by a non-reserved identifier?
705    fn is_kw_followed_by_ident(&self, kw: Symbol) -> bool {
706        self.token.is_keyword(kw) && self.look_ahead(1, |t| t.is_non_reserved_ident())
707    }
708
709    #[inline]
710    fn check_or_expected(&mut self, ok: bool, token_type: TokenType) -> bool {
711        if !ok {
712            self.expected_token_types.insert(token_type);
713        }
714        ok
715    }
716
717    fn check_ident(&mut self) -> bool {
718        self.check_or_expected(self.token.is_ident(), TokenType::Ident)
719    }
720
721    fn check_path(&mut self) -> bool {
722        self.check_or_expected(self.token.is_path_start(), TokenType::Path)
723    }
724
725    fn check_type(&mut self) -> bool {
726        self.check_or_expected(self.token.can_begin_type(), TokenType::Type)
727    }
728
729    fn check_const_arg(&mut self) -> bool {
730        let is_mcg_arg = self.check_or_expected(self.token.can_begin_const_arg(), TokenType::Const);
731        let is_mgca_arg = self.is_keyword_ahead(0, &[kw::Const])
732            && self.look_ahead(1, |t| *t == token::OpenBrace);
733        is_mcg_arg || is_mgca_arg
734    }
735
736    fn check_const_closure(&self) -> bool {
737        self.is_keyword_ahead(0, &[kw::Const])
738            && self.look_ahead(1, |t| match &t.kind {
739                // async closures do not work with const closures, so we do not parse that here.
740                token::Ident(kw::Move | kw::Use | kw::Static, IdentIsRaw::No)
741                | token::OrOr
742                | token::Or => true,
743                _ => false,
744            })
745    }
746
747    fn check_inline_const(&self, dist: usize) -> bool {
748        self.is_keyword_ahead(dist, &[kw::Const])
749            && self.look_ahead(dist + 1, |t| match &t.kind {
750                token::OpenBrace => true,
751                token::OpenInvisible(InvisibleOrigin::MetaVar(MetaVarKind::Block)) => true,
752                _ => false,
753            })
754    }
755
756    /// Checks to see if the next token is either `+` or `+=`.
757    /// Otherwise returns `false`.
758    #[inline]
759    fn check_plus(&mut self) -> bool {
760        self.check_or_expected(self.token.is_like_plus(), TokenType::Plus)
761    }
762
763    /// Eats the expected token if it's present possibly breaking
764    /// compound tokens like multi-character operators in process.
765    /// Returns `true` if the token was eaten.
766    fn break_and_eat(&mut self, exp: ExpTokenPair) -> bool {
767        if self.token == exp.tok {
768            self.bump();
769            return true;
770        }
771        match self.token.kind.break_two_token_op(1) {
772            Some((first, second)) if first == exp.tok => {
773                let first_span = self.psess.source_map().start_point(self.token.span);
774                let second_span = self.token.span.with_lo(first_span.hi());
775                self.token = Token::new(first, first_span);
776                // Keep track of this token - if we end token capturing now,
777                // we'll want to append this token to the captured stream.
778                //
779                // If we consume any additional tokens, then this token
780                // is not needed (we'll capture the entire 'glued' token),
781                // and `bump` will set this field to 0.
782                self.break_last_token += 1;
783                // Use the spacing of the glued token as the spacing of the
784                // unglued second token.
785                self.bump_with((Token::new(second, second_span), self.token_spacing));
786                true
787            }
788            _ => {
789                self.expected_token_types.insert(exp.token_type);
790                false
791            }
792        }
793    }
794
795    /// Eats `+` possibly breaking tokens like `+=` in process.
796    fn eat_plus(&mut self) -> bool {
797        self.break_and_eat(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::Plus,
    token_type: crate::parser::token_type::TokenType::Plus,
}exp!(Plus))
798    }
799
800    /// Eats `&` possibly breaking tokens like `&&` in process.
801    /// Signals an error if `&` is not eaten.
802    fn expect_and(&mut self) -> PResult<'a, ()> {
803        if self.break_and_eat(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::And,
    token_type: crate::parser::token_type::TokenType::And,
}exp!(And)) { Ok(()) } else { self.unexpected() }
804    }
805
806    /// Eats `|` possibly breaking tokens like `||` in process.
807    /// Signals an error if `|` was not eaten.
808    fn expect_or(&mut self) -> PResult<'a, ()> {
809        if self.break_and_eat(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::Or,
    token_type: crate::parser::token_type::TokenType::Or,
}exp!(Or)) { Ok(()) } else { self.unexpected() }
810    }
811
812    /// Eats `<` possibly breaking tokens like `<<` in process.
813    fn eat_lt(&mut self) -> bool {
814        let ate = self.break_and_eat(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::Lt,
    token_type: crate::parser::token_type::TokenType::Lt,
}exp!(Lt));
815        if ate {
816            // See doc comment for `unmatched_angle_bracket_count`.
817            self.unmatched_angle_bracket_count += 1;
818            {
    use ::tracing::__macro_support::Callsite as _;
    static __CALLSITE: ::tracing::callsite::DefaultCallsite =
        {
            static META: ::tracing::Metadata<'static> =
                {
                    ::tracing_core::metadata::Metadata::new("event compiler/rustc_parse/src/parser/mod.rs:818",
                        "rustc_parse::parser", ::tracing::Level::DEBUG,
                        ::tracing_core::__macro_support::Option::Some("compiler/rustc_parse/src/parser/mod.rs"),
                        ::tracing_core::__macro_support::Option::Some(818u32),
                        ::tracing_core::__macro_support::Option::Some("rustc_parse::parser"),
                        ::tracing_core::field::FieldSet::new(&["message"],
                            ::tracing_core::callsite::Identifier(&__CALLSITE)),
                        ::tracing::metadata::Kind::EVENT)
                };
            ::tracing::callsite::DefaultCallsite::new(&META)
        };
    let enabled =
        ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() &&
            {
                let interest = __CALLSITE.interest();
                !interest.is_never() &&
                    ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                        interest)
            };
    if enabled {
        (|value_set: ::tracing::field::ValueSet|
                    {
                        let meta = __CALLSITE.metadata();
                        ::tracing::Event::dispatch(meta, &value_set);
                        ;
                    })({
                #[allow(unused_imports)]
                use ::tracing::field::{debug, display, Value};
                let mut iter = __CALLSITE.metadata().fields().iter();
                __CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&format_args!("eat_lt: (increment) count={0:?}",
                                                    self.unmatched_angle_bracket_count) as &dyn Value))])
            });
    } else { ; }
};debug!("eat_lt: (increment) count={:?}", self.unmatched_angle_bracket_count);
819        }
820        ate
821    }
822
823    /// Eats `<` possibly breaking tokens like `<<` in process.
