1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//! Implements calling functions from a native library.
use libffi::{high::call as ffi, low::CodePtr};
use std::ops::Deref;

use rustc_middle::ty::{self as ty, IntTy, UintTy};
use rustc_span::Symbol;
use rustc_target::abi::{Abi, HasDataLayout};

use crate::*;

impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
    /// Call native host function and return the output as an immediate.
    fn call_native_with_args<'a>(
        &mut self,
        link_name: Symbol,
        dest: &MPlaceTy<'tcx>,
        ptr: CodePtr,
        libffi_args: Vec<libffi::high::Arg<'a>>,
    ) -> InterpResult<'tcx, ImmTy<'tcx>> {
        let this = self.eval_context_mut();

        // Call the function (`ptr`) with arguments `libffi_args`, and obtain the return value
        // as the specified primitive integer type
        let scalar = match dest.layout.ty.kind() {
            // ints
            ty::Int(IntTy::I8) => {
                // Unsafe because of the call to native code.
                // Because this is calling a C function it is not necessarily sound,
                // but there is no way around this and we've checked as much as we can.
                let x = unsafe { ffi::call::<i8>(ptr, libffi_args.as_slice()) };
                Scalar::from_i8(x)
            }
            ty::Int(IntTy::I16) => {
                let x = unsafe { ffi::call::<i16>(ptr, libffi_args.as_slice()) };
                Scalar::from_i16(x)
            }
            ty::Int(IntTy::I32) => {
                let x = unsafe { ffi::call::<i32>(ptr, libffi_args.as_slice()) };
                Scalar::from_i32(x)
            }
            ty::Int(IntTy::I64) => {
                let x = unsafe { ffi::call::<i64>(ptr, libffi_args.as_slice()) };
                Scalar::from_i64(x)
            }
            ty::Int(IntTy::Isize) => {
                let x = unsafe { ffi::call::<isize>(ptr, libffi_args.as_slice()) };
                Scalar::from_target_isize(x.try_into().unwrap(), this)
            }
            // uints
            ty::Uint(UintTy::U8) => {
                let x = unsafe { ffi::call::<u8>(ptr, libffi_args.as_slice()) };
                Scalar::from_u8(x)
            }
            ty::Uint(UintTy::U16) => {
                let x = unsafe { ffi::call::<u16>(ptr, libffi_args.as_slice()) };
                Scalar::from_u16(x)
            }
            ty::Uint(UintTy::U32) => {
                let x = unsafe { ffi::call::<u32>(ptr, libffi_args.as_slice()) };
                Scalar::from_u32(x)
            }
            ty::Uint(UintTy::U64) => {
                let x = unsafe { ffi::call::<u64>(ptr, libffi_args.as_slice()) };
                Scalar::from_u64(x)
            }
            ty::Uint(UintTy::Usize) => {
                let x = unsafe { ffi::call::<usize>(ptr, libffi_args.as_slice()) };
                Scalar::from_target_usize(x.try_into().unwrap(), this)
            }
            // Functions with no declared return type (i.e., the default return)
            // have the output_type `Tuple([])`.
            ty::Tuple(t_list) if t_list.len() == 0 => {
                unsafe { ffi::call::<()>(ptr, libffi_args.as_slice()) };
                return Ok(ImmTy::uninit(dest.layout));
            }
            _ => throw_unsup_format!("unsupported return type for native call: {:?}", link_name),
        };
        Ok(ImmTy::from_scalar(scalar, dest.layout))
    }

    /// Get the pointer to the function of the specified name in the shared object file,
    /// if it exists. The function must be in the shared object file specified: we do *not*
    /// return pointers to functions in dependencies of the library.  
    fn get_func_ptr_explicitly_from_lib(&mut self, link_name: Symbol) -> Option<CodePtr> {
        let this = self.eval_context_mut();
        // Try getting the function from the shared library.
        // On windows `_lib_path` will be unused, hence the name starting with `_`.
        let (lib, _lib_path) = this.machine.native_lib.as_ref().unwrap();
        let func: libloading::Symbol<'_, unsafe extern "C" fn()> = unsafe {
            match lib.get(link_name.as_str().as_bytes()) {
                Ok(x) => x,
                Err(_) => {
                    return None;
                }
            }
        };

        // FIXME: this is a hack!
        // The `libloading` crate will automatically load system libraries like `libc`.
        // On linux `libloading` is based on `dlsym`: https://docs.rs/libloading/0.7.3/src/libloading/os/unix/mod.rs.html#202
        // and `dlsym`(https://linux.die.net/man/3/dlsym) looks through the dependency tree of the
        // library if it can't find the symbol in the library itself.
        // So, in order to check if the function was actually found in the specified
        // `machine.external_so_lib` we need to check its `dli_fname` and compare it to
        // the specified SO file path.
        // This code is a reimplementation of the mechanism for getting `dli_fname` in `libloading`,
        // from: https://docs.rs/libloading/0.7.3/src/libloading/os/unix/mod.rs.html#411
        // using the `libc` crate where this interface is public.
        let mut info = std::mem::MaybeUninit::<libc::Dl_info>::uninit();
        unsafe {
            if libc::dladdr(*func.deref() as *const _, info.as_mut_ptr()) != 0 {
                if std::ffi::CStr::from_ptr(info.assume_init().dli_fname).to_str().unwrap()
                    != _lib_path.to_str().unwrap()
                {
                    return None;
                }
            }
        }
        // Return a pointer to the function.
        Some(CodePtr(*func.deref() as *mut _))
    }
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    /// Call the native host function, with supplied arguments.
    /// Needs to convert all the arguments from their Miri representations to
    /// a native form (through `libffi` call).
    /// Then, convert the return value from the native form into something that
    /// can be stored in Miri's internal memory.
    fn call_native_fn(
        &mut self,
        link_name: Symbol,
        dest: &MPlaceTy<'tcx>,
        args: &[OpTy<'tcx>],
    ) -> InterpResult<'tcx, bool> {
        let this = self.eval_context_mut();
        // Get the pointer to the function in the shared object file if it exists.
        let code_ptr = match this.get_func_ptr_explicitly_from_lib(link_name) {
            Some(ptr) => ptr,
            None => {
                // Shared object file does not export this function -- try the shims next.
                return Ok(false);
            }
        };

