1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
use std::mem;
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, DefIdSet};
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::Symbol;
use tracing::debug;
use crate::clean::types::ExternalLocation;
use crate::clean::{self, ExternalCrate, ItemId, PrimitiveType};
use crate::core::DocContext;
use crate::fold::DocFolder;
use crate::formats::item_type::ItemType;
use crate::formats::Impl;
use crate::html::format::join_with_double_colon;
use crate::html::markdown::short_markdown_summary;
use crate::html::render::search_index::get_function_type_for_search;
use crate::html::render::IndexItem;
use crate::visit_lib::RustdocEffectiveVisibilities;
/// This cache is used to store information about the [`clean::Crate`] being
/// rendered in order to provide more useful documentation. This contains
/// information like all implementors of a trait, all traits a type implements,
/// documentation for all known traits, etc.
///
/// This structure purposefully does not implement `Clone` because it's intended
/// to be a fairly large and expensive structure to clone. Instead this adheres
/// to `Send` so it may be stored in an `Arc` instance and shared among the various
/// rendering threads.
#[derive(Default)]
pub(crate) struct Cache {
/// Maps a type ID to all known implementations for that type. This is only
/// recognized for intra-crate [`clean::Type::Path`]s, and is used to print
/// out extra documentation on the page of an enum/struct.
///
/// The values of the map are a list of implementations and documentation
/// found on that implementation.
pub(crate) impls: DefIdMap<Vec<Impl>>,
/// Maintains a mapping of local crate `DefId`s to the fully qualified name
/// and "short type description" of that node. This is used when generating
/// URLs when a type is being linked to. External paths are not located in
/// this map because the `External` type itself has all the information
/// necessary.
pub(crate) paths: FxHashMap<DefId, (Vec<Symbol>, ItemType)>,
/// Similar to `paths`, but only holds external paths. This is only used for
/// generating explicit hyperlinks to other crates.
pub(crate) external_paths: FxHashMap<DefId, (Vec<Symbol>, ItemType)>,
/// Maps local `DefId`s of exported types to fully qualified paths.
/// Unlike 'paths', this mapping ignores any renames that occur
/// due to 'use' statements.
///
/// This map is used when writing out the `impl.trait` and `impl.type`
/// javascript files. By using the exact path that the type
/// is declared with, we ensure that each path will be identical
/// to the path used if the corresponding type is inlined. By
/// doing this, we can detect duplicate impls on a trait page, and only display
/// the impl for the inlined type.
pub(crate) exact_paths: DefIdMap<Vec<Symbol>>,
/// This map contains information about all known traits of this crate.
/// Implementations of a crate should inherit the documentation of the
/// parent trait if no extra documentation is specified, and default methods
/// should show up in documentation about trait implementations.
pub(crate) traits: FxHashMap<DefId, clean::Trait>,
/// When rendering traits, it's often useful to be able to list all
/// implementors of the trait, and this mapping is exactly, that: a mapping
/// of trait ids to the list of known implementors of the trait
pub(crate) implementors: FxHashMap<DefId, Vec<Impl>>,
/// Cache of where external crate documentation can be found.
pub(crate) extern_locations: FxHashMap<CrateNum, ExternalLocation>,
/// Cache of where documentation for primitives can be found.
pub(crate) primitive_locations: FxHashMap<clean::PrimitiveType, DefId>,
// Note that external items for which `doc(hidden)` applies to are shown as
// non-reachable while local items aren't. This is because we're reusing
// the effective visibilities from the privacy check pass.
pub(crate) effective_visibilities: RustdocEffectiveVisibilities,
/// The version of the crate being documented, if given from the `--crate-version` flag.
pub(crate) crate_version: Option<String>,
/// Whether to document private items.
/// This is stored in `Cache` so it doesn't need to be passed through all rustdoc functions.
pub(crate) document_private: bool,
/// Whether to document hidden items.
/// This is stored in `Cache` so it doesn't need to be passed through all rustdoc functions.
pub(crate) document_hidden: bool,
/// Crates marked with [`#[doc(masked)]`][doc_masked].