824    /// Signals an error if `<` was not eaten.
825    fn expect_lt(&mut self) -> PResult<'a, ()> {
826        if self.eat_lt() { Ok(()) } else { self.unexpected() }
827    }
828
829    /// Eats `>` possibly breaking tokens like `>>` in process.
830    /// Signals an error if `>` was not eaten.
831    fn expect_gt(&mut self) -> PResult<'a, ()> {
832        if self.break_and_eat(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::Gt,
    token_type: crate::parser::token_type::TokenType::Gt,
}exp!(Gt)) {
833            // See doc comment for `unmatched_angle_bracket_count`.
834            if self.unmatched_angle_bracket_count > 0 {
835                self.unmatched_angle_bracket_count -= 1;
836                {
    use ::tracing::__macro_support::Callsite as _;
    static __CALLSITE: ::tracing::callsite::DefaultCallsite =
        {
            static META: ::tracing::Metadata<'static> =
                {
                    ::tracing_core::metadata::Metadata::new("event compiler/rustc_parse/src/parser/mod.rs:836",
                        "rustc_parse::parser", ::tracing::Level::DEBUG,
                        ::tracing_core::__macro_support::Option::Some("compiler/rustc_parse/src/parser/mod.rs"),
                        ::tracing_core::__macro_support::Option::Some(836u32),
                        ::tracing_core::__macro_support::Option::Some("rustc_parse::parser"),
                        ::tracing_core::field::FieldSet::new(&["message"],
                            ::tracing_core::callsite::Identifier(&__CALLSITE)),
                        ::tracing::metadata::Kind::EVENT)
                };
            ::tracing::callsite::DefaultCallsite::new(&META)
        };
    let enabled =
        ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() &&
            {
                let interest = __CALLSITE.interest();
                !interest.is_never() &&
                    ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                        interest)
            };
    if enabled {
        (|value_set: ::tracing::field::ValueSet|
                    {
                        let meta = __CALLSITE.metadata();
                        ::tracing::Event::dispatch(meta, &value_set);
                        ;
                    })({
                #[allow(unused_imports)]
                use ::tracing::field::{debug, display, Value};
                let mut iter = __CALLSITE.metadata().fields().iter();
                __CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&format_args!("expect_gt: (decrement) count={0:?}",
                                                    self.unmatched_angle_bracket_count) as &dyn Value))])
            });
    } else { ; }
};debug!("expect_gt: (decrement) count={:?}", self.unmatched_angle_bracket_count);
837            }
838            Ok(())
839        } else {
840            self.unexpected()
841        }
842    }
843
844    /// Checks if the next token is contained within `closes`, and returns `true` if so.
845    fn expect_any_with_type(
846        &mut self,
847        closes_expected: &[ExpTokenPair],
848        closes_not_expected: &[&TokenKind],
849    ) -> bool {
850        closes_expected.iter().any(|&close| self.check(close))
851            || closes_not_expected.iter().any(|k| self.check_noexpect(k))
852    }
853
854    /// Parses a sequence until the specified delimiters. The function
855    /// `f` must consume tokens until reaching the next separator or
856    /// closing bracket.
857    fn parse_seq_to_before_tokens<T>(
858        &mut self,
859        closes_expected: &[ExpTokenPair],
860        closes_not_expected: &[&TokenKind],
861        sep: SeqSep,
862        mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
863    ) -> PResult<'a, (ThinVec<T>, Trailing, Recovered)> {
864        let mut first = true;
865        let mut recovered = Recovered::No;
866        let mut trailing = Trailing::No;
867        let mut v = ThinVec::new();
868
869        while !self.expect_any_with_type(closes_expected, closes_not_expected) {
870            if self.token.kind.is_close_delim_or_eof() {
871                break;
872            }
873            if let Some(exp) = sep.sep {
874                if first {
875                    // no separator for the first element
876                    first = false;
877                } else {
878                    // check for separator
879                    match self.expect(exp) {
880                        Ok(Recovered::No) => {
881                            self.current_closure.take();
882                        }
883                        Ok(Recovered::Yes(guar)) => {
884                            self.current_closure.take();
885                            recovered = Recovered::Yes(guar);
886                            break;
887                        }
888                        Err(mut expect_err) => {
889                            let sp = self.prev_token.span.shrink_to_hi();
890                            let token_str = pprust::token_kind_to_string(&exp.tok);
891
892                            match self.current_closure.take() {
893                                Some(closure_spans) if self.token == TokenKind::Semi => {
894                                    // Finding a semicolon instead of a comma
895                                    // after a closure body indicates that the
896                                    // closure body may be a block but the user
897                                    // forgot to put braces around its
898                                    // statements.
899
900                                    self.recover_missing_braces_around_closure_body(
901                                        closure_spans,
902                                        expect_err,
903                                    )?;
904
905                                    continue;
906                                }
907
908                                _ => {
909                                    // Attempt to keep parsing if it was a similar separator.
910                                    if exp.tok.similar_tokens().contains(&self.token.kind) {
911                                        self.bump();
912                                    }
913                                }
914                            }
915
916                            // If this was a missing `@` in a binding pattern
917                            // bail with a suggestion
918                            // https://github.com/rust-lang/rust/issues/72373
919                            if self.prev_token.is_ident() && self.token == token::DotDot {
920                                let msg = ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("if you meant to bind the contents of the rest of the array pattern into `{0}`, use `@`",
                pprust::token_to_string(&self.prev_token)))
    })format!(
921                                    "if you meant to bind the contents of the rest of the array \
922                                     pattern into `{}`, use `@`",
923                                    pprust::token_to_string(&self.prev_token)
924                                );
925                                expect_err
926                                    .with_span_suggestion_verbose(
927                                        self.prev_token.span.shrink_to_hi().until(self.token.span),
928                                        msg,
929                                        " @ ",
930                                        Applicability::MaybeIncorrect,
931                                    )
932                                    .emit();
933                                break;
934                            }
935
936                            // Attempt to keep parsing if it was an omitted separator.
937                            self.last_unexpected_token_span = None;
938                            match f(self) {
939                                Ok(t) => {
940                                    // Parsed successfully, therefore most probably the code only
941                                    // misses a separator.
942                                    expect_err
943                                        .with_span_suggestion_short(
944                                            sp,
945                                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("missing `{0}`", token_str))
    })format!("missing `{token_str}`"),
946                                            token_str,
947                                            Applicability::MaybeIncorrect,
948                                        )
949                                        .emit();
950
951                                    v.push(t);
952                                    continue;
953                                }
954                                Err(e) => {
955                                    // Parsing failed, therefore it must be something more serious
956                                    // than just a missing separator.