        // Get the function arguments, and convert them to `libffi`-compatible form.
        let mut libffi_args = Vec::<CArg>::with_capacity(args.len());
        for arg in args.iter() {
            if !matches!(arg.layout.abi, Abi::Scalar(_)) {
                throw_unsup_format!("only scalar argument types are support for native calls")
            }
            libffi_args.push(imm_to_carg(this.read_immediate(arg)?, this)?);
        }

        // Convert them to `libffi::high::Arg` type.
        let libffi_args = libffi_args
            .iter()
            .map(|arg| arg.arg_downcast())
            .collect::<Vec<libffi::high::Arg<'_>>>();

        // Call the function and store output, depending on return type in the function signature.
        let ret = this.call_native_with_args(link_name, dest, code_ptr, libffi_args)?;
        this.write_immediate(*ret, dest)?;
        Ok(true)
    }
}

#[derive(Debug, Clone)]
/// Enum of supported arguments to external C functions.
// We introduce this enum instead of just calling `ffi::arg` and storing a list
// of `libffi::high::Arg` directly, because the `libffi::high::Arg` just wraps a reference
// to the value it represents: https://docs.rs/libffi/latest/libffi/high/call/struct.Arg.html
// and we need to store a copy of the value, and pass a reference to this copy to C instead.
enum CArg {
    /// 8-bit signed integer.
    Int8(i8),
    /// 16-bit signed integer.
    Int16(i16),
    /// 32-bit signed integer.
    Int32(i32),
    /// 64-bit signed integer.
    Int64(i64),
    /// isize.
    ISize(isize),
    /// 8-bit unsigned integer.
    UInt8(u8),
    /// 16-bit unsigned integer.
    UInt16(u16),
    /// 32-bit unsigned integer.
    UInt32(u32),
    /// 64-bit unsigned integer.
    UInt64(u64),
    /// usize.
    USize(usize),
    /// Raw pointer, stored as C's `void*`.
    RawPtr(*mut std::ffi::c_void),
}

impl<'a> CArg {
    /// Convert a `CArg` to a `libffi` argument type.
    fn arg_downcast(&'a self) -> libffi::high::Arg<'a> {
        match self {
            CArg::Int8(i) => ffi::arg(i),
            CArg::Int16(i) => ffi::arg(i),
            CArg::Int32(i) => ffi::arg(i),
            CArg::Int64(i) => ffi::arg(i),
            CArg::ISize(i) => ffi::arg(i),
            CArg::UInt8(i) => ffi::arg(i),
            CArg::UInt16(i) => ffi::arg(i),
            CArg::UInt32(i) => ffi::arg(i),
            CArg::UInt64(i) => ffi::arg(i),
            CArg::USize(i) => ffi::arg(i),
            CArg::RawPtr(i) => ffi::arg(i),
        }
    }
}

/// Extract the scalar value from the result of reading a scalar from the machine,
/// and convert it to a `CArg`.
fn imm_to_carg<'tcx>(v: ImmTy<'tcx>, cx: &impl HasDataLayout) -> InterpResult<'tcx, CArg> {
    Ok(match v.layout.ty.kind() {
        // If the primitive provided can be converted to a type matching the type pattern
        // then create a `CArg` of this primitive value with the corresponding `CArg` constructor.
        // the ints
        ty::Int(IntTy::I8) => CArg::Int8(v.to_scalar().to_i8()?),
        ty::Int(IntTy::I16) => CArg::Int16(v.to_scalar().to_i16()?),
        ty::Int(IntTy::I32) => CArg::Int32(v.to_scalar().to_i32()?),
        ty::Int(IntTy::I64) => CArg::Int64(v.to_scalar().to_i64()?),
        ty::Int(IntTy::Isize) =>
            CArg::ISize(v.to_scalar().to_target_isize(cx)?.try_into().unwrap()),
        // the uints
        ty::Uint(UintTy::U8) => CArg::UInt8(v.to_scalar().to_u8()?),
        ty::Uint(UintTy::U16) => CArg::UInt16(v.to_scalar().to_u16()?),
        ty::Uint(UintTy::U32) => CArg::UInt32(v.to_scalar().to_u32()?),
        ty::Uint(UintTy::U64) => CArg::UInt64(v.to_scalar().to_u64()?),
        ty::Uint(UintTy::Usize) =>
            CArg::USize(v.to_scalar().to_target_usize(cx)?.try_into().unwrap()),
        ty::RawPtr(_, mutability) => {
            // Arbitrary mutable pointer accesses are not currently supported in Miri.
            if mutability.is_mut() {
                throw_unsup_format!("unsupported mutable pointer type for native call: {}", v.layout.ty);
            } else {
                let s = v.to_scalar().to_pointer(cx)?.addr();
                // This relies on the `expose_provenance` in `addr_from_alloc_id`.
                CArg::RawPtr(std::ptr::with_exposed_provenance_mut(s.bytes_usize()))
            }
        },
        _ => throw_unsup_format!("unsupported argument type for native call: {}", v.layout.ty),
    })
}