///
/// [doc_masked]: https://doc.rust-lang.org/nightly/unstable-book/language-features/doc-masked.html
pub(crate) masked_crates: FxHashSet<CrateNum>,
// Private fields only used when initially crawling a crate to build a cache
stack: Vec<Symbol>,
parent_stack: Vec<ParentStackItem>,
stripped_mod: bool,
pub(crate) search_index: Vec<IndexItem>,
// In rare case where a structure is defined in one module but implemented
// in another, if the implementing module is parsed before defining module,
// then the fully qualified name of the structure isn't presented in `paths`
// yet when its implementation methods are being indexed. Caches such methods
// and their parent id here and indexes them at the end of crate parsing.
pub(crate) orphan_impl_items: Vec<OrphanImplItem>,
// Similarly to `orphan_impl_items`, sometimes trait impls are picked up
// even though the trait itself is not exported. This can happen if a trait
// was defined in function/expression scope, since the impl will be picked
// up by `collect-trait-impls` but the trait won't be scraped out in the HIR
// crawl. In order to prevent crashes when looking for notable traits or
// when gathering trait documentation on a type, hold impls here while
// folding and add them to the cache later on if we find the trait.
orphan_trait_impls: Vec<(DefId, FxHashSet<DefId>, Impl)>,
/// All intra-doc links resolved so far.
///
/// Links are indexed by the DefId of the item they document.
pub(crate) intra_doc_links: FxHashMap<ItemId, FxIndexSet<clean::ItemLink>>,
/// Cfg that have been hidden via #![doc(cfg_hide(...))]
pub(crate) hidden_cfg: FxHashSet<clean::cfg::Cfg>,
/// Contains the list of `DefId`s which have been inlined. It is used when generating files
/// to check if a stripped item should get its file generated or not: if it's inside a
/// `#[doc(hidden)]` item or a private one and not inlined, it shouldn't get a file.
pub(crate) inlined_items: DefIdSet,
}
/// This struct is used to wrap the `cache` and `tcx` in order to run `DocFolder`.
struct CacheBuilder<'a, 'tcx> {
cache: &'a mut Cache,
/// This field is used to prevent duplicated impl blocks.
impl_ids: DefIdMap<DefIdSet>,
tcx: TyCtxt<'tcx>,
}
impl Cache {
pub(crate) fn new(document_private: bool, document_hidden: bool) -> Self {
Cache { document_private, document_hidden, ..Cache::default() }
}
/// Populates the `Cache` with more data. The returned `Crate` will be missing some data that was
/// in `krate` due to the data being moved into the `Cache`.
pub(crate) fn populate(cx: &mut DocContext<'_>, mut krate: clean::Crate) -> clean::Crate {
let tcx = cx.tcx;
// Crawl the crate to build various caches used for the output
debug!(?cx.cache.crate_version);
cx.cache.traits = krate.external_traits.take();
// Cache where all our extern crates are located
// FIXME: this part is specific to HTML so it'd be nice to remove it from the common code
for &crate_num in tcx.crates(()) {
let e = ExternalCrate { crate_num };
let name = e.name(tcx);
let render_options = &cx.render_options;
let extern_url = render_options.extern_html_root_urls.get(name.as_str()).map(|u| &**u);
let extern_url_takes_precedence = render_options.extern_html_root_takes_precedence;
let dst = &render_options.output;
let location = e.location(extern_url, extern_url_takes_precedence, dst, tcx);
cx.cache.extern_locations.insert(e.crate_num, location);
cx.cache.external_paths.insert(e.def_id(), (vec![name], ItemType::Module));
}
// FIXME: avoid this clone (requires implementing Default manually)
cx.cache.primitive_locations = PrimitiveType::primitive_locations(tcx).clone();
for (prim, &def_id) in &cx.cache.primitive_locations {
let crate_name = tcx.crate_name(def_id.krate);
// Recall that we only allow primitive modules to be at the root-level of the crate.
// If that restriction is ever lifted, this will have to include the relative paths instead.
cx.cache
.external_paths
.insert(def_id, (vec![crate_name, prim.as_sym()], ItemType::Primitive));
}
let (krate, mut impl_ids) = {
let mut cache_builder =
CacheBuilder { tcx, cache: &mut cx.cache, impl_ids: Default::default() };
krate = cache_builder.fold_crate(krate);
(krate, cache_builder.impl_ids)
};
for (trait_did, dids, impl_) in cx.cache.orphan_trait_impls.drain(..) {
if cx.cache.traits.contains_key(&trait_did) {
for did in dids {
if impl_ids.entry(did).or_default().insert(impl_.def_id()) {
cx.cache.impls.entry(did).or_default().push(impl_.clone());
}
}
}
}
krate
}
}
impl<'a, 'tcx> DocFolder for CacheBuilder<'a, 'tcx> {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
if item.item_id.is_local() {
debug!(
"folding {} (stripped: {:?}) \"{:?}\", id {:?}",
item.type_(),
item.is_stripped(),
item.name,
item.item_id
);
}
// If this is a stripped module,
// we don't want it or its children in the search index.