957                                    for xx in &e.children {
958                                        // Propagate the help message from sub error `e` to main
959                                        // error `expect_err`.
960                                        expect_err.children.push(xx.clone());
961                                    }
962                                    e.cancel();
963                                    if self.token == token::Colon {
964                                        // We will try to recover in
965                                        // `maybe_recover_struct_lit_bad_delims`.
966                                        return Err(expect_err);
967                                    } else if let [exp] = closes_expected
968                                        && exp.token_type == TokenType::CloseParen
969                                    {
970                                        return Err(expect_err);
971                                    } else {
972                                        expect_err.emit();
973                                        break;
974                                    }
975                                }
976                            }
977                        }
978                    }
979                }
980            }
981            if sep.trailing_sep_allowed
982                && self.expect_any_with_type(closes_expected, closes_not_expected)
983            {
984                trailing = Trailing::Yes;
985                break;
986            }
987
988            let t = f(self)?;
989            v.push(t);
990        }
991
992        Ok((v, trailing, recovered))
993    }
994
995    fn recover_missing_braces_around_closure_body(
996        &mut self,
997        closure_spans: ClosureSpans,
998        mut expect_err: Diag<'_>,
999    ) -> PResult<'a, ()> {
1000        let initial_semicolon = self.token.span;
1001
1002        while self.eat(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::Semi,
    token_type: crate::parser::token_type::TokenType::Semi,
}exp!(Semi)) {
1003            let _ = self
1004                .parse_stmt_without_recovery(false, ForceCollect::No, false)
1005                .unwrap_or_else(|e| {
1006                    e.cancel();
1007                    None
1008                });
1009        }
1010
1011        expect_err
1012            .primary_message("closure bodies that contain statements must be surrounded by braces");
1013
1014        let preceding_pipe_span = closure_spans.closing_pipe;
1015        let following_token_span = self.token.span;
1016
1017        let mut first_note = MultiSpan::from(<[_]>::into_vec(::alloc::boxed::box_new([initial_semicolon]))vec![initial_semicolon]);
1018        first_note.push_span_label(
1019            initial_semicolon,
1020            "this `;` turns the preceding closure into a statement",
1021        );
1022        first_note.push_span_label(
1023            closure_spans.body,
1024            "this expression is a statement because of the trailing semicolon",
1025        );
1026        expect_err.span_note(first_note, "statement found outside of a block");
1027
1028        let mut second_note = MultiSpan::from(<[_]>::into_vec(::alloc::boxed::box_new([closure_spans.whole_closure]))vec![closure_spans.whole_closure]);
1029        second_note.push_span_label(closure_spans.whole_closure, "this is the parsed closure...");
1030        second_note.push_span_label(
1031            following_token_span,
1032            "...but likely you meant the closure to end here",
1033        );
1034        expect_err.span_note(second_note, "the closure body may be incorrectly delimited");
1035
1036        expect_err.span(<[_]>::into_vec(::alloc::boxed::box_new([preceding_pipe_span,
                following_token_span]))vec![preceding_pipe_span, following_token_span]);
1037
1038        let opening_suggestion_str = " {".to_string();
1039        let closing_suggestion_str = "}".to_string();
1040
1041        expect_err.multipart_suggestion(
1042            "try adding braces",
1043            <[_]>::into_vec(::alloc::boxed::box_new([(preceding_pipe_span.shrink_to_hi(),
                    opening_suggestion_str),
                (following_token_span.shrink_to_lo(),
                    closing_suggestion_str)]))vec![
1044                (preceding_pipe_span.shrink_to_hi(), opening_suggestion_str),
1045                (following_token_span.shrink_to_lo(), closing_suggestion_str),
1046            ],
1047            Applicability::MaybeIncorrect,
1048        );
1049
1050        expect_err.emit();
1051
1052        Ok(())
1053    }
1054
1055    /// Parses a sequence, not including the delimiters. The function
1056    /// `f` must consume tokens until reaching the next separator or
1057    /// closing bracket.
1058    fn parse_seq_to_before_end<T>(
1059        &mut self,
1060        close: ExpTokenPair,
1061        sep: SeqSep,
1062        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1063    ) -> PResult<'a, (ThinVec<T>, Trailing, Recovered)> {
1064        self.parse_seq_to_before_tokens(&[close], &[], sep, f)
1065    }
1066
1067    /// Parses a sequence, including only the closing delimiter. The function
1068    /// `f` must consume tokens until reaching the next separator or
1069    /// closing bracket.
1070    fn parse_seq_to_end<T>(
1071        &mut self,
1072        close: ExpTokenPair,
1073        sep: SeqSep,
1074        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1075    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1076        let (val, trailing, recovered) = self.parse_seq_to_before_end(close, sep, f)?;
1077        if #[allow(non_exhaustive_omitted_patterns)] match recovered {
    Recovered::No => true,
    _ => false,
}matches!(recovered, Recovered::No) && !self.eat(close) {
1078            self.dcx().span_delayed_bug(
1079                self.token.span,
1080                "recovered but `parse_seq_to_before_end` did not give us the close token",
1081            );
1082        }
1083        Ok((val, trailing))
1084    }
1085
1086    /// Parses a sequence, including both delimiters. The function
1087    /// `f` must consume tokens until reaching the next separator or
1088    /// closing bracket.
1089    fn parse_unspanned_seq<T>(
1090        &mut self,
1091        open: ExpTokenPair,
1092        close: ExpTokenPair,
1093        sep: SeqSep,
1094        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1095    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1096        self.expect(open)?;
1097        self.parse_seq_to_end(close, sep, f)
1098    }
1099
1100    /// Parses a comma-separated sequence, including both delimiters.
1101    /// The function `f` must consume tokens until reaching the next separator or
1102    /// closing bracket.
1103    fn parse_delim_comma_seq<T>(
1104        &mut self,
1105        open: ExpTokenPair,
1106        close: ExpTokenPair,
1107        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1108    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1109        self.parse_unspanned_seq(open, close, SeqSep::trailing_allowed(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::Comma,
    token_type: crate::parser::token_type::TokenType::Comma,
}exp!(Comma)), f)
1110    }
1111
1112    /// Parses a comma-separated sequence delimited by parentheses (e.g. `(x, y)`).
1113    /// The function `f` must consume tokens until reaching the next separator or
1114    /// closing bracket.
