rustc_middle/middle/region.rs
1//! This file declares the `ScopeTree` type, which describes
2//! the parent links in the region hierarchy.
3//!
4//! For more information about how MIR-based region-checking works,
5//! see the [rustc dev guide].
6//!
7//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html
8
9use std::fmt;
10
11use rustc_data_structures::fx::FxIndexMap;
12use rustc_data_structures::unord::UnordMap;
13use rustc_hir as hir;
14use rustc_hir::{HirId, HirIdMap, Node};
15use rustc_macros::{HashStable, TyDecodable, TyEncodable};
16use rustc_span::{DUMMY_SP, Span};
17use tracing::debug;
18
19use crate::ty::TyCtxt;
20
21/// Represents a statically-describable scope that can be used to
22/// bound the lifetime/region for values.
23///
24/// `Node(node_id)`: Any AST node that has any scope at all has the
25/// `Node(node_id)` scope. Other variants represent special cases not
26/// immediately derivable from the abstract syntax tree structure.
27///
28/// `DestructionScope(node_id)` represents the scope of destructors
29/// implicitly-attached to `node_id` that run immediately after the
30/// expression for `node_id` itself. Not every AST node carries a
31/// `DestructionScope`, but those that are `terminating_scopes` do;
32/// see discussion with `ScopeTree`.
33///
34/// `Remainder { block, statement_index }` represents
35/// the scope of user code running immediately after the initializer
36/// expression for the indexed statement, until the end of the block.
37///
38/// So: the following code can be broken down into the scopes beneath:
39///
40/// ```text
41/// let a = f().g( 'b: { let x = d(); let y = d(); x.h(y) } ) ;
42///
43/// +-+ (D12.)
44/// +-+ (D11.)
45/// +---------+ (R10.)
46/// +-+ (D9.)
47/// +----------+ (M8.)
48/// +----------------------+ (R7.)
49/// +-+ (D6.)
50/// +----------+ (M5.)
51/// +-----------------------------------+ (M4.)
52/// +--------------------------------------------------+ (M3.)
53/// +--+ (M2.)
54/// +-----------------------------------------------------------+ (M1.)
55///
56/// (M1.): Node scope of the whole `let a = ...;` statement.
57/// (M2.): Node scope of the `f()` expression.
58/// (M3.): Node scope of the `f().g(..)` expression.
59/// (M4.): Node scope of the block labeled `'b:`.
60/// (M5.): Node scope of the `let x = d();` statement
61/// (D6.): DestructionScope for temporaries created during M5.
62/// (R7.): Remainder scope for block `'b:`, stmt 0 (let x = ...).
63/// (M8.): Node scope of the `let y = d();` statement.
64/// (D9.): DestructionScope for temporaries created during M8.
65/// (R10.): Remainder scope for block `'b:`, stmt 1 (let y = ...).
66/// (D11.): DestructionScope for temporaries and bindings from block `'b:`.
67/// (D12.): DestructionScope for temporaries created during M1 (e.g., f()).
68/// ```
69///
70/// Note that while the above picture shows the destruction scopes
71/// as following their corresponding node scopes, in the internal
72/// data structures of the compiler the destruction scopes are
73/// represented as enclosing parents. This is sound because we use the
74/// enclosing parent relationship just to ensure that referenced
75/// values live long enough; phrased another way, the starting point
76/// of each range is not really the important thing in the above
77/// picture, but rather the ending point.
78//
79// FIXME(pnkfelix): this currently derives `PartialOrd` and `Ord` to
80// placate the same deriving in `ty::LateParamRegion`, but we may want to
81// actually attach a more meaningful ordering to scopes than the one
82// generated via deriving here.