let orig_stripped_mod = match *item.kind {
clean::StrippedItem(box clean::ModuleItem(..)) => {
mem::replace(&mut self.cache.stripped_mod, true)
}
_ => self.cache.stripped_mod,
};
#[inline]
fn is_from_private_dep(tcx: TyCtxt<'_>, cache: &Cache, def_id: DefId) -> bool {
let krate = def_id.krate;
cache.masked_crates.contains(&krate) || tcx.is_private_dep(krate)
}
// If the impl is from a masked crate or references something from a
// masked crate then remove it completely.
if let clean::ImplItem(ref i) = *item.kind
&& (self.cache.masked_crates.contains(&item.item_id.krate())
|| i.trait_
.as_ref()
.is_some_and(|t| is_from_private_dep(self.tcx, self.cache, t.def_id()))
|| i.for_
.def_id(self.cache)
.is_some_and(|d| is_from_private_dep(self.tcx, self.cache, d)))
{
return None;
}
// Propagate a trait method's documentation to all implementors of the
// trait.
if let clean::TraitItem(ref t) = *item.kind {
self.cache.traits.entry(item.item_id.expect_def_id()).or_insert_with(|| (**t).clone());
} else if let clean::ImplItem(ref i) = *item.kind
&& let Some(trait_) = &i.trait_
&& !i.kind.is_blanket()
{
// Collect all the implementors of traits.
self.cache
.implementors
.entry(trait_.def_id())
.or_default()
.push(Impl { impl_item: item.clone() });
}
// Index this method for searching later on.
let search_name = if !item.is_stripped() {
item.name.or_else(|| {
if let clean::ImportItem(ref i) = *item.kind
&& let clean::ImportKind::Simple(s) = i.kind
{
Some(s)
} else {
None
}
})
} else {
None
};
if let Some(name) = search_name {
add_item_to_search_index(self.tcx, self.cache, &item, name)
}
// Keep track of the fully qualified path for this item.
let pushed = match item.name {
Some(n) if !n.is_empty() => {
self.cache.stack.push(n);
true
}
_ => false,
};
match *item.kind {
clean::StructItem(..)
| clean::EnumItem(..)
| clean::TypeAliasItem(..)
| clean::TraitItem(..)
| clean::TraitAliasItem(..)
| clean::FunctionItem(..)
| clean::ModuleItem(..)
| clean::ForeignFunctionItem(..)
| clean::ForeignStaticItem(..)
| clean::ConstantItem(..)
| clean::StaticItem(..)
| clean::UnionItem(..)
| clean::ForeignTypeItem
| clean::MacroItem(..)
| clean::ProcMacroItem(..)
| clean::VariantItem(..) => {
if !self.cache.stripped_mod {
// Re-exported items mean that the same id can show up twice
// in the rustdoc ast that we're looking at. We know,
// however, that a re-exported item doesn't show up in the
// `public_items` map, so we can skip inserting into the
// paths map if there was already an entry present and we're
// not a public item.
let item_def_id = item.item_id.expect_def_id();
if !self.cache.paths.contains_key(&item_def_id)
|| self
.cache
.effective_visibilities
.is_directly_public(self.tcx, item_def_id)
{
self.cache
.paths
.insert(item_def_id, (self.cache.stack.clone(), item.type_()));
}
}
}
clean::PrimitiveItem(..) => {
self.cache
.paths
.insert(item.item_id.expect_def_id(), (self.cache.stack.clone(), item.type_()));
}
clean::ExternCrateItem { .. }
| clean::ImportItem(..)
| clean::ImplItem(..)
| clean::TyMethodItem(..)
| clean::MethodItem(..)
| clean::StructFieldItem(..)
| clean::TyAssocConstItem(..)
| clean::AssocConstItem(..)
| clean::TyAssocTypeItem(..)
| clean::AssocTypeItem(..)
| clean::StrippedItem(..)
| clean::KeywordItem => {
// FIXME: Do these need handling?
// The person writing this comment doesn't know.
// So would rather leave them to an expert,
// as at least the list is better than `_ => {}`.
}
}
// Maintain the parent stack.
let (item, parent_pushed) = match *item.kind {
clean::TraitItem(..)
| clean::EnumItem(..)
| clean::ForeignTypeItem
| clean::StructItem(..)
| clean::UnionItem(..)
| clean::VariantItem(..)
| clean::TypeAliasItem(..)
| clean::ImplItem(..) => {
self.cache.parent_stack.push(ParentStackItem::new(&item));
(self.fold_item_recur(item), true)
}
_ => (self.fold_item_recur(item), false),
};
// Once we've recursively found all the generics, hoard off all the
// implementations elsewhere.
let ret = if let clean::Item { kind: box clean::ImplItem(ref i), .. } = item {
// Figure out the id of this impl. This may map to a
// primitive rather than always to a struct/enum.