1115    pub fn parse_paren_comma_seq<T>(
1116        &mut self,
1117        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1118    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1119        self.parse_delim_comma_seq(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::OpenParen,
    token_type: crate::parser::token_type::TokenType::OpenParen,
}exp!(OpenParen), crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::CloseParen,
    token_type: crate::parser::token_type::TokenType::CloseParen,
}exp!(CloseParen), f)
1120    }
1121
1122    /// Advance the parser by one token using provided token as the next one.
1123    fn bump_with(&mut self, next: (Token, Spacing)) {
1124        self.inlined_bump_with(next)
1125    }
1126
1127    /// This always-inlined version should only be used on hot code paths.
1128    #[inline(always)]
1129    fn inlined_bump_with(&mut self, (next_token, next_spacing): (Token, Spacing)) {
1130        // Update the current and previous tokens.
1131        self.prev_token = mem::replace(&mut self.token, next_token);
1132        self.token_spacing = next_spacing;
1133
1134        // Diagnostics.
1135        self.expected_token_types.clear();
1136    }
1137
1138    /// Advance the parser by one token.
1139    pub fn bump(&mut self) {
1140        // Note: destructuring here would give nicer code, but it was found in #96210 to be slower
1141        // than `.0`/`.1` access.
1142        let mut next = self.token_cursor.inlined_next();
1143        self.num_bump_calls += 1;
1144        // We got a token from the underlying cursor and no longer need to
1145        // worry about an unglued token. See `break_and_eat` for more details.
1146        self.break_last_token = 0;
1147        if next.0.span.is_dummy() {
1148            // Tweak the location for better diagnostics, but keep syntactic context intact.
1149            let fallback_span = self.token.span;
1150            next.0.span = fallback_span.with_ctxt(next.0.span.ctxt());
1151        }
1152        if true {
    if !!#[allow(non_exhaustive_omitted_patterns)] match next.0.kind {
                    token::OpenInvisible(origin) | token::CloseInvisible(origin)
                        if origin.skip() => true,
                    _ => false,
                } {
        ::core::panicking::panic("assertion failed: !matches!(next.0.kind, token::OpenInvisible(origin) |\n        token::CloseInvisible(origin) if origin.skip())")
    };
};debug_assert!(!matches!(
1153            next.0.kind,
1154            token::OpenInvisible(origin) | token::CloseInvisible(origin) if origin.skip()
1155        ));
1156        self.inlined_bump_with(next)
1157    }
1158
1159    /// Look-ahead `dist` tokens of `self.token` and get access to that token there.
1160    /// When `dist == 0` then the current token is looked at. `Eof` will be
1161    /// returned if the look-ahead is any distance past the end of the tokens.
1162    pub fn look_ahead<R>(&self, dist: usize, looker: impl FnOnce(&Token) -> R) -> R {
1163        if dist == 0 {
1164            return looker(&self.token);
1165        }
1166
1167        // Typically around 98% of the `dist > 0` cases have `dist == 1`, so we
1168        // have a fast special case for that.
1169        if dist == 1 {
1170            // The index is zero because the tree cursor's index always points
1171            // to the next token to be gotten.
1172            match self.token_cursor.curr.curr() {
1173                Some(tree) => {
1174                    // Indexing stayed within the current token tree.
1175                    match tree {
1176                        TokenTree::Token(token, _) => return looker(token),
1177                        &TokenTree::Delimited(dspan, _, delim, _) => {
1178                            if !delim.skip() {
1179                                return looker(&Token::new(delim.as_open_token_kind(), dspan.open));
1180                            }
1181                        }
1182                    }
1183                }
1184                None => {
1185                    // The tree cursor lookahead went (one) past the end of the
1186                    // current token tree. Try to return a close delimiter.
1187                    if let Some(last) = self.token_cursor.stack.last()
1188                        && let Some(&TokenTree::Delimited(span, _, delim, _)) = last.curr()
1189                        && !delim.skip()
1190                    {
1191                        // We are not in the outermost token stream, so we have
1192                        // delimiters. Also, those delimiters are not skipped.
1193                        return looker(&Token::new(delim.as_close_token_kind(), span.close));
1194                    }
1195                }
1196            }
1197        }
1198
1199        // Just clone the token cursor and use `next`, skipping delimiters as
1200        // necessary. Slow but simple.
1201        let mut cursor = self.token_cursor.clone();
1202        let mut i = 0;
1203        let mut token = Token::dummy();
1204        while i < dist {
1205            token = cursor.next().0;
1206            if let token::OpenInvisible(origin) | token::CloseInvisible(origin) = token.kind
1207                && origin.skip()
1208            {
1209                continue;
1210            }
1211            i += 1;
1212        }
1213        looker(&token)
1214    }
1215
1216    /// Like `lookahead`, but skips over token trees rather than tokens. Useful
1217    /// when looking past possible metavariable pasting sites.
1218    pub fn tree_look_ahead<R>(
1219        &self,
1220        dist: usize,
1221        looker: impl FnOnce(&TokenTree) -> R,
1222    ) -> Option<R> {
1223        match (&dist, &0) {
    (left_val, right_val) => {
        if *left_val == *right_val {
            let kind = ::core::panicking::AssertKind::Ne;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_ne!(dist, 0);
1224        self.token_cursor.curr.look_ahead(dist - 1).map(looker)
1225    }
1226
1227    /// Returns whether any of the given keywords are `dist` tokens ahead of the current one.
1228    pub(crate) fn is_keyword_ahead(&self, dist: usize, kws: &[Symbol]) -> bool {
1229        self.look_ahead(dist, |t| kws.iter().any(|&kw| t.is_keyword(kw)))
1230    }
1231
1232    /// Parses asyncness: `async` or nothing.
1233    fn parse_coroutine_kind(&mut self, case: Case) -> Option<CoroutineKind> {
1234        let span = self.token_uninterpolated_span();
1235        if self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Async,
    token_type: crate::parser::token_type::TokenType::KwAsync,
}exp!(Async), case) {
1236            // FIXME(gen_blocks): Do we want to unconditionally parse `gen` and then
1237            // error if edition <= 2024, like we do with async and edition <= 2018?
