1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
//! Implements sha256 SIMD instructions of x86 targets
//!
//! The functions that actually compute SHA256 were copied from [RustCrypto's sha256 module].
//!
//! [RustCrypto's sha256 module]: https://github.com/RustCrypto/hashes/blob/6be8466247e936c415d8aafb848697f39894a386/sha2/src/sha256/soft.rs

use rustc_span::Symbol;
use rustc_target::spec::abi::Abi;

use crate::*;

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    fn emulate_x86_sha_intrinsic(
        &mut self,
        link_name: Symbol,
        abi: Abi,
        args: &[OpTy<'tcx>],
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx, EmulateItemResult> {
        let this = self.eval_context_mut();
        this.expect_target_feature_for_intrinsic(link_name, "sha")?;
        // Prefix should have already been checked.
        let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.sha").unwrap();

        fn read<'c>(this: &mut MiriInterpCx<'c>, reg: &MPlaceTy<'c>) -> InterpResult<'c, [u32; 4]> {
            let mut res = [0; 4];
            // We reverse the order because x86 is little endian but the copied implementation uses
            // big endian.
            for (i, dst) in res.iter_mut().rev().enumerate() {
                let projected = &this.project_index(reg, i.try_into().unwrap())?;
                *dst = this.read_scalar(projected)?.to_u32()?
            }
            Ok(res)
        }

        fn write<'c>(
            this: &mut MiriInterpCx<'c>,
            dest: &MPlaceTy<'c>,
            val: [u32; 4],
        ) -> InterpResult<'c, ()> {
            // We reverse the order because x86 is little endian but the copied implementation uses
            // big endian.
            for (i, part) in val.into_iter().rev().enumerate() {
                let projected = &this.project_index(dest, i.try_into().unwrap())?;
                this.write_scalar(Scalar::from_u32(part), projected)?;
            }
            Ok(())
        }

        match unprefixed_name {
            // Used to implement the _mm_sha256rnds2_epu32 function.
            "256rnds2" => {
                let [a, b, k] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;

                let (a_reg, a_len) = this.operand_to_simd(a)?;
                let (b_reg, b_len) = this.operand_to_simd(b)?;
                let (k_reg, k_len) = this.operand_to_simd(k)?;
                let (dest, dest_len) = this.mplace_to_simd(dest)?;

                assert_eq!(a_len, 4);
                assert_eq!(b_len, 4);
                assert_eq!(k_len, 4);
                assert_eq!(dest_len, 4);

                let a = read(this, &a_reg)?;
                let b = read(this, &b_reg)?;
                let k = read(this, &k_reg)?;

                let result = sha256_digest_round_x2(a, b, k);
                write(this, &dest, result)?;
            }
            // Used to implement the _mm_sha256msg1_epu32 function.
            "256msg1" => {
                let [a, b] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;

                let (a_reg, a_len) = this.operand_to_simd(a)?;
                let (b_reg, b_len) = this.operand_to_simd(b)?;
                let (dest, dest_len) = this.mplace_to_simd(dest)?;

                assert_eq!(a_len, 4);
                assert_eq!(b_len, 4);
                assert_eq!(dest_len, 4);

                let a = read(this, &a_reg)?;
                let b = read(this, &b_reg)?;

                let result = sha256msg1(a, b);
                write(this, &dest, result)?;
            }
            // Used to implement the _mm_sha256msg2_epu32 function.
            "256msg2" => {
                let [a, b] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;

                let (a_reg, a_len) = this.operand_to_simd(a)?;
                let (b_reg, b_len) = this.operand_to_simd(b)?;
                let (dest, dest_len) = this.mplace_to_simd(dest)?;

                assert_eq!(a_len, 4);
                assert_eq!(b_len, 4);
                assert_eq!(dest_len, 4);

                let a = read(this, &a_reg)?;
                let b = read(this, &b_reg)?;

                let result = sha256msg2(a, b);
                write(this, &dest, result)?;
            }
            _ => return Ok(EmulateItemResult::NotSupported),
        }
        Ok(EmulateItemResult::NeedsReturn)
    }
}

#[inline(always)]
fn shr(v: [u32; 4], o: u32) -> [u32; 4] {
    [v[0] >> o, v[1] >> o, v[2] >> o, v[3] >> o]
}