// Note: matching twice to restrict the lifetime of the `i` borrow.
let mut dids = FxHashSet::default();
match i.for_ {
clean::Type::Path { ref path }
| clean::BorrowedRef { type_: box clean::Type::Path { ref path }, .. } => {
dids.insert(path.def_id());
if let Some(generics) = path.generics()
&& let ty::Adt(adt, _) =
self.tcx.type_of(path.def_id()).instantiate_identity().kind()
&& adt.is_fundamental()
{
for ty in generics {
dids.extend(ty.def_id(self.cache));
}
}
}
clean::DynTrait(ref bounds, _)
| clean::BorrowedRef { type_: box clean::DynTrait(ref bounds, _), .. } => {
dids.insert(bounds[0].trait_.def_id());
}
ref t => {
let did = t
.primitive_type()
.and_then(|t| self.cache.primitive_locations.get(&t).cloned());
dids.extend(did);
}
}
if let Some(generics) = i.trait_.as_ref().and_then(|t| t.generics()) {
for bound in generics {
dids.extend(bound.def_id(self.cache));
}
}
let impl_item = Impl { impl_item: item };
let impl_did = impl_item.def_id();
let trait_did = impl_item.trait_did();
if trait_did.map_or(true, |d| self.cache.traits.contains_key(&d)) {
for did in dids {
if self.impl_ids.entry(did).or_default().insert(impl_did) {
self.cache.impls.entry(did).or_default().push(impl_item.clone());
}
}
} else {
let trait_did = trait_did.expect("no trait did");
self.cache.orphan_trait_impls.push((trait_did, dids, impl_item));
}
None
} else {
Some(item)
};
if pushed {
self.cache.stack.pop().expect("stack already empty");
}
if parent_pushed {
self.cache.parent_stack.pop().expect("parent stack already empty");
}
self.cache.stripped_mod = orig_stripped_mod;
ret
}
}
fn add_item_to_search_index(tcx: TyCtxt<'_>, cache: &mut Cache, item: &clean::Item, name: Symbol) {
// Item has a name, so it must also have a DefId (can't be an impl, let alone a blanket or auto impl).
let item_def_id = item.item_id.as_def_id().unwrap();
let (parent_did, parent_path) = match *item.kind {
clean::StrippedItem(..) => return,
clean::AssocConstItem(..) | clean::AssocTypeItem(..)
if cache.parent_stack.last().is_some_and(|parent| parent.is_trait_impl()) =>
{
// skip associated items in trait impls
return;
}
clean::TyMethodItem(..)
| clean::TyAssocConstItem(..)
| clean::TyAssocTypeItem(..)
| clean::StructFieldItem(..)
| clean::VariantItem(..) => {
// Don't index if containing module is stripped (i.e., private),
// or if item is tuple struct/variant field (name is a number -> not useful for search).
if cache.stripped_mod
|| item.type_() == ItemType::StructField
&& name.as_str().chars().all(|c| c.is_ascii_digit())
{
return;
}
let parent_did =
cache.parent_stack.last().expect("parent_stack is empty").item_id().expect_def_id();
let parent_path = &cache.stack[..cache.stack.len() - 1];
(Some(parent_did), parent_path)
}
clean::MethodItem(..) | clean::AssocConstItem(..) | clean::AssocTypeItem(..) => {
let last = cache.parent_stack.last().expect("parent_stack is empty 2");
let parent_did = match last {
// impl Trait for &T { fn method(self); }
//
// When generating a function index with the above shape, we want it
// associated with `T`, not with the primitive reference type. It should
// show up as `T::method`, rather than `reference::method`, in the search
// results page.
ParentStackItem::Impl { for_: clean::Type::BorrowedRef { type_, .. }, .. } => {
type_.def_id(cache)
}
ParentStackItem::Impl { for_, .. } => for_.def_id(cache),
ParentStackItem::Type(item_id) => item_id.as_def_id(),
};
let Some(parent_did) = parent_did else { return };
// The current stack reflects the CacheBuilder's recursive
// walk over HIR. For associated items, this is the module
// where the `impl` block is defined. That's an implementation
// detail that we don't want to affect the search engine.