1238            if self.token_uninterpolated_span().at_least_rust_2024()
1239                && self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Gen,
    token_type: crate::parser::token_type::TokenType::KwGen,
}exp!(Gen), case)
1240            {
1241                let gen_span = self.prev_token_uninterpolated_span();
1242                Some(CoroutineKind::AsyncGen {
1243                    span: span.to(gen_span),
1244                    closure_id: DUMMY_NODE_ID,
1245                    return_impl_trait_id: DUMMY_NODE_ID,
1246                })
1247            } else {
1248                Some(CoroutineKind::Async {
1249                    span,
1250                    closure_id: DUMMY_NODE_ID,
1251                    return_impl_trait_id: DUMMY_NODE_ID,
1252                })
1253            }
1254        } else if self.token_uninterpolated_span().at_least_rust_2024()
1255            && self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Gen,
    token_type: crate::parser::token_type::TokenType::KwGen,
}exp!(Gen), case)
1256        {
1257            Some(CoroutineKind::Gen {
1258                span,
1259                closure_id: DUMMY_NODE_ID,
1260                return_impl_trait_id: DUMMY_NODE_ID,
1261            })
1262        } else {
1263            None
1264        }
1265    }
1266
1267    /// Parses fn unsafety: `unsafe`, `safe` or nothing.
1268    fn parse_safety(&mut self, case: Case) -> Safety {
1269        if self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Unsafe,
    token_type: crate::parser::token_type::TokenType::KwUnsafe,
}exp!(Unsafe), case) {
1270            Safety::Unsafe(self.prev_token_uninterpolated_span())
1271        } else if self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Safe,
    token_type: crate::parser::token_type::TokenType::KwSafe,
}exp!(Safe), case) {
1272            Safety::Safe(self.prev_token_uninterpolated_span())
1273        } else {
1274            Safety::Default
1275        }
1276    }
1277
1278    /// Parses constness: `const` or nothing.
1279    fn parse_constness(&mut self, case: Case) -> Const {
1280        self.parse_constness_(case, false)
1281    }
1282
1283    /// Parses constness for closures (case sensitive, feature-gated)
1284    fn parse_closure_constness(&mut self) -> Const {
1285        let constness = self.parse_constness_(Case::Sensitive, true);
1286        if let Const::Yes(span) = constness {
1287            self.psess.gated_spans.gate(sym::const_closures, span);
1288        }
1289        constness
1290    }
1291
1292    fn parse_constness_(&mut self, case: Case, is_closure: bool) -> Const {
1293        // Avoid const blocks and const closures to be parsed as const items
1294        if (self.check_const_closure() == is_closure)
1295            && !self.look_ahead(1, |t| *t == token::OpenBrace || t.is_metavar_block())
1296            && self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Const,
    token_type: crate::parser::token_type::TokenType::KwConst,
}exp!(Const), case)
1297        {
1298            Const::Yes(self.prev_token_uninterpolated_span())
1299        } else {
1300            Const::No
1301        }
1302    }
1303
1304    fn parse_mgca_const_block(&mut self, gate_syntax: bool) -> PResult<'a, AnonConst> {
1305        let kw_span = self.prev_token.span;
1306        let value = self.parse_expr_block(None, kw_span, BlockCheckMode::Default)?;
1307        if gate_syntax {
1308            self.psess.gated_spans.gate(sym::min_generic_const_args, kw_span.to(value.span));
1309        }
1310        Ok(AnonConst {
1311            id: ast::DUMMY_NODE_ID,
1312            value,
1313            mgca_disambiguation: MgcaDisambiguation::AnonConst,
1314        })
1315    }
1316
1317    /// Parses inline const expressions.
1318    fn parse_const_block(&mut self, span: Span) -> PResult<'a, Box<Expr>> {
1319        self.expect_keyword(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Const,
    token_type: crate::parser::token_type::TokenType::KwConst,
}exp!(Const))?;
1320        let (attrs, blk) = self.parse_inner_attrs_and_block(None)?;
1321        let anon_const = AnonConst {
1322            id: DUMMY_NODE_ID,
1323            value: self.mk_expr(blk.span, ExprKind::Block(blk, None)),
1324            mgca_disambiguation: MgcaDisambiguation::AnonConst,
1325        };
1326        let blk_span = anon_const.value.span;
1327        let kind = ExprKind::ConstBlock(anon_const);
1328        Ok(self.mk_expr_with_attrs(span.to(blk_span), kind, attrs))
1329    }
1330
1331    /// Parses mutability (`mut` or nothing).
1332    fn parse_mutability(&mut self) -> Mutability {
1333        if self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Mut,
    token_type: crate::parser::token_type::TokenType::KwMut,
}exp!(Mut)) { Mutability::Mut } else { Mutability::Not }
1334    }
1335
1336    /// Parses reference binding mode (`ref`, `ref mut`, `ref pin const`, `ref pin mut`, or nothing).
1337    fn parse_byref(&mut self) -> ByRef {
1338        if self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Ref,
    token_type: crate::parser::token_type::TokenType::KwRef,
}exp!(Ref)) {
1339            let (pinnedness, mutability) = self.parse_pin_and_mut();
1340            ByRef::Yes(pinnedness, mutability)
1341        } else {
1342            ByRef::No
1343        }
1344    }
1345
1346    /// Possibly parses mutability (`const` or `mut`).
1347    fn parse_const_or_mut(&mut self) -> Option<Mutability> {
1348        if self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Mut,
    token_type: crate::parser::token_type::TokenType::KwMut,
}exp!(Mut)) {
1349            Some(Mutability::Mut)
1350        } else if self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Const,
    token_type: crate::parser::token_type::TokenType::KwConst,
}exp!(Const)) {
1351            Some(Mutability::Not)
1352        } else {
1353            None
1354        }
1355    }
1356
1357    fn parse_field_name(&mut self) -> PResult<'a, Ident> {
1358        if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) = self.token.kind
1359        {
1360            if let Some(suffix) = suffix {
1361                self.dcx().emit_err(errors::InvalidLiteralSuffixOnTupleIndex {
1362                    span: self.token.span,
1363                    suffix,
1364                });
1365            }
1366            self.bump();
1367            Ok(Ident::new(symbol, self.prev_token.span))
1368        } else {
1369            self.parse_ident_common(true)
1370        }
1371    }
1372
1373    fn parse_delim_args(&mut self) -> PResult<'a, Box<DelimArgs>> {
1374        if let Some(args) = self.parse_delim_args_inner() {
1375            Ok(Box::new(args))
1376        } else {
1377            self.unexpected_any()
1378        }
1379    }
1380
1381    fn parse_attr_args(&mut self) -> PResult<'a, AttrArgs> {
1382        Ok(if let Some(args) = self.parse_delim_args_inner() {
1383            AttrArgs::Delimited(args)
1384        } else if self.eat(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::Eq,
    token_type: crate::parser::token_type::TokenType::Eq,
}exp!(Eq)) {
1385            let eq_span = self.prev_token.span;
1386            let expr = self.parse_expr_force_collect()?;
1387            AttrArgs::Eq { eq_span, expr }
1388        } else {
1389            AttrArgs::Empty
1390        })
1391    }
1392
1393    fn parse_delim_args_inner(&mut self) -> Option<DelimArgs> {
1394        let delimited = self.check(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::OpenParen,
    token_type: crate::parser::token_type::TokenType::OpenParen,
}exp!(OpenParen))
1395            || self.check(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::OpenBracket,
    token_type: crate::parser::token_type::TokenType::OpenBracket,
}exp!(OpenBracket))
1396            || self.check(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::OpenBrace,
    token_type: crate::parser::token_type::TokenType::OpenBrace,
}exp!(OpenBrace));
1397
1398        delimited.then(|| {
1399            let TokenTree::Delimited(dspan, _, delim, tokens) = self.parse_token_tree() else {
1400                ::core::panicking::panic("internal error: entered unreachable code")unreachable!()
1401            };
1402            DelimArgs { dspan, delim, tokens }
1403        })
1404    }
1405
1406    /// Parses a single token tree from the input.