83#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Copy, TyEncodable, TyDecodable)]
84#[derive(HashStable)]
85pub struct Scope {
86 pub local_id: hir::ItemLocalId,
87 pub data: ScopeData,
88}
89
90impl fmt::Debug for Scope {
91 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
92 match self.data {
93 ScopeData::Node => write!(fmt, "Node({:?})", self.local_id),
94 ScopeData::CallSite => write!(fmt, "CallSite({:?})", self.local_id),
95 ScopeData::Arguments => write!(fmt, "Arguments({:?})", self.local_id),
96 ScopeData::Destruction => write!(fmt, "Destruction({:?})", self.local_id),
97 ScopeData::IfThen => write!(fmt, "IfThen({:?})", self.local_id),
98 ScopeData::IfThenRescope => write!(fmt, "IfThen[edition2024]({:?})", self.local_id),
99 ScopeData::Remainder(fsi) => write!(
100 fmt,
101 "Remainder {{ block: {:?}, first_statement_index: {}}}",
102 self.local_id,
103 fsi.as_u32(),
104 ),
105 }
106 }
107}
108
109#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Debug, Copy, TyEncodable, TyDecodable)]
110#[derive(HashStable)]
111pub enum ScopeData {
112 Node,
113
114 /// Scope of the call-site for a function or closure
115 /// (outlives the arguments as well as the body).
116 CallSite,
117
118 /// Scope of arguments passed to a function or closure
119 /// (they outlive its body).
120 Arguments,
121
122 /// Scope of destructors for temporaries of node-id.
123 Destruction,
124
125 /// Scope of the condition and then block of an if expression
126 /// Used for variables introduced in an if-let expression.
127 IfThen,
128
129 /// Scope of the condition and then block of an if expression
130 /// Used for variables introduced in an if-let expression,
131 /// whose lifetimes do not cross beyond this scope.
132 IfThenRescope,
133
134 /// Scope following a `let id = expr;` binding in a block.
135 Remainder(FirstStatementIndex),
136}
137
138rustc_index::newtype_index! {
139 /// Represents a subscope of `block` for a binding that is introduced
140 /// by `block.stmts[first_statement_index]`. Such subscopes represent
141 /// a suffix of the block. Note that each subscope does not include
142 /// the initializer expression, if any, for the statement indexed by
143 /// `first_statement_index`.
144 ///
145 /// For example, given `{ let (a, b) = EXPR_1; let c = EXPR_2; ... }`:
146 ///
147 /// * The subscope with `first_statement_index == 0` is scope of both
148 /// `a` and `b`; it does not include EXPR_1, but does include
149 /// everything after that first `let`. (If you want a scope that
150 /// includes EXPR_1 as well, then do not use `Scope::Remainder`,
151 /// but instead another `Scope` that encompasses the whole block,
152 /// e.g., `Scope::Node`.
153 ///
154 /// * The subscope with `first_statement_index == 1` is scope of `c`,
155 /// and thus does not include EXPR_2, but covers the `...`.
156 #[derive(HashStable)]
157 #[encodable]
158 #[orderable]
159 pub struct FirstStatementIndex {}
160}
161
162// compilation error if size of `ScopeData` is not the same as a `u32`
163rustc_data_structures::static_assert_size!(ScopeData, 4);
164
165impl Scope {
166 pub fn hir_id(&self, scope_tree: &ScopeTree) -> Option<HirId> {
167 scope_tree.root_body.map(|hir_id| HirId { owner: hir_id.owner, local_id: self.local_id })
168 }
169
170 /// Returns the span of this `Scope`. Note that in general the
171 /// returned span may not correspond to the span of any `NodeId` in
172 /// the AST.
173 pub fn span(&self, tcx: TyCtxt<'_>, scope_tree: &ScopeTree) -> Span {
174 let Some(hir_id) = self.hir_id(scope_tree) else {
175 return DUMMY_SP;
176 };
177 let span = tcx.hir_span(hir_id);
178 if let ScopeData::Remainder(first_statement_index) = self.data
179 // Want span for scope starting after the
180 // indexed statement and ending at end of
181 // `blk`; reuse span of `blk` and shift `lo`
182 // forward to end of indexed statement.
183 //
184 // (This is the special case alluded to in the
185 // doc-comment for this method)
186 && let Node::Block(blk) = tcx.hir_node(hir_id)
187 {
188 let stmt_span = blk.stmts[first_statement_index.index()].span;
189
190 // To avoid issues with macro-generated spans, the span
191 // of the statement must be nested in that of the block.
192 if span.lo() <= stmt_span.lo() && stmt_span.lo() <= span.hi() {
193 return span.with_lo(stmt_span.lo());
194 }
195 }
196 span
197 }
198}
199
200/// The region scope tree encodes information about region relationships.
