1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
//! The `ObligationForest` is a utility data structure used in trait
//! matching to track the set of outstanding obligations (those not yet
//! resolved to success or error). It also tracks the "backtrace" of each
//! pending obligation (why we are trying to figure this out in the first
//! place).
//!
//! ### External view
//!
//! `ObligationForest` supports two main public operations (there are a
//! few others not discussed here):
//!
//! 1. Add a new root obligations (`register_obligation`).
//! 2. Process the pending obligations (`process_obligations`).
//!
//! When a new obligation `N` is added, it becomes the root of an
//! obligation tree. This tree can also carry some per-tree state `T`,
//! which is given at the same time. This tree is a singleton to start, so
//! `N` is both the root and the only leaf. Each time the
//! `process_obligations` method is called, it will invoke its callback
//! with every pending obligation (so that will include `N`, the first
//! time). The callback also receives a (mutable) reference to the
//! per-tree state `T`. The callback should process the obligation `O`
//! that it is given and return a `ProcessResult`:
//!
//! - `Unchanged` -> ambiguous result. Obligation was neither a success
//!   nor a failure. It is assumed that further attempts to process the
//!   obligation will yield the same result unless something in the
//!   surrounding environment changes.
//! - `Changed(C)` - the obligation was *shallowly successful*. The
//!   vector `C` is a list of subobligations. The meaning of this is that
//!   `O` was successful on the assumption that all the obligations in `C`
//!   are also successful. Therefore, `O` is only considered a "true"
//!   success if `C` is empty. Otherwise, `O` is put into a suspended
//!   state and the obligations in `C` become the new pending
//!   obligations. They will be processed the next time you call
//!   `process_obligations`.
//! - `Error(E)` -> obligation failed with error `E`. We will collect this
//!   error and return it from `process_obligations`, along with the
//!   "backtrace" of obligations (that is, the list of obligations up to
//!   and including the root of the failed obligation). No further
//!   obligations from that same tree will be processed, since the tree is
//!   now considered to be in error.
//!
//! When the call to `process_obligations` completes, you get back an `Outcome`,
//! which includes two bits of information:
//!
//! - `completed`: a list of obligations where processing was fully
//!   completed without error (meaning that all transitive subobligations
//!   have also been completed). So, for example, if the callback from
//!   `process_obligations` returns `Changed(C)` for some obligation `O`,
//!   then `O` will be considered completed right away if `C` is the
//!   empty vector. Otherwise it will only be considered completed once
//!   all the obligations in `C` have been found completed.
//! - `errors`: a list of errors that occurred and associated backtraces
//!   at the time of error, which can be used to give context to the user.
//!
//! Upon completion, none of the existing obligations were *shallowly
//! successful* (that is, no callback returned `Changed(_)`). This implies that
//! all obligations were either errors or returned an ambiguous result.
//!
//! ### Implementation details
//!
//! For the most part, comments specific to the implementation are in the
//! code. This file only contains a very high-level overview. Basically,
//! the forest is stored in a vector. Each element of the vector is a node
//! in some tree. Each node in the vector has the index of its dependents,
//! including the first dependent which is known as the parent. It also
//! has a current state, described by `NodeState`. After each processing
//! step, we compress the vector to remove completed and error nodes, which
//! aren't needed anymore.

use crate::fx::{FxHashMap, FxHashSet};

use std::cell::Cell;
use std::collections::hash_map::Entry;
use std::fmt::Debug;
use std::hash;
use std::marker::PhantomData;

mod graphviz;

#[cfg(test)]
mod tests;

pub trait ForestObligation: Clone + Debug {
    type CacheKey: Clone + hash::Hash + Eq + Debug;

    /// Converts this `ForestObligation` suitable for use as a cache key.
    /// If two distinct `ForestObligations`s return the same cache key,
    /// then it must be sound to use the result of processing one obligation
    /// (e.g. success for error) for the other obligation
    fn as_cache_key(&self) -> Self::CacheKey;
}

pub trait ObligationProcessor {
    type Obligation: ForestObligation;
    type Error: Debug;
    type OUT: OutcomeTrait<Obligation = Self::Obligation, Error = Error<Self::Obligation, Self::Error>>;

    /// Implementations can provide a fast-path to obligation-processing
    /// by counting the prefix of the passed iterator for which
    /// `needs_process_obligation` would return false.
    fn skippable_obligations<'a>(
        &'a self,
        _it: impl Iterator<Item = &'a Self::Obligation>,
    ) -> usize {
        0
    }

    fn needs_process_obligation(&self, _obligation: &Self::Obligation) -> bool;

    fn process_obligation(
        &mut self,
        obligation: &mut Self::Obligation,
    ) -> ProcessResult<Self::Obligation, Self::Error>;