1407    pub fn parse_token_tree(&mut self) -> TokenTree {
1408        if self.token.kind.open_delim().is_some() {
1409            // Clone the `TokenTree::Delimited` that we are currently
1410            // within. That's what we are going to return.
1411            let tree = self.token_cursor.stack.last().unwrap().curr().unwrap().clone();
1412            if true {
    match tree {
        TokenTree::Delimited(..) => {}
        ref left_val => {
            ::core::panicking::assert_matches_failed(left_val,
                "TokenTree::Delimited(..)", ::core::option::Option::None);
        }
    };
};debug_assert_matches!(tree, TokenTree::Delimited(..));
1413
1414            // Advance the token cursor through the entire delimited
1415            // sequence. After getting the `OpenDelim` we are *within* the
1416            // delimited sequence, i.e. at depth `d`. After getting the
1417            // matching `CloseDelim` we are *after* the delimited sequence,
1418            // i.e. at depth `d - 1`.
1419            let target_depth = self.token_cursor.stack.len() - 1;
1420
1421            if let Capturing::No = self.capture_state.capturing {
1422                // We are not capturing tokens, so skip to the end of the
1423                // delimited sequence. This is a perf win when dealing with
1424                // declarative macros that pass large `tt` fragments through
1425                // multiple rules, as seen in the uom-0.37.0 crate.
1426                self.token_cursor.curr.bump_to_end();
1427                self.bump();
1428                if true {
    match (&self.token_cursor.stack.len(), &target_depth) {
        (left_val, right_val) => {
            if !(*left_val == *right_val) {
                let kind = ::core::panicking::AssertKind::Eq;
                ::core::panicking::assert_failed(kind, &*left_val,
                    &*right_val, ::core::option::Option::None);
            }
        }
    };
};debug_assert_eq!(self.token_cursor.stack.len(), target_depth);
1429            } else {
1430                loop {
1431                    // Advance one token at a time, so `TokenCursor::next()`
1432                    // can capture these tokens if necessary.
1433                    self.bump();
1434                    if self.token_cursor.stack.len() == target_depth {
1435                        break;
1436                    }
1437                }
1438            }
1439            if true {
    if !self.token.kind.close_delim().is_some() {
        ::core::panicking::panic("assertion failed: self.token.kind.close_delim().is_some()")
    };
};debug_assert!(self.token.kind.close_delim().is_some());
1440
1441            // Consume close delimiter
1442            self.bump();
1443            tree
1444        } else {
1445            if !!self.token.kind.is_close_delim_or_eof() {
    ::core::panicking::panic("assertion failed: !self.token.kind.is_close_delim_or_eof()")
};assert!(!self.token.kind.is_close_delim_or_eof());
1446            let prev_spacing = self.token_spacing;
1447            self.bump();
1448            TokenTree::Token(self.prev_token, prev_spacing)
1449        }
1450    }
1451
1452    pub fn parse_tokens(&mut self) -> TokenStream {
1453        let mut result = Vec::new();
1454        loop {
1455            if self.token.kind.is_close_delim_or_eof() {
1456                break;
1457            } else {
1458                result.push(self.parse_token_tree());
1459            }
1460        }
1461        TokenStream::new(result)
1462    }
1463
1464    /// Evaluates the closure with restrictions in place.
1465    ///
1466    /// Afters the closure is evaluated, restrictions are reset.
1467    fn with_res<T>(&mut self, res: Restrictions, f: impl FnOnce(&mut Self) -> T) -> T {
1468        let old = self.restrictions;
1469        self.restrictions = res;
1470        let res = f(self);
1471        self.restrictions = old;
1472        res
1473    }
1474
1475    /// Parses `pub` and `pub(in path)` plus shortcuts `pub(crate)` for `pub(in crate)`, `pub(self)`
1476    /// for `pub(in self)` and `pub(super)` for `pub(in super)`.
1477    /// If the following element can't be a tuple (i.e., it's a function definition), then
1478    /// it's not a tuple struct field), and the contents within the parentheses aren't valid,
1479    /// so emit a proper diagnostic.
1480    // Public for rustfmt usage.
1481    pub fn parse_visibility(&mut self, fbt: FollowedByType) -> PResult<'a, Visibility> {
1482        if let Some(vis) = self
1483            .eat_metavar_seq(MetaVarKind::Vis, |this| this.parse_visibility(FollowedByType::Yes))
1484        {
1485            return Ok(vis);
1486        }
1487
1488        if !self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Pub,
    token_type: crate::parser::token_type::TokenType::KwPub,
}exp!(Pub)) {
1489            // We need a span for our `Spanned<VisibilityKind>`, but there's inherently no
1490            // keyword to grab a span from for inherited visibility; an empty span at the
1491            // beginning of the current token would seem to be the "Schelling span".
1492            return Ok(Visibility {
1493                span: self.token.span.shrink_to_lo(),
1494                kind: VisibilityKind::Inherited,
1495                tokens: None,
1496            });
1497        }
1498        let lo = self.prev_token.span;
1499
1500        if self.check(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::OpenParen,
    token_type: crate::parser::token_type::TokenType::OpenParen,
}exp!(OpenParen)) {
1501            // We don't `self.bump()` the `(` yet because this might be a struct definition where
1502            // `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`.
1503            // Because of this, we only `bump` the `(` if we're assured it is appropriate to do so
1504            // by the following tokens.
1505            if self.is_keyword_ahead(1, &[kw::In]) {
1506                // Parse `pub(in path)`.
