1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
use std::iter;

use rustc_hir as hir;
use rustc_target::spec::abi;
pub use rustc_type_ir::relate::*;

use crate::ty::error::{ExpectedFound, TypeError};
use crate::ty::predicate::ExistentialPredicateStableCmpExt as _;
use crate::ty::{self as ty, Ty, TyCtxt};

pub type RelateResult<'tcx, T> = rustc_type_ir::relate::RelateResult<TyCtxt<'tcx>, T>;

/// Whether aliases should be related structurally or not. Used
/// to adjust the behavior of generalization and combine.
///
/// This should always be `No` unless in a few special-cases when
/// instantiating canonical responses and in the new solver. Each
/// such case should have a comment explaining why it is used.
#[derive(Debug, Copy, Clone)]
pub enum StructurallyRelateAliases {
    Yes,
    No,
}

impl<'tcx> Relate<TyCtxt<'tcx>> for ty::ImplSubject<'tcx> {
    #[inline]
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        a: ty::ImplSubject<'tcx>,
        b: ty::ImplSubject<'tcx>,
    ) -> RelateResult<'tcx, ty::ImplSubject<'tcx>> {
        match (a, b) {
            (ty::ImplSubject::Trait(trait_ref_a), ty::ImplSubject::Trait(trait_ref_b)) => {
                let trait_ref = ty::TraitRef::relate(relation, trait_ref_a, trait_ref_b)?;
                Ok(ty::ImplSubject::Trait(trait_ref))
            }
            (ty::ImplSubject::Inherent(ty_a), ty::ImplSubject::Inherent(ty_b)) => {
                let ty = Ty::relate(relation, ty_a, ty_b)?;
                Ok(ty::ImplSubject::Inherent(ty))
            }
            (ty::ImplSubject::Trait(_), ty::ImplSubject::Inherent(_))
            | (ty::ImplSubject::Inherent(_), ty::ImplSubject::Trait(_)) => {
                bug!("can not relate TraitRef and Ty");
            }
        }
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for Ty<'tcx> {
    #[inline]
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        a: Ty<'tcx>,
        b: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>> {
        relation.tys(a, b)
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Pattern<'tcx> {
    #[inline]
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        a: Self,
        b: Self,
    ) -> RelateResult<'tcx, Self> {
        match (&*a, &*b) {
            (
                &ty::PatternKind::Range { start: start_a, end: end_a, include_end: inc_a },
                &ty::PatternKind::Range { start: start_b, end: end_b, include_end: inc_b },
            ) => {
                // FIXME(pattern_types): make equal patterns equal (`0..=` is the same as `..=`).
                let mut relate_opt_const = |a, b| match (a, b) {
                    (None, None) => Ok(None),
                    (Some(a), Some(b)) => relation.relate(a, b).map(Some),
                    // FIXME(pattern_types): report a better error
                    _ => Err(TypeError::Mismatch),
                };
                let start = relate_opt_const(start_a, start_b)?;
                let end = relate_opt_const(end_a, end_b)?;
                if inc_a != inc_b {
                    todo!()
                }
                Ok(relation.tcx().mk_pat(ty::PatternKind::Range { start, end, include_end: inc_a }))
            }
        }
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>> {
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        a: Self,
        b: Self,
    ) -> RelateResult<'tcx, Self> {
        let tcx = relation.tcx();

        // FIXME: this is wasteful, but want to do a perf run to see how slow it is.
        // We need to perform this deduplication as we sometimes generate duplicate projections
        // in `a`.
        let mut a_v: Vec<_> = a.into_iter().collect();
        let mut b_v: Vec<_> = b.into_iter().collect();
        // `skip_binder` here is okay because `stable_cmp` doesn't look at binders
        a_v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
        a_v.dedup();
        b_v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
        b_v.dedup();
        if a_v.len() != b_v.len() {
            return Err(TypeError::ExistentialMismatch(ExpectedFound::new(true, a, b)));
        }