    /// As we do the cycle check, we invoke this callback when we
    /// encounter an actual cycle. `cycle` is an iterator that starts
    /// at the start of the cycle in the stack and walks **toward the
    /// top**.
    ///
    /// In other words, if we had O1 which required O2 which required
    /// O3 which required O1, we would give an iterator yielding O1,
    /// O2, O3 (O1 is not yielded twice).
    fn process_backedge<'c, I>(
        &mut self,
        cycle: I,
        _marker: PhantomData<&'c Self::Obligation>,
    ) -> Result<(), Self::Error>
    where
        I: Clone + Iterator<Item = &'c Self::Obligation>;
}

/// The result type used by `process_obligation`.
// `repr(C)` to inhibit the niche filling optimization. Otherwise, the `match` appearing
// in `process_obligations` is significantly slower, which can substantially affect
// benchmarks like `rustc-perf`'s inflate and keccak.
#[repr(C)]
#[derive(Debug)]
pub enum ProcessResult<O, E> {
    Unchanged,
    Changed(Vec<O>),
    Error(E),
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
struct ObligationTreeId(usize);

type ObligationTreeIdGenerator = impl Iterator<Item = ObligationTreeId>;

pub struct ObligationForest<O: ForestObligation> {
    /// The list of obligations. In between calls to [Self::process_obligations],
    /// this list only contains nodes in the `Pending` or `Waiting` state.
    ///
    /// `usize` indices are used here and throughout this module, rather than
    /// [`rustc_index::newtype_index!`] indices, because this code is hot enough
    /// that the `u32`-to-`usize` conversions that would be required are
    /// significant, and space considerations are not important.
    nodes: Vec<Node<O>>,

    /// A cache of predicates that have been successfully completed.
    done_cache: FxHashSet<O::CacheKey>,

    /// A cache of the nodes in `nodes`, indexed by predicate. Unfortunately,
    /// its contents are not guaranteed to match those of `nodes`. See the
    /// comments in `Self::process_obligation` for details.
    active_cache: FxHashMap<O::CacheKey, usize>,

    /// A vector reused in [Self::compress()] and [Self::find_cycles_from_node()],
    /// to avoid allocating new vectors.
    reused_node_vec: Vec<usize>,

    obligation_tree_id_generator: ObligationTreeIdGenerator,

    /// Per tree error cache. This is used to deduplicate errors,
    /// which is necessary to avoid trait resolution overflow in
    /// some cases.
    ///
    /// See [this][details] for details.
    ///
    /// [details]: https://github.com/rust-lang/rust/pull/53255#issuecomment-421184780
    error_cache: FxHashMap<ObligationTreeId, FxHashSet<O::CacheKey>>,
}

#[derive(Debug)]
struct Node<O> {
    obligation: O,
    state: Cell<NodeState>,

    /// Obligations that depend on this obligation for their completion. They
    /// must all be in a non-pending state.
    dependents: Vec<usize>,

    /// If true, `dependents[0]` points to a "parent" node, which requires
    /// special treatment upon error but is otherwise treated the same.
    /// (It would be more idiomatic to store the parent node in a separate
    /// `Option<usize>` field, but that slows down the common case of
    /// iterating over the parent and other descendants together.)
    has_parent: bool,

    /// Identifier of the obligation tree to which this node belongs.
    obligation_tree_id: ObligationTreeId,
}

impl<O> Node<O> {
    fn new(parent: Option<usize>, obligation: O, obligation_tree_id: ObligationTreeId) -> Node<O> {
        Node {
            obligation,
            state: Cell::new(NodeState::Pending),
            dependents: if let Some(parent_index) = parent { vec![parent_index] } else { vec![] },
            has_parent: parent.is_some(),
            obligation_tree_id,
        }
    }
}

/// The state of one node in some tree within the forest. This represents the
/// current state of processing for the obligation (of type `O`) associated
/// with this node.
///
/// The non-`Error` state transitions are as follows.
/// ```text
/// (Pre-creation)
///  |
///  |     register_obligation_at() (called by process_obligations() and
///  v                               from outside the crate)
/// Pending
///  |
///  |     process_obligations()
///  v
/// Success
///  |  ^
///  |  |  mark_successes()
///  |  v
///  |  Waiting
///  |
///  |     process_cycles()
///  v
/// Done
///  |
///  |     compress()
///  v
/// (Removed)
/// ```
/// The `Error` state can be introduced in several places, via `error_at()`.
///
/// Outside of `ObligationForest` methods, nodes should be either `Pending` or
/// `Waiting`.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum NodeState {
    /// This obligation has not yet been selected successfully. Cannot have
    /// subobligations.
    Pending,

