1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
// tidy-alphabetical-start
#![allow(rustc::usage_of_ty_tykind)]
#![cfg_attr(
feature = "nightly",
feature(associated_type_defaults, never_type, rustc_attrs, negative_impls)
)]
#![cfg_attr(feature = "nightly", allow(internal_features))]
// tidy-alphabetical-end
extern crate self as rustc_type_ir;
use std::fmt;
use std::hash::Hash;
#[cfg(feature = "nightly")]
use rustc_macros::{Decodable, Encodable, HashStable_NoContext};
// These modules are `pub` since they are not glob-imported.
#[macro_use]
pub mod visit;
#[cfg(feature = "nightly")]
pub mod codec;
pub mod data_structures;
pub mod elaborate;
pub mod error;
pub mod fast_reject;
pub mod fold;
#[cfg_attr(feature = "nightly", rustc_diagnostic_item = "type_ir_inherent")]
pub mod inherent;
pub mod ir_print;
pub mod lang_items;
pub mod lift;
pub mod outlives;
pub mod relate;
pub mod search_graph;
pub mod solve;
// These modules are not `pub` since they are glob-imported.
#[macro_use]
mod macros;
mod binder;
mod canonical;
mod const_kind;
mod effects;
mod flags;
mod generic_arg;
mod infer_ctxt;
mod interner;
mod opaque_ty;
mod predicate;
mod predicate_kind;
mod region_kind;
mod ty_info;
mod ty_kind;
mod upcast;
pub use binder::*;
pub use canonical::*;
#[cfg(feature = "nightly")]
pub use codec::*;
pub use const_kind::*;
pub use effects::*;
pub use flags::*;
pub use generic_arg::*;
pub use infer_ctxt::*;
pub use interner::*;
pub use opaque_ty::*;
pub use predicate::*;
pub use predicate_kind::*;
pub use region_kind::*;
pub use ty_info::*;
pub use ty_kind::*;
pub use upcast::*;
pub use AliasTyKind::*;
pub use DynKind::*;
pub use InferTy::*;
pub use RegionKind::*;
pub use TyKind::*;
pub use Variance::*;
rustc_index::newtype_index! {
/// A [De Bruijn index][dbi] is a standard means of representing
/// regions (and perhaps later types) in a higher-ranked setting. In
/// particular, imagine a type like this:
/// ```ignore (illustrative)
/// for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
/// // ^ ^ | | |
/// // | | | | |
/// // | +------------+ 0 | |
/// // | | |
/// // +----------------------------------+ 1 |
/// // | |
/// // +----------------------------------------------+ 0
/// ```
/// In this type, there are two binders (the outer fn and the inner
/// fn). We need to be able to determine, for any given region, which
/// fn type it is bound by, the inner or the outer one. There are
/// various ways you can do this, but a De Bruijn index is one of the
/// more convenient and has some nice properties. The basic idea is to
/// count the number of binders, inside out. Some examples should help
/// clarify what I mean.
///
/// Let's start with the reference type `&'b isize` that is the first
/// argument to the inner function. This region `'b` is assigned a De
/// Bruijn index of 0, meaning "the innermost binder" (in this case, a
/// fn). The region `'a` that appears in the second argument type (`&'a
/// isize`) would then be assigned a De Bruijn index of 1, meaning "the
/// second-innermost binder". (These indices are written on the arrows
/// in the diagram).
///
/// What is interesting is that De Bruijn index attached to a particular
/// variable will vary depending on where it appears. For example,
/// the final type `&'a char` also refers to the region `'a` declared on
/// the outermost fn. But this time, this reference is not nested within
/// any other binders (i.e., it is not an argument to the inner fn, but
/// rather the outer one). Therefore, in this case, it is assigned a
/// De Bruijn index of 0, because the innermost binder in that location
/// is the outer fn.
///
/// [dbi]: https://en.wikipedia.org/wiki/De_Bruijn_index
#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
#[encodable]
#[orderable]
#[debug_format = "DebruijnIndex({})"]
#[gate_rustc_only]
pub struct DebruijnIndex {
const INNERMOST = 0;
}
}
impl DebruijnIndex {
/// Returns the resulting index when this value is moved into
/// `amount` number of new binders. So, e.g., if you had
///
/// for<'a> fn(&'a x)
///
/// and you wanted to change it to
///
/// for<'a> fn(for<'b> fn(&'a x))
///
/// you would need to shift the index for `'a` into a new binder.