#[inline(always)]
fn shl(v: [u32; 4], o: u32) -> [u32; 4] {
    [v[0] << o, v[1] << o, v[2] << o, v[3] << o]
}

#[inline(always)]
fn or(a: [u32; 4], b: [u32; 4]) -> [u32; 4] {
    [a[0] | b[0], a[1] | b[1], a[2] | b[2], a[3] | b[3]]
}

#[inline(always)]
fn xor(a: [u32; 4], b: [u32; 4]) -> [u32; 4] {
    [a[0] ^ b[0], a[1] ^ b[1], a[2] ^ b[2], a[3] ^ b[3]]
}

#[inline(always)]
fn add(a: [u32; 4], b: [u32; 4]) -> [u32; 4] {
    [
        a[0].wrapping_add(b[0]),
        a[1].wrapping_add(b[1]),
        a[2].wrapping_add(b[2]),
        a[3].wrapping_add(b[3]),
    ]
}

fn sha256load(v2: [u32; 4], v3: [u32; 4]) -> [u32; 4] {
    [v3[3], v2[0], v2[1], v2[2]]
}

fn sha256_digest_round_x2(cdgh: [u32; 4], abef: [u32; 4], wk: [u32; 4]) -> [u32; 4] {
    macro_rules! big_sigma0 {
        ($a:expr) => {
            ($a.rotate_right(2) ^ $a.rotate_right(13) ^ $a.rotate_right(22))
        };
    }
    macro_rules! big_sigma1 {
        ($a:expr) => {
            ($a.rotate_right(6) ^ $a.rotate_right(11) ^ $a.rotate_right(25))
        };
    }
    macro_rules! bool3ary_202 {
        ($a:expr, $b:expr, $c:expr) => {
            $c ^ ($a & ($b ^ $c))
        };
    } // Choose, MD5F, SHA1C
    macro_rules! bool3ary_232 {
        ($a:expr, $b:expr, $c:expr) => {
            ($a & $b) ^ ($a & $c) ^ ($b & $c)
        };
    } // Majority, SHA1M

    let [_, _, wk1, wk0] = wk;
    let [a0, b0, e0, f0] = abef;
    let [c0, d0, g0, h0] = cdgh;

    // a round
    let x0 =
        big_sigma1!(e0).wrapping_add(bool3ary_202!(e0, f0, g0)).wrapping_add(wk0).wrapping_add(h0);
    let y0 = big_sigma0!(a0).wrapping_add(bool3ary_232!(a0, b0, c0));
    let (a1, b1, c1, d1, e1, f1, g1, h1) =
        (x0.wrapping_add(y0), a0, b0, c0, x0.wrapping_add(d0), e0, f0, g0);

    // a round
    let x1 =
        big_sigma1!(e1).wrapping_add(bool3ary_202!(e1, f1, g1)).wrapping_add(wk1).wrapping_add(h1);
    let y1 = big_sigma0!(a1).wrapping_add(bool3ary_232!(a1, b1, c1));
    let (a2, b2, _, _, e2, f2, _, _) =
        (x1.wrapping_add(y1), a1, b1, c1, x1.wrapping_add(d1), e1, f1, g1);

    [a2, b2, e2, f2]
}

fn sha256msg1(v0: [u32; 4], v1: [u32; 4]) -> [u32; 4] {
    // sigma 0 on vectors
    #[inline]
    fn sigma0x4(x: [u32; 4]) -> [u32; 4] {
        let t1 = or(shr(x, 7), shl(x, 25));
        let t2 = or(shr(x, 18), shl(x, 14));
        let t3 = shr(x, 3);
        xor(xor(t1, t2), t3)
    }

    add(v0, sigma0x4(sha256load(v0, v1)))
}

fn sha256msg2(v4: [u32; 4], v3: [u32; 4]) -> [u32; 4] {
    macro_rules! sigma1 {
        ($a:expr) => {
            $a.rotate_right(17) ^ $a.rotate_right(19) ^ ($a >> 10)
        };
    }

    let [x3, x2, x1, x0] = v4;
    let [w15, w14, _, _] = v3;

    let w16 = x0.wrapping_add(sigma1!(w14));
    let w17 = x1.wrapping_add(sigma1!(w15));
    let w18 = x2.wrapping_add(sigma1!(w16));
    let w19 = x3.wrapping_add(sigma1!(w17));

    [w19, w18, w17, w16]
}