    /// This obligation was selected successfully, but may or may not have
    /// subobligations.
    Success,

    /// This obligation was selected successfully, but it has a pending
    /// subobligation.
    Waiting,

    /// This obligation, along with its subobligations, are complete, and will
    /// be removed in the next collection.
    Done,

    /// This obligation was resolved to an error. It will be removed by the
    /// next compression step.
    Error,
}

/// This trait allows us to have two different Outcome types:
///  - the normal one that does as little as possible
///  - one for tests that does some additional work and checking
pub trait OutcomeTrait {
    type Error;
    type Obligation;

    fn new() -> Self;
    fn record_completed(&mut self, outcome: &Self::Obligation);
    fn record_error(&mut self, error: Self::Error);
}

#[derive(Debug)]
pub struct Outcome<O, E> {
    /// Backtrace of obligations that were found to be in error.
    pub errors: Vec<Error<O, E>>,
}

impl<O, E> OutcomeTrait for Outcome<O, E> {
    type Error = Error<O, E>;
    type Obligation = O;

    fn new() -> Self {
        Self { errors: vec![] }
    }

    fn record_completed(&mut self, _outcome: &Self::Obligation) {
        // do nothing
    }

    fn record_error(&mut self, error: Self::Error) {
        self.errors.push(error)
    }
}

#[derive(Debug, PartialEq, Eq)]
pub struct Error<O, E> {
    pub error: E,
    pub backtrace: Vec<O>,
}

impl<O: ForestObligation> ObligationForest<O> {
    pub fn new() -> ObligationForest<O> {
        ObligationForest {
            nodes: vec![],
            done_cache: Default::default(),
            active_cache: Default::default(),
            reused_node_vec: vec![],
            obligation_tree_id_generator: (0..).map(ObligationTreeId),
            error_cache: Default::default(),
        }
    }

    /// Returns the total number of nodes in the forest that have not
    /// yet been fully resolved.
    pub fn len(&self) -> usize {
        self.nodes.len()
    }

    /// Registers an obligation.
    pub fn register_obligation(&mut self, obligation: O) {
        // Ignore errors here - there is no guarantee of success.
        let _ = self.register_obligation_at(obligation, None);
    }

    // Returns Err(()) if we already know this obligation failed.
    fn register_obligation_at(&mut self, obligation: O, parent: Option<usize>) -> Result<(), ()> {
        let cache_key = obligation.as_cache_key();
        if self.done_cache.contains(&cache_key) {
            debug!("register_obligation_at: ignoring already done obligation: {:?}", obligation);
            return Ok(());
        }

        match self.active_cache.entry(cache_key) {
            Entry::Occupied(o) => {
                let node = &mut self.nodes[*o.get()];
                if let Some(parent_index) = parent {
                    // If the node is already in `active_cache`, it has already
                    // had its chance to be marked with a parent. So if it's
                    // not already present, just dump `parent` into the
                    // dependents as a non-parent.
                    if !node.dependents.contains(&parent_index) {
                        node.dependents.push(parent_index);
                    }
                }
                if let NodeState::Error = node.state.get() { Err(()) } else { Ok(()) }
            }
            Entry::Vacant(v) => {
                let obligation_tree_id = match parent {
                    Some(parent_index) => self.nodes[parent_index].obligation_tree_id,
                    None => self.obligation_tree_id_generator.next().unwrap(),
                };

                let already_failed = parent.is_some()
                    && self
                        .error_cache
                        .get(&obligation_tree_id)
                        .is_some_and(|errors| errors.contains(v.key()));

                if already_failed {
                    Err(())
                } else {
                    let new_index = self.nodes.len();
                    v.insert(new_index);
                    self.nodes.push(Node::new(parent, obligation, obligation_tree_id));
                    Ok(())
                }
            }
        }
    }

