1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
use std::cell::RefCell;

use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir_analysis::check::{check_function_signature, forbid_intrinsic_abi};
use rustc_infer::infer::RegionVariableOrigin;
use rustc_infer::traits::WellFormedLoc;
use rustc_middle::ty::{self, Binder, Ty, TyCtxt};
use rustc_span::def_id::LocalDefId;
use rustc_span::symbol::sym;
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode};
use tracing::{debug, instrument};

use crate::coercion::CoerceMany;
use crate::gather_locals::GatherLocalsVisitor;
use crate::{CoroutineTypes, Diverges, FnCtxt};

/// Helper used for fns and closures. Does the grungy work of checking a function
/// body and returns the function context used for that purpose, since in the case of a fn item
/// there is still a bit more to do.
///
/// * ...
/// * inherited: other fields inherited from the enclosing fn (if any)
#[instrument(skip(fcx, body), level = "debug")]
pub(super) fn check_fn<'a, 'tcx>(
    fcx: &mut FnCtxt<'a, 'tcx>,
    fn_sig: ty::FnSig<'tcx>,
    coroutine_types: Option<CoroutineTypes<'tcx>>,
    decl: &'tcx hir::FnDecl<'tcx>,
    fn_def_id: LocalDefId,
    body: &'tcx hir::Body<'tcx>,
    params_can_be_unsized: bool,
) -> Option<CoroutineTypes<'tcx>> {
    let fn_id = fcx.tcx.local_def_id_to_hir_id(fn_def_id);

    let tcx = fcx.tcx;
    let hir = tcx.hir();

    let declared_ret_ty = fn_sig.output();

    let ret_ty =
        fcx.register_infer_ok_obligations(fcx.infcx.replace_opaque_types_with_inference_vars(
            declared_ret_ty,
            fn_def_id,
            decl.output.span(),
            fcx.param_env,
        ));

    fcx.coroutine_types = coroutine_types;
    fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));

    let span = body.value.span;

    forbid_intrinsic_abi(tcx, span, fn_sig.abi);

    GatherLocalsVisitor::new(fcx).visit_body(body);

    // C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
    // (as it's created inside the body itself, not passed in from outside).
    let maybe_va_list = fn_sig.c_variadic.then(|| {
        let span = body.params.last().unwrap().span;
        let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(span));
        let region = fcx.next_region_var(RegionVariableOrigin::MiscVariable(span));

        tcx.type_of(va_list_did).instantiate(tcx, &[region.into()])
    });

    // Add formal parameters.
    let inputs_hir = hir.fn_decl_by_hir_id(fn_id).map(|decl| &decl.inputs);
    let inputs_fn = fn_sig.inputs().iter().copied();
    for (idx, (param_ty, param)) in inputs_fn.chain(maybe_va_list).zip(body.params).enumerate() {
        // We checked the root's signature during wfcheck, but not the child.
        if fcx.tcx.is_typeck_child(fn_def_id.to_def_id()) {
            fcx.register_wf_obligation(
                param_ty.into(),
                param.span,
                ObligationCauseCode::WellFormed(Some(WellFormedLoc::Param {
                    function: fn_def_id,
                    param_idx: idx,
                })),
            );
        }

        // Check the pattern.
        let ty: Option<&hir::Ty<'_>> = inputs_hir.and_then(|h| h.get(idx));
        let ty_span = ty.map(|ty| ty.span);
        fcx.check_pat_top(param.pat, param_ty, ty_span, None, None);
        if param.pat.is_never_pattern() {
            fcx.function_diverges_because_of_empty_arguments.set(Diverges::Always {
                span: param.pat.span,
                custom_note: Some("any code following a never pattern is unreachable"),
            });
        }

        // Check that argument is Sized.
        if !params_can_be_unsized {
            fcx.require_type_is_sized(
                param_ty,
                param.pat.span,
                // ty.span == binding_span iff this is a closure parameter with no type ascription,
                // or if it's an implicit `self` parameter
                ObligationCauseCode::SizedArgumentType(
                    if ty_span == Some(param.span) && tcx.is_closure_like(fn_def_id.into()) {
                        None
                    } else {
                        ty.map(|ty| ty.hir_id)
                    },
                ),
            );
        }

        fcx.write_ty(param.hir_id, param_ty);
    }

    fcx.typeck_results.borrow_mut().liberated_fn_sigs_mut().insert(fn_id, fn_sig);

    let return_or_body_span = match decl.output {
        hir::FnRetTy::DefaultReturn(_) => body.value.span,
        hir::FnRetTy::Return(ty) => ty.span,
    };

    fcx.require_type_is_sized(
        declared_ret_ty,
        return_or_body_span,
        ObligationCauseCode::SizedReturnType,
    );
    // We checked the root's signature during wfcheck, but not the child.
    if fcx.tcx.is_typeck_child(fn_def_id.to_def_id()) {
        fcx.require_type_is_sized(
            declared_ret_ty,
            return_or_body_span,
            ObligationCauseCode::WellFormed(None),
        );
    }

    fcx.is_whole_body.set(true);
    fcx.check_return_expr(body.value, false);