201#[derive(Default, Debug, HashStable)]
202pub struct ScopeTree {
203 /// If not empty, this body is the root of this region hierarchy.
204 pub root_body: Option<HirId>,
205
206 /// Maps from a scope ID to the enclosing scope id;
207 /// this is usually corresponding to the lexical nesting, though
208 /// in the case of closures the parent scope is the innermost
209 /// conditional expression or repeating block. (Note that the
210 /// enclosing scope ID for the block associated with a closure is
211 /// the closure itself.)
212 pub parent_map: FxIndexMap<Scope, Scope>,
213
214 /// Maps from a variable or binding ID to the block in which that
215 /// variable is declared.
216 var_map: FxIndexMap<hir::ItemLocalId, Scope>,
217
218 /// Identifies expressions which, if captured into a temporary, ought to
219 /// have a temporary whose lifetime extends to the end of the enclosing *block*,
220 /// and not the enclosing *statement*. Expressions that are not present in this
221 /// table are not rvalue candidates. The set of rvalue candidates is computed
222 /// during type check based on a traversal of the AST.
223 pub rvalue_candidates: HirIdMap<RvalueCandidate>,
224
225 /// Backwards incompatible scoping that will be introduced in future editions.
226 /// This information is used later for linting to identify locals and
227 /// temporary values that will receive backwards-incompatible drop orders.
228 pub backwards_incompatible_scope: UnordMap<hir::ItemLocalId, Scope>,
229}
230
231/// See the `rvalue_candidates` field for more information on rvalue
232/// candidates in general.
233/// The `lifetime` field is None to indicate that certain expressions escape
234/// into 'static and should have no local cleanup scope.
235#[derive(Debug, Copy, Clone, HashStable)]
236pub struct RvalueCandidate {
237 pub target: hir::ItemLocalId,
238 pub lifetime: Option<Scope>,
239}
240
241impl ScopeTree {
242 pub fn record_scope_parent(&mut self, child: Scope, parent: Option<Scope>) {
243 debug!("{:?}.parent = {:?}", child, parent);
244
245 if let Some(p) = parent {
246 let prev = self.parent_map.insert(child, p);
247 assert!(prev.is_none());
248 }
249 }
250
251 pub fn record_var_scope(&mut self, var: hir::ItemLocalId, lifetime: Scope) {
252 debug!("record_var_scope(sub={:?}, sup={:?})", var, lifetime);
253 assert!(var != lifetime.local_id);
254 self.var_map.insert(var, lifetime);
255 }
256
257 pub fn record_rvalue_candidate(&mut self, var: HirId, candidate: RvalueCandidate) {
258 debug!("record_rvalue_candidate(var={var:?}, candidate={candidate:?})");
259 if let Some(lifetime) = &candidate.lifetime {
260 assert!(var.local_id != lifetime.local_id)
261 }
262 self.rvalue_candidates.insert(var, candidate);
263 }
264
265 /// Returns the narrowest scope that encloses `id`, if any.
266 pub fn opt_encl_scope(&self, id: Scope) -> Option<Scope> {
267 self.parent_map.get(&id).cloned()
268 }
269
270 /// Returns the lifetime of the local variable `var_id`, if any.
271 pub fn var_scope(&self, var_id: hir::ItemLocalId) -> Option<Scope> {
272 self.var_map.get(&var_id).cloned()
273 }
274
275 /// Returns `true` if `subscope` is equal to or is lexically nested inside `superscope`, and
276 /// `false` otherwise.
277 ///
278 /// Used by clippy.
279 pub fn is_subscope_of(&self, subscope: Scope, superscope: Scope) -> bool {
280 let mut s = subscope;
281 debug!("is_subscope_of({:?}, {:?})", subscope, superscope);
282 while superscope != s {
283 match self.opt_encl_scope(s) {
284 None => {
285 debug!("is_subscope_of({:?}, {:?}, s={:?})=false", subscope, superscope, s);
286 return false;
287 }
288 Some(scope) => s = scope,
289 }
290 }
291
292 debug!("is_subscope_of({:?}, {:?})=true", subscope, superscope);
293
294 true
295 }
296}