#[inline]
#[must_use]
pub fn shifted_in(self, amount: u32) -> DebruijnIndex {
DebruijnIndex::from_u32(self.as_u32() + amount)
}
/// Update this index in place by shifting it "in" through
/// `amount` number of binders.
#[inline]
pub fn shift_in(&mut self, amount: u32) {
*self = self.shifted_in(amount);
}
/// Returns the resulting index when this value is moved out from
/// `amount` number of new binders.
#[inline]
#[must_use]
pub fn shifted_out(self, amount: u32) -> DebruijnIndex {
DebruijnIndex::from_u32(self.as_u32() - amount)
}
/// Update in place by shifting out from `amount` binders.
#[inline]
pub fn shift_out(&mut self, amount: u32) {
*self = self.shifted_out(amount);
}
/// Adjusts any De Bruijn indices so as to make `to_binder` the
/// innermost binder. That is, if we have something bound at `to_binder`,
/// it will now be bound at INNERMOST. This is an appropriate thing to do
/// when moving a region out from inside binders:
///
/// ```ignore (illustrative)
/// for<'a> fn(for<'b> for<'c> fn(&'a u32), _)
/// // Binder: D3 D2 D1 ^^
/// ```
///
/// Here, the region `'a` would have the De Bruijn index D3,
/// because it is the bound 3 binders out. However, if we wanted
/// to refer to that region `'a` in the second argument (the `_`),
/// those two binders would not be in scope. In that case, we
/// might invoke `shift_out_to_binder(D3)`. This would adjust the
/// De Bruijn index of `'a` to D1 (the innermost binder).
///
/// If we invoke `shift_out_to_binder` and the region is in fact
/// bound by one of the binders we are shifting out of, that is an
/// error (and should fail an assertion failure).
#[inline]
pub fn shifted_out_to_binder(self, to_binder: DebruijnIndex) -> Self {
self.shifted_out(to_binder.as_u32() - INNERMOST.as_u32())
}
}
pub fn debug_bound_var<T: std::fmt::Write>(
fmt: &mut T,
debruijn: DebruijnIndex,
var: impl std::fmt::Debug,
) -> Result<(), std::fmt::Error> {
if debruijn == INNERMOST {
write!(fmt, "^{var:?}")
} else {
write!(fmt, "^{}_{:?}", debruijn.index(), var)
}
}
#[derive(Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "nightly", derive(Decodable, Encodable, Hash, HashStable_NoContext))]
#[cfg_attr(feature = "nightly", rustc_pass_by_value)]
pub enum Variance {
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
}
impl Variance {
/// `a.xform(b)` combines the variance of a context with the
/// variance of a type with the following meaning. If we are in a
/// context with variance `a`, and we encounter a type argument in
/// a position with variance `b`, then `a.xform(b)` is the new
/// variance with which the argument appears.
///
/// Example 1:
/// ```ignore (illustrative)
/// *mut Vec<i32>
/// ```
/// Here, the "ambient" variance starts as covariant. `*mut T` is
/// invariant with respect to `T`, so the variance in which the
/// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
/// yields `Invariant`. Now, the type `Vec<T>` is covariant with
/// respect to its type argument `T`, and hence the variance of
/// the `i32` here is `Invariant.xform(Covariant)`, which results
/// (again) in `Invariant`.
///
/// Example 2:
/// ```ignore (illustrative)
/// fn(*const Vec<i32>, *mut Vec<i32)
/// ```
/// The ambient variance is covariant. A `fn` type is
/// contravariant with respect to its parameters, so the variance
/// within which both pointer types appear is
/// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
/// T` is covariant with respect to `T`, so the variance within
/// which the first `Vec<i32>` appears is
/// `Contravariant.xform(Covariant)` or `Contravariant`. The same
/// is true for its `i32` argument. In the `*mut T` case, the
/// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
/// and hence the outermost type is `Invariant` with respect to
/// `Vec<i32>` (and its `i32` argument).
///
/// Source: Figure 1 of "Taming the Wildcards:
/// Combining Definition- and Use-Site Variance" published in PLDI'11.
pub fn xform(self, v: Variance) -> Variance {
match (self, v) {
// Figure 1, column 1.
(Variance::Covariant, Variance::Covariant) => Variance::Covariant,
(Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
(Variance::Covariant, Variance::Invariant) => Variance::Invariant,
(Variance::Covariant, Variance::Bivariant) => Variance::Bivariant,
// Figure 1, column 2.
(Variance::Contravariant, Variance::Covariant) => Variance::Contravariant,
(Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
(Variance::Contravariant, Variance::Invariant) => Variance::Invariant,
(Variance::Contravariant, Variance::Bivariant) => Variance::Bivariant,
// Figure 1, column 3.