        let v = iter::zip(a_v, b_v).map(|(ep_a, ep_b)| {
            match (ep_a.skip_binder(), ep_b.skip_binder()) {
                (ty::ExistentialPredicate::Trait(a), ty::ExistentialPredicate::Trait(b)) => {
                    Ok(ep_a.rebind(ty::ExistentialPredicate::Trait(
                        relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder(),
                    )))
                }
                (
                    ty::ExistentialPredicate::Projection(a),
                    ty::ExistentialPredicate::Projection(b),
                ) => Ok(ep_a.rebind(ty::ExistentialPredicate::Projection(
                    relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder(),
                ))),
                (
                    ty::ExistentialPredicate::AutoTrait(a),
                    ty::ExistentialPredicate::AutoTrait(b),
                ) if a == b => Ok(ep_a.rebind(ty::ExistentialPredicate::AutoTrait(a))),
                _ => Err(TypeError::ExistentialMismatch(ExpectedFound::new(true, a, b))),
            }
        });
        tcx.mk_poly_existential_predicates_from_iter(v)
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for hir::Safety {
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        _relation: &mut R,
        a: hir::Safety,
        b: hir::Safety,
    ) -> RelateResult<'tcx, hir::Safety> {
        if a != b { Err(TypeError::SafetyMismatch(ExpectedFound::new(true, a, b))) } else { Ok(a) }
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for abi::Abi {
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        _relation: &mut R,
        a: abi::Abi,
        b: abi::Abi,
    ) -> RelateResult<'tcx, abi::Abi> {
        if a == b { Ok(a) } else { Err(TypeError::AbiMismatch(ExpectedFound::new(true, a, b))) }
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for ty::GenericArgsRef<'tcx> {
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        a: ty::GenericArgsRef<'tcx>,
        b: ty::GenericArgsRef<'tcx>,
    ) -> RelateResult<'tcx, ty::GenericArgsRef<'tcx>> {
        relate_args_invariantly(relation, a, b)
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Region<'tcx> {
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        a: ty::Region<'tcx>,
        b: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        relation.regions(a, b)
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Const<'tcx> {
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        a: ty::Const<'tcx>,
        b: ty::Const<'tcx>,
    ) -> RelateResult<'tcx, ty::Const<'tcx>> {
        relation.consts(a, b)
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Expr<'tcx> {
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        ae: ty::Expr<'tcx>,
        be: ty::Expr<'tcx>,
    ) -> RelateResult<'tcx, ty::Expr<'tcx>> {
        // FIXME(generic_const_exprs): is it possible to relate two consts which are not identical
        // exprs? Should we care about that?
        // FIXME(generic_const_exprs): relating the `ty()`s is a little weird since it is supposed to
        // ICE If they mismatch. Unfortunately `ConstKind::Expr` is a little special and can be thought
        // of as being generic over the argument types, however this is implicit so these types don't get
        // related when we relate the args of the item this const arg is for.
        match (ae.kind, be.kind) {
            (ty::ExprKind::Binop(a_binop), ty::ExprKind::Binop(b_binop)) if a_binop == b_binop => {}
            (ty::ExprKind::UnOp(a_unop), ty::ExprKind::UnOp(b_unop)) if a_unop == b_unop => {}
            (ty::ExprKind::FunctionCall, ty::ExprKind::FunctionCall) => {}
            (ty::ExprKind::Cast(a_kind), ty::ExprKind::Cast(b_kind)) if a_kind == b_kind => {}
            _ => return Err(TypeError::Mismatch),
        }

        let args = relation.relate(ae.args(), be.args())?;
        Ok(ty::Expr::new(ae.kind, args))
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for ty::GenericArg<'tcx> {
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        a: ty::GenericArg<'tcx>,
        b: ty::GenericArg<'tcx>,
    ) -> RelateResult<'tcx, ty::GenericArg<'tcx>> {
        match (a.unpack(), b.unpack()) {
            (ty::GenericArgKind::Lifetime(a_lt), ty::GenericArgKind::Lifetime(b_lt)) => {
                Ok(relation.relate(a_lt, b_lt)?.into())
            }
            (ty::GenericArgKind::Type(a_ty), ty::GenericArgKind::Type(b_ty)) => {
                Ok(relation.relate(a_ty, b_ty)?.into())
            }
            (ty::GenericArgKind::Const(a_ct), ty::GenericArgKind::Const(b_ct)) => {
                Ok(relation.relate(a_ct, b_ct)?.into())
            }
            (ty::GenericArgKind::Lifetime(unpacked), x) => {
                bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
            }
            (ty::GenericArgKind::Type(unpacked), x) => {
                bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
            }
            (ty::GenericArgKind::Const(unpacked), x) => {
                bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
            }
        }
    }
}

impl<'tcx> Relate<TyCtxt<'tcx>> for ty::Term<'tcx> {
    fn relate<R: TypeRelation<TyCtxt<'tcx>>>(
        relation: &mut R,
        a: Self,
        b: Self,
    ) -> RelateResult<'tcx, Self> {
        Ok(match (a.unpack(), b.unpack()) {
            (ty::TermKind::Ty(a), ty::TermKind::Ty(b)) => relation.relate(a, b)?.into(),
            (ty::TermKind::Const(a), ty::TermKind::Const(b)) => relation.relate(a, b)?.into(),
            _ => return Err(TypeError::Mismatch),
        })
    }
}