1507                self.bump(); // `(`
1508                self.bump(); // `in`
1509                let path = self.parse_path(PathStyle::Mod)?; // `path`
1510                self.expect(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::CloseParen,
    token_type: crate::parser::token_type::TokenType::CloseParen,
}exp!(CloseParen))?; // `)`
1511                let vis = VisibilityKind::Restricted {
1512                    path: Box::new(path),
1513                    id: ast::DUMMY_NODE_ID,
1514                    shorthand: false,
1515                };
1516                return Ok(Visibility {
1517                    span: lo.to(self.prev_token.span),
1518                    kind: vis,
1519                    tokens: None,
1520                });
1521            } else if self.look_ahead(2, |t| t == &token::CloseParen)
1522                && self.is_keyword_ahead(1, &[kw::Crate, kw::Super, kw::SelfLower])
1523            {
1524                // Parse `pub(crate)`, `pub(self)`, or `pub(super)`.
1525                self.bump(); // `(`
1526                let path = self.parse_path(PathStyle::Mod)?; // `crate`/`super`/`self`
1527                self.expect(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::CloseParen,
    token_type: crate::parser::token_type::TokenType::CloseParen,
}exp!(CloseParen))?; // `)`
1528                let vis = VisibilityKind::Restricted {
1529                    path: Box::new(path),
1530                    id: ast::DUMMY_NODE_ID,
1531                    shorthand: true,
1532                };
1533                return Ok(Visibility {
1534                    span: lo.to(self.prev_token.span),
1535                    kind: vis,
1536                    tokens: None,
1537                });
1538            } else if let FollowedByType::No = fbt {
1539                // Provide this diagnostic if a type cannot follow;
1540                // in particular, if this is not a tuple struct.
1541                self.recover_incorrect_vis_restriction()?;
1542                // Emit diagnostic, but continue with public visibility.
1543            }
1544        }
1545
1546        Ok(Visibility { span: lo, kind: VisibilityKind::Public, tokens: None })
1547    }
1548
1549    /// Recovery for e.g. `pub(something) fn ...` or `struct X { pub(something) y: Z }`
1550    fn recover_incorrect_vis_restriction(&mut self) -> PResult<'a, ()> {
1551        self.bump(); // `(`
1552        let path = self.parse_path(PathStyle::Mod)?;
1553        self.expect(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::CloseParen,
    token_type: crate::parser::token_type::TokenType::CloseParen,
}exp!(CloseParen))?; // `)`
1554
1555        let path_str = pprust::path_to_string(&path);
1556        self.dcx()
1557            .emit_err(IncorrectVisibilityRestriction { span: path.span, inner_str: path_str });
1558
1559        Ok(())
1560    }
1561
1562    /// Parses `extern string_literal?`.
1563    fn parse_extern(&mut self, case: Case) -> Extern {
1564        if self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
    kw: rustc_span::symbol::kw::Extern,
    token_type: crate::parser::token_type::TokenType::KwExtern,
}exp!(Extern), case) {
1565            let mut extern_span = self.prev_token.span;
1566            let abi = self.parse_abi();
1567            if let Some(abi) = abi {
1568                extern_span = extern_span.to(abi.span);
1569            }
1570            Extern::from_abi(abi, extern_span)
1571        } else {
1572            Extern::None
1573        }
1574    }
1575
1576    /// Parses a string literal as an ABI spec.
1577    fn parse_abi(&mut self) -> Option<StrLit> {
1578        match self.parse_str_lit() {
1579            Ok(str_lit) => Some(str_lit),
1580            Err(Some(lit)) => match lit.kind {
1581                ast::LitKind::Err(_) => None,
1582                _ => {
1583                    self.dcx().emit_err(NonStringAbiLiteral { span: lit.span });
1584                    None
1585                }
1586            },
1587            Err(None) => None,
1588        }
1589    }
1590
1591    fn collect_tokens_no_attrs<R: HasAttrs + HasTokens>(
1592        &mut self,
1593        f: impl FnOnce(&mut Self) -> PResult<'a, R>,
1594    ) -> PResult<'a, R> {
1595        // The only reason to call `collect_tokens_no_attrs` is if you want tokens, so use
1596        // `ForceCollect::Yes`
1597        self.collect_tokens(None, AttrWrapper::empty(), ForceCollect::Yes, |this, _attrs| {
1598            Ok((f(this)?, Trailing::No, UsePreAttrPos::No))
1599        })
1600    }
1601
1602    /// Checks for `::` or, potentially, `:::` and then look ahead after it.
1603    fn check_path_sep_and_look_ahead(&mut self, looker: impl Fn(&Token) -> bool) -> bool {
1604        if self.check(crate::parser::token_type::ExpTokenPair {
    tok: rustc_ast::token::PathSep,
    token_type: crate::parser::token_type::TokenType::PathSep,
}exp!(PathSep)) {
1605            if self.may_recover() && self.look_ahead(1, |t| t.kind == token::Colon) {
1606                if true {
    if !!self.look_ahead(1, &looker) {
        {
            ::core::panicking::panic_fmt(format_args!("Looker must not match on colon"));
        }
    };
};debug_assert!(!self.look_ahead(1, &looker), "Looker must not match on colon");
1607                self.look_ahead(2, looker)
1608            } else {
1609                self.look_ahead(1, looker)
1610            }
1611        } else {
1612            false
1613        }
1614    }
1615
1616    /// `::{` or `::*`
1617    fn is_import_coupler(&mut self) -> bool {
1618        self.check_path_sep_and_look_ahead(|t| #[allow(non_exhaustive_omitted_patterns)] match t.kind {
    token::OpenBrace | token::Star => true,
    _ => false,
}matches!(t.kind, token::OpenBrace | token::Star))
1619    }
1620
1621    // Debug view of the parser's token stream, up to `{lookahead}` tokens.
1622    // Only used when debugging.
1623    #[allow(unused)]
1624    pub(crate) fn debug_lookahead(&self, lookahead: usize) -> impl fmt::Debug {
1625        fmt::from_fn(move |f| {
1626            let mut dbg_fmt = f.debug_struct("Parser"); // or at least, one view of
1627
1628            // we don't need N spans, but we want at least one, so print all of prev_token
1629            dbg_fmt.field("prev_token", &self.prev_token);
1630            let mut tokens = ::alloc::vec::Vec::new()vec![];
1631            for i in 0..lookahead {
1632                let tok = self.look_ahead(i, |tok| tok.kind);
1633                let is_eof = tok == TokenKind::Eof;
1634                tokens.push(tok);
1635                if is_eof {
1636                    // Don't look ahead past EOF.