    /// Converts all remaining obligations to the given error.
    pub fn to_errors<E: Clone>(&mut self, error: E) -> Vec<Error<O, E>> {
        let errors = self
            .nodes
            .iter()
            .enumerate()
            .filter(|(_index, node)| node.state.get() == NodeState::Pending)
            .map(|(index, _node)| Error { error: error.clone(), backtrace: self.error_at(index) })
            .collect();

        self.compress(|_| assert!(false));
        errors
    }

    /// Returns the set of obligations that are in a pending state.
    pub fn map_pending_obligations<P, F>(&self, f: F) -> Vec<P>
    where
        F: Fn(&O) -> P,
    {
        self.nodes
            .iter()
            .filter(|node| node.state.get() == NodeState::Pending)
            .map(|node| f(&node.obligation))
            .collect()
    }

    fn insert_into_error_cache(&mut self, index: usize) {
        let node = &self.nodes[index];
        self.error_cache
            .entry(node.obligation_tree_id)
            .or_default()
            .insert(node.obligation.as_cache_key());
    }

    /// Performs a fixpoint computation over the obligation list.
    #[inline(never)]
    pub fn process_obligations<P>(&mut self, processor: &mut P) -> P::OUT
    where
        P: ObligationProcessor<Obligation = O>,
    {
        let mut outcome = P::OUT::new();

        // Fixpoint computation: we repeat until the inner loop stalls.
        loop {
            let mut has_changed = false;

            // This is the super fast path for cheap-to-check conditions.
            let mut index =
                processor.skippable_obligations(self.nodes.iter().map(|n| &n.obligation));

            // Note that the loop body can append new nodes, and those new nodes
            // will then be processed by subsequent iterations of the loop.
            //
            // We can't use an iterator for the loop because `self.nodes` is
            // appended to and the borrow checker would complain. We also can't use
            // `for index in 0..self.nodes.len() { ... }` because the range would
            // be computed with the initial length, and we would miss the appended
            // nodes. Therefore we use a `while` loop.
            while let Some(node) = self.nodes.get_mut(index) {
                // This is the moderately fast path when the prefix skipping above didn't work out.
                if node.state.get() != NodeState::Pending
                    || !processor.needs_process_obligation(&node.obligation)
                {
                    index += 1;
                    continue;
                }

                // `processor.process_obligation` can modify the predicate within
                // `node.obligation`, and that predicate is the key used for
                // `self.active_cache`. This means that `self.active_cache` can get
                // out of sync with `nodes`. It's not very common, but it does
                // happen, and code in `compress` has to allow for it.

                // This code is much less hot.
                match processor.process_obligation(&mut node.obligation) {
                    ProcessResult::Unchanged => {
                        // No change in state.
                    }
                    ProcessResult::Changed(children) => {
                        // We are not (yet) stalled.
                        has_changed = true;
                        node.state.set(NodeState::Success);

                        for child in children {
                            let st = self.register_obligation_at(child, Some(index));
                            if let Err(()) = st {
                                // Error already reported - propagate it
                                // to our node.
                                self.error_at(index);
                            }
                        }
                    }
                    ProcessResult::Error(err) => {
                        has_changed = true;
                        outcome.record_error(Error { error: err, backtrace: self.error_at(index) });
                    }
                }
                index += 1;
            }

            // If unchanged, then we saw no successful obligations, which means
            // there is no point in further iteration. This is based on the
            // assumption that when trait matching returns `Error` or
            // `Unchanged`, those results do not affect environmental inference
            // state. (Note that this will occur if we invoke
            // `process_obligations` with no pending obligations.)
            if !has_changed {
                break;
            }

            self.mark_successes();
            self.process_cycles(processor, &mut outcome);
            self.compress(|obl| outcome.record_completed(obl));
        }

        outcome
    }

    /// Returns a vector of obligations for `p` and all of its
    /// ancestors, putting them into the error state in the process.
    fn error_at(&self, mut index: usize) -> Vec<O> {
        let mut error_stack: Vec<usize> = vec![];
        let mut trace = vec![];

        loop {
            let node = &self.nodes[index];
            node.state.set(NodeState::Error);
            trace.push(node.obligation.clone());
            if node.has_parent {
                // The first dependent is the parent, which is treated
                // specially.
                error_stack.extend(node.dependents.iter().skip(1));
                index = node.dependents[0];
            } else {
                // No parent; treat all dependents non-specially.
                error_stack.extend(node.dependents.iter());
                break;
            }
        }

        while let Some(index) = error_stack.pop() {
            let node = &self.nodes[index];
            if node.state.get() != NodeState::Error {
                node.state.set(NodeState::Error);
                error_stack.extend(node.dependents.iter());
            }
        }

        trace
    }

    /// Mark all `Waiting` nodes as `Success`, except those that depend on a
    /// pending node.
    fn mark_successes(&self) {
        // Convert all `Waiting` nodes to `Success`.
        for node in &self.nodes {
            if node.state.get() == NodeState::Waiting {
                node.state.set(NodeState::Success);
            }
        }

        // Convert `Success` nodes that depend on a pending node back to
        // `Waiting`.
        for node in &self.nodes {
            if node.state.get() == NodeState::Pending {
                // This call site is hot.
                self.inlined_mark_dependents_as_waiting(node);
            }
        }
    }

    // This always-inlined function is for the hot call site.
    #[inline(always)]
    fn inlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
        for &index in node.dependents.iter() {
            let node = &self.nodes[index];
            let state = node.state.get();
            if state == NodeState::Success {
                // This call site is cold.
                self.uninlined_mark_dependents_as_waiting(node);
            } else {
                debug_assert!(state == NodeState::Waiting || state == NodeState::Error)
            }
        }
    }

    // This never-inlined function is for the cold call site.
    #[inline(never)]
    fn uninlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
        // Mark node Waiting in the cold uninlined code instead of the hot inlined
        node.state.set(NodeState::Waiting);
        self.inlined_mark_dependents_as_waiting(node)
    }

    /// Report cycles between all `Success` nodes, and convert all `Success`
    /// nodes to `Done`. This must be called after `mark_successes`.
    fn process_cycles<P>(&mut self, processor: &mut P, outcome: &mut P::OUT)
    where
        P: ObligationProcessor<Obligation = O>,
    {
        let mut stack = std::mem::take(&mut self.reused_node_vec);
        for (index, node) in self.nodes.iter().enumerate() {
            // For some benchmarks this state test is extremely hot. It's a win
            // to handle the no-op cases immediately to avoid the cost of the
            // function call.
            if node.state.get() == NodeState::Success {
                self.find_cycles_from_node(&mut stack, processor, index, outcome);
            }
        }

        debug_assert!(stack.is_empty());
        self.reused_node_vec = stack;
    }

    fn find_cycles_from_node<P>(
        &self,
        stack: &mut Vec<usize>,
        processor: &mut P,
        index: usize,
        outcome: &mut P::OUT,
    ) where
        P: ObligationProcessor<Obligation = O>,
    {
        let node = &self.nodes[index];
        if node.state.get() == NodeState::Success {
            match stack.iter().rposition(|&n| n == index) {
                None => {
                    stack.push(index);
                    for &dep_index in node.dependents.iter() {
                        self.find_cycles_from_node(stack, processor, dep_index, outcome);
                    }
                    stack.pop();
                    node.state.set(NodeState::Done);
                }
                Some(rpos) => {
                    // Cycle detected.
                    let result = processor.process_backedge(
                        stack[rpos..].iter().map(|&i| &self.nodes[i].obligation),
                        PhantomData,
                    );
                    if let Err(err) = result {
                        outcome.record_error(Error { error: err, backtrace: self.error_at(index) });
                    }
                }
            }
        }
    }

    /// Compresses the vector, removing all popped nodes. This adjusts the
    /// indices and hence invalidates any outstanding indices. `process_cycles`
    /// must be run beforehand to remove any cycles on `Success` nodes.
    #[inline(never)]
    fn compress(&mut self, mut outcome_cb: impl FnMut(&O)) {
        let orig_nodes_len = self.nodes.len();
        let mut node_rewrites: Vec<_> = std::mem::take(&mut self.reused_node_vec);
        debug_assert!(node_rewrites.is_empty());
        node_rewrites.extend(0..orig_nodes_len);
        let mut dead_nodes = 0;

        // Move removable nodes to the end, preserving the order of the
        // remaining nodes.
        //
        // LOOP INVARIANT:
        //     self.nodes[0..index - dead_nodes] are the first remaining nodes
        //     self.nodes[index - dead_nodes..index] are all dead
        //     self.nodes[index..] are unchanged
        for index in 0..orig_nodes_len {
            let node = &self.nodes[index];
            match node.state.get() {
                NodeState::Pending | NodeState::Waiting => {
                    if dead_nodes > 0 {
                        self.nodes.swap(index, index - dead_nodes);
                        node_rewrites[index] -= dead_nodes;
                    }
                }
                NodeState::Done => {
                    // The removal lookup might fail because the contents of
                    // `self.active_cache` are not guaranteed to match those of
                    // `self.nodes`. See the comment in `process_obligation`
                    // for more details.
                    let cache_key = node.obligation.as_cache_key();
                    self.active_cache.remove(&cache_key);
                    self.done_cache.insert(cache_key);

                    // Extract the success stories.
                    outcome_cb(&node.obligation);
                    node_rewrites[index] = orig_nodes_len;
                    dead_nodes += 1;
                }
                NodeState::Error => {
                