(Variance::Invariant, _) => Variance::Invariant,
// Figure 1, column 4.
(Variance::Bivariant, _) => Variance::Bivariant,
}
}
}
impl fmt::Debug for Variance {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match *self {
Variance::Covariant => "+",
Variance::Contravariant => "-",
Variance::Invariant => "o",
Variance::Bivariant => "*",
})
}
}
rustc_index::newtype_index! {
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. Each child then adds a new
/// set of names that are visible, in addition to those of its parent.
/// We say that the child universe "extends" the parent universe with
/// new names.
///
/// To make this more concrete, consider this program:
///
/// ```ignore (illustrative)
/// struct Foo { }
/// fn bar<T>(x: T) {
/// let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in an extended universe U1
/// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
/// of `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a universe U2 that extends U1, because we can
/// name it inside the fn type but not outside.
///
/// Universes are used to do type- and trait-checking around these
/// "forall" binders (also called **universal quantification**). The
/// idea is that when, in the body of `bar`, we refer to `T` as a
/// type, we aren't referring to any type in particular, but rather a
/// kind of "fresh" type that is distinct from all other types we have
/// actually declared. This is called a **placeholder** type, and we
/// use universes to talk about this. In other words, a type name in
/// universe 0 always corresponds to some "ground" type that the user
/// declared, but a type name in a non-zero universe is a placeholder
/// type -- an idealized representative of "types in general" that we
/// use for checking generic functions.
#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
#[encodable]
#[orderable]
#[debug_format = "U{}"]
#[gate_rustc_only]
pub struct UniverseIndex {}
}
impl UniverseIndex {
pub const ROOT: UniverseIndex = UniverseIndex::ZERO;
/// Returns the "next" universe index in order -- this new index
/// is considered to extend all previous universes. This
/// corresponds to entering a `forall` quantifier. So, for
/// example, suppose we have this type in universe `U`:
///
/// ```ignore (illustrative)
/// for<'a> fn(&'a u32)
/// ```
///
/// Once we "enter" into this `for<'a>` quantifier, we are in a
/// new universe that extends `U` -- in this new universe, we can
/// name the region `'a`, but that region was not nameable from
/// `U` because it was not in scope there.
pub fn next_universe(self) -> UniverseIndex {
UniverseIndex::from_u32(self.as_u32().checked_add(1).unwrap())
}
/// Returns `true` if `self` can name a name from `other` -- in other words,
/// if the set of names in `self` is a superset of those in
/// `other` (`self >= other`).
pub fn can_name(self, other: UniverseIndex) -> bool {
self >= other
}
/// Returns `true` if `self` cannot name some names from `other` -- in other
/// words, if the set of names in `self` is a strict subset of
/// those in `other` (`self < other`).
pub fn cannot_name(self, other: UniverseIndex) -> bool {
self < other
}
/// Returns `true` if `self` is the root universe, otherwise false.
pub fn is_root(self) -> bool {
self == Self::ROOT
}
}
impl Default for UniverseIndex {
fn default() -> Self {
Self::ROOT
}
}
rustc_index::newtype_index! {
#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
#[encodable]
#[orderable]
#[debug_format = "{}"]
#[gate_rustc_only]
pub struct BoundVar {}
}
impl<I: Interner> inherent::BoundVarLike<I> for BoundVar {
fn var(self) -> BoundVar {
self
}
fn assert_eq(self, _var: I::BoundVarKind) {
unreachable!("FIXME: We really should have a separate `BoundConst` for consts")
}
}
/// Represents the various closure traits in the language. This
/// will determine the type of the environment (`self`, in the
/// desugaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum ClosureKind {
Fn,
FnMut,
FnOnce,
}
impl ClosureKind {
/// This is the initial value used when doing upvar inference.
pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;
pub const fn as_str(self) -> &'static str {
match self {
ClosureKind::Fn => "Fn",
ClosureKind::FnMut => "FnMut",
ClosureKind::FnOnce => "FnOnce",
}
}
/// Returns `true` if a type that impls this closure kind
/// must also implement `other`.
#[rustfmt::skip]
pub fn extends(self, other: ClosureKind) -> bool {
use ClosureKind::*;
match (self, other) {
(Fn, Fn | FnMut | FnOnce)
| (FnMut, FnMut | FnOnce)
| (FnOnce, FnOnce) => true,
_ => false,
}
}
}
impl fmt::Display for ClosureKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.as_str().fmt(f)
}
}