1637                    break;
1638                }
1639            }
1640            dbg_fmt.field_with("tokens", |field| field.debug_list().entries(tokens).finish());
1641            dbg_fmt.field("approx_token_stream_pos", &self.num_bump_calls);
1642
1643            // some fields are interesting for certain values, as they relate to macro parsing
1644            if let Some(subparser) = self.subparser_name {
1645                dbg_fmt.field("subparser_name", &subparser);
1646            }
1647            if let Recovery::Forbidden = self.recovery {
1648                dbg_fmt.field("recovery", &self.recovery);
1649            }
1650
1651            // imply there's "more to know" than this view
1652            dbg_fmt.finish_non_exhaustive()
1653        })
1654    }
1655
1656    pub fn clear_expected_token_types(&mut self) {
1657        self.expected_token_types.clear();
1658    }
1659
1660    pub fn approx_token_stream_pos(&self) -> u32 {
1661        self.num_bump_calls
1662    }
1663
1664    /// For interpolated `self.token`, returns a span of the fragment to which
1665    /// the interpolated token refers. For all other tokens this is just a
1666    /// regular span. It is particularly important to use this for identifiers
1667    /// and lifetimes for which spans affect name resolution and edition
1668    /// checks. Note that keywords are also identifiers, so they should use
1669    /// this if they keep spans or perform edition checks.
1670    pub fn token_uninterpolated_span(&self) -> Span {
1671        match &self.token.kind {
1672            token::NtIdent(ident, _) | token::NtLifetime(ident, _) => ident.span,
1673            token::OpenInvisible(InvisibleOrigin::MetaVar(_)) => self.look_ahead(1, |t| t.span),
1674            _ => self.token.span,
1675        }
1676    }
1677
1678    /// Like `token_uninterpolated_span`, but works on `self.prev_token`.
1679    pub fn prev_token_uninterpolated_span(&self) -> Span {
1680        match &self.prev_token.kind {
1681            token::NtIdent(ident, _) | token::NtLifetime(ident, _) => ident.span,
1682            token::OpenInvisible(InvisibleOrigin::MetaVar(_)) => self.look_ahead(0, |t| t.span),
1683            _ => self.prev_token.span,
1684        }
1685    }
1686}
1687
1688// Metavar captures of various kinds.
1689#[derive(#[automatically_derived]
impl ::core::clone::Clone for ParseNtResult {
    #[inline]
    fn clone(&self) -> ParseNtResult {
        match self {
            ParseNtResult::Tt(__self_0) =>
                ParseNtResult::Tt(::core::clone::Clone::clone(__self_0)),
            ParseNtResult::Ident(__self_0, __self_1) =>
                ParseNtResult::Ident(::core::clone::Clone::clone(__self_0),
                    ::core::clone::Clone::clone(__self_1)),
            ParseNtResult::Lifetime(__self_0, __self_1) =>
                ParseNtResult::Lifetime(::core::clone::Clone::clone(__self_0),
                    ::core::clone::Clone::clone(__self_1)),
            ParseNtResult::Item(__self_0) =>
                ParseNtResult::Item(::core::clone::Clone::clone(__self_0)),
            ParseNtResult::Block(__self_0) =>
                ParseNtResult::Block(::core::clone::Clone::clone(__self_0)),
            ParseNtResult::Stmt(__self_0) =>
                ParseNtResult::Stmt(::core::clone::Clone::clone(__self_0)),
            ParseNtResult::Pat(__self_0, __self_1) =>
                ParseNtResult::Pat(::core::clone::Clone::clone(__self_0),
                    ::core::clone::Clone::clone(__self_1)),
            ParseNtResult::Expr(__self_0, __self_1) =>
                ParseNtResult::Expr(::core::clone::Clone::clone(__self_0),
                    ::core::clone::Clone::clone(__self_1)),
            ParseNtResult::Literal(__self_0) =>
                ParseNtResult::Literal(::core::clone::Clone::clone(__self_0)),
            ParseNtResult::Ty(__self_0) =>
                ParseNtResult::Ty(::core::clone::Clone::clone(__self_0)),
            ParseNtResult::Meta(__self_0) =>
                ParseNtResult::Meta(::core::clone::Clone::clone(__self_0)),
            ParseNtResult::Path(__self_0) =>
                ParseNtResult::Path(::core::clone::Clone::clone(__self_0)),
            ParseNtResult::Vis(__self_0) =>
                ParseNtResult::Vis(::core::clone::Clone::clone(__self_0)),
        }
    }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for ParseNtResult {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        match self {
            ParseNtResult::Tt(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f, "Tt",
                    &__self_0),
            ParseNtResult::Ident(__self_0, __self_1) =>
                ::core::fmt::Formatter::debug_tuple_field2_finish(f, "Ident",
                    __self_0, &__self_1),
            ParseNtResult::Lifetime(__self_0, __self_1) =>
                ::core::fmt::Formatter::debug_tuple_field2_finish(f,
                    "Lifetime", __self_0, &__self_1),
            ParseNtResult::Item(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f, "Item",
                    &__self_0),
            ParseNtResult::Block(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f, "Block",
                    &__self_0),
            ParseNtResult::Stmt(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f, "Stmt",
                    &__self_0),
            ParseNtResult::Pat(__self_0, __self_1) =>
                ::core::fmt::Formatter::debug_tuple_field2_finish(f, "Pat",
                    __self_0, &__self_1),
            ParseNtResult::Expr(__self_0, __self_1) =>
                ::core::fmt::Formatter::debug_tuple_field2_finish(f, "Expr",
                    __self_0, &__self_1),
            ParseNtResult::Literal(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f,
                    "Literal", &__self_0),
            ParseNtResult::Ty(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f, "Ty",
                    &__self_0),
            ParseNtResult::Meta(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f, "Meta",
                    &__self_0),
            ParseNtResult::Path(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f, "Path",
                    &__self_0),
            ParseNtResult::Vis(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f, "Vis",
                    &__self_0),
        }
    }
}Debug)]
1690pub enum ParseNtResult {
1691    Tt(TokenTree),
1692    Ident(Ident, IdentIsRaw),
1693    Lifetime(Ident, IdentIsRaw),
1694    Item(Box<ast::Item>),
1695    Block(Box<ast::Block>),
1696    Stmt(Box<ast::Stmt>),
1697    Pat(Box<ast::Pat>, NtPatKind),
1698    Expr(Box<ast::Expr>, NtExprKind),
1699    Literal(Box<ast::Expr>),
1700    Ty(Box<ast::Ty>),
1701    Meta(Box<ast::AttrItem>),
1702    Path(Box<ast::Path>),
1703    Vis(Box<ast::Visibility>),
1704}