//
// In particular, you can arrange things like this:
//
// #![crate_name="me"]
// mod private_mod {
// impl Clone for MyThing { fn clone(&self) -> MyThing { MyThing } }
// }
// pub struct MyThing;
//
// When that happens, we need to:
// - ignore the `cache.stripped_mod` flag, since the Clone impl is actually
// part of the public API even though it's defined in a private module
// - present the method as `me::MyThing::clone`, its publicly-visible path
// - deal with the fact that the recursive walk hasn't actually reached `MyThing`
// until it's already past `private_mod`, since that's first, and doesn't know
// yet if `MyThing` will actually be public or not (it could be re-exported)
//
// We accomplish the last two points by recording children of "orphan impls"
// in a field of the cache whose elements are added to the search index later,
// after cache building is complete (see `handle_orphan_impl_child`).
match cache.paths.get(&parent_did) {
Some((fqp, _)) => (Some(parent_did), &fqp[..fqp.len() - 1]),
None => {
handle_orphan_impl_child(cache, item, parent_did);
return;
}
}
}
_ => {
// Don't index if item is crate root, which is inserted later on when serializing the index.
// Don't index if containing module is stripped (i.e., private),
if item_def_id.is_crate_root() || cache.stripped_mod {
return;
}
(None, &*cache.stack)
}
};
debug_assert!(!item.is_stripped());
let desc = short_markdown_summary(&item.doc_value(), &item.link_names(cache));
// For searching purposes, a re-export is a duplicate if:
//
// - It's either an inline, or a true re-export
// - It's got the same name
// - Both of them have the same exact path
let defid = match &*item.kind {
clean::ItemKind::ImportItem(import) => import.source.did.unwrap_or(item_def_id),
_ => item_def_id,
};
let path = join_with_double_colon(parent_path);
let impl_id = if let Some(ParentStackItem::Impl { item_id, .. }) = cache.parent_stack.last() {
item_id.as_def_id()
} else {
None
};
let search_type = get_function_type_for_search(
item,
tcx,
clean_impl_generics(cache.parent_stack.last()).as_ref(),
parent_did,
cache,
);
let aliases = item.attrs.get_doc_aliases();
let deprecation = item.deprecation(tcx);
let index_item = IndexItem {
ty: item.type_(),
defid: Some(defid),
name,
path,
desc,
parent: parent_did,
parent_idx: None,
exact_path: None,
impl_id,
search_type,
aliases,
deprecation,
};
cache.search_index.push(index_item);
}
/// We have a parent, but we don't know where they're
/// defined yet. Wait for later to index this item.
/// See [`Cache::orphan_impl_items`].
fn handle_orphan_impl_child(cache: &mut Cache, item: &clean::Item, parent_did: DefId) {
let impl_generics = clean_impl_generics(cache.parent_stack.last());
let impl_id = if let Some(ParentStackItem::Impl { item_id, .. }) = cache.parent_stack.last() {
item_id.as_def_id()
} else {
None
};
let orphan_item =
OrphanImplItem { parent: parent_did, item: item.clone(), impl_generics, impl_id };
cache.orphan_impl_items.push(orphan_item);
}
pub(crate) struct OrphanImplItem {
pub(crate) parent: DefId,
pub(crate) impl_id: Option<DefId>,
pub(crate) item: clean::Item,
pub(crate) impl_generics: Option<(clean::Type, clean::Generics)>,
}
/// Information about trait and type parents is tracked while traversing the item tree to build
/// the cache.
///
/// We don't just store `Item` in there, because `Item` contains the list of children being
/// traversed and it would be wasteful to clone all that. We also need the item id, so just
/// storing `ItemKind` won't work, either.
enum ParentStackItem {
Impl {
for_: clean::Type,
trait_: Option<clean::Path>,
generics: clean::Generics,
kind: clean::ImplKind,
item_id: ItemId,
},
Type(ItemId),
}
impl ParentStackItem {
fn new(item: &clean::Item) -> Self {
match &*item.kind {
clean::ItemKind::ImplItem(box clean::Impl { for_, trait_, generics, kind, .. }) => {
ParentStackItem::Impl {
for_: for_.clone(),
trait_: trait_.clone(),
generics: generics.clone(),
kind: kind.clone(),
item_id: item.item_id,
}
}
_ => ParentStackItem::Type(item.item_id),
}
}
fn is_trait_impl(&self) -> bool {
matches!(self, ParentStackItem::Impl { trait_: Some(..), .. })
}
fn item_id(&self) -> ItemId {
match self {
ParentStackItem::Impl { item_id, .. } => *item_id,
ParentStackItem::Type(item_id) => *item_id,
}
}
}
fn clean_impl_generics(item: Option<&ParentStackItem>) -> Option<(clean::Type, clean::Generics)> {
if let Some(ParentStackItem::Impl { for_, generics, kind: clean::ImplKind::Normal, .. }) = item
{
Some((for_.clone(), generics.clone()))
} else {
None
}
}