    // Finalize the return check by taking the LUB of the return types
    // we saw and assigning it to the expected return type. This isn't
    // really expected to fail, since the coercions would have failed
    // earlier when trying to find a LUB.
    let coercion = fcx.ret_coercion.take().unwrap().into_inner();
    let mut actual_return_ty = coercion.complete(fcx);
    debug!("actual_return_ty = {:?}", actual_return_ty);
    if let ty::Dynamic(..) = declared_ret_ty.kind() {
        // We have special-cased the case where the function is declared
        // `-> dyn Foo` and we don't actually relate it to the
        // `fcx.ret_coercion`, so just instantiate a type variable.
        actual_return_ty = fcx.next_ty_var(span);
        debug!("actual_return_ty replaced with {:?}", actual_return_ty);
    }

    // HACK(oli-obk, compiler-errors): We should be comparing this against
    // `declared_ret_ty`, but then anything uninferred would be inferred to
    // the opaque type itself. That again would cause writeback to assume
    // we have a recursive call site and do the sadly stabilized fallback to `()`.
    fcx.demand_suptype(span, ret_ty, actual_return_ty);

    // Check that a function marked as `#[panic_handler]` has signature `fn(&PanicInfo) -> !`
    if tcx.is_lang_item(fn_def_id.to_def_id(), LangItem::PanicImpl) {
        check_panic_info_fn(tcx, fn_def_id, fn_sig);
    }

    if tcx.is_lang_item(fn_def_id.to_def_id(), LangItem::Start) {
        check_lang_start_fn(tcx, fn_sig, fn_def_id);
    }

    fcx.coroutine_types
}

fn check_panic_info_fn(tcx: TyCtxt<'_>, fn_id: LocalDefId, fn_sig: ty::FnSig<'_>) {
    let span = tcx.def_span(fn_id);

    let DefKind::Fn = tcx.def_kind(fn_id) else {
        tcx.dcx().span_err(span, "should be a function");
        return;
    };

    let generic_counts = tcx.generics_of(fn_id).own_counts();
    if generic_counts.types != 0 {
        tcx.dcx().span_err(span, "should have no type parameters");
    }
    if generic_counts.consts != 0 {
        tcx.dcx().span_err(span, "should have no const parameters");
    }

    let panic_info_did = tcx.require_lang_item(hir::LangItem::PanicInfo, Some(span));

    // build type `for<'a, 'b> fn(&'a PanicInfo<'b>) -> !`
    let panic_info_ty = tcx.type_of(panic_info_did).instantiate(
        tcx,
        &[ty::GenericArg::from(ty::Region::new_bound(
            tcx,
            ty::INNERMOST,
            ty::BoundRegion { var: ty::BoundVar::from_u32(1), kind: ty::BrAnon },
        ))],
    );
    let panic_info_ref_ty = Ty::new_imm_ref(
        tcx,
        ty::Region::new_bound(
            tcx,
            ty::INNERMOST,
            ty::BoundRegion { var: ty::BoundVar::ZERO, kind: ty::BrAnon },
        ),
        panic_info_ty,
    );

    let bounds = tcx.mk_bound_variable_kinds(&[
        ty::BoundVariableKind::Region(ty::BrAnon),
        ty::BoundVariableKind::Region(ty::BrAnon),
    ]);
    let expected_sig = ty::Binder::bind_with_vars(
        tcx.mk_fn_sig([panic_info_ref_ty], tcx.types.never, false, fn_sig.safety, Abi::Rust),
        bounds,
    );

    let _ = check_function_signature(
        tcx,
        ObligationCause::new(span, fn_id, ObligationCauseCode::LangFunctionType(sym::panic_impl)),
        fn_id.into(),
        expected_sig,
    );
}

fn check_lang_start_fn<'tcx>(tcx: TyCtxt<'tcx>, fn_sig: ty::FnSig<'tcx>, def_id: LocalDefId) {
    // build type `fn(main: fn() -> T, argc: isize, argv: *const *const u8, sigpipe: u8)`

    // make a Ty for the generic on the fn for diagnostics
    // FIXME: make the lang item generic checks check for the right generic *kind*
    // for example `start`'s generic should be a type parameter
    let generics = tcx.generics_of(def_id);
    let fn_generic = generics.param_at(0, tcx);
    let generic_ty = Ty::new_param(tcx, fn_generic.index, fn_generic.name);
    let main_fn_ty = Ty::new_fn_ptr(
        tcx,
        Binder::dummy(tcx.mk_fn_sig([], generic_ty, false, hir::Safety::Safe, Abi::Rust)),
    );

    let expected_sig = ty::Binder::dummy(tcx.mk_fn_sig(
        [
            main_fn_ty,
            tcx.types.isize,
            Ty::new_imm_ptr(tcx, Ty::new_imm_ptr(tcx, tcx.types.u8)),
            tcx.types.u8,
        ],
        tcx.types.isize,
        false,
        fn_sig.safety,
        Abi::Rust,
    ));

    let _ = check_function_signature(
        tcx,
        ObligationCause::new(
            tcx.def_span(def_id),
            def_id,
            ObligationCauseCode::LangFunctionType(sym::start),
        ),
        def_id.into(),
        expected_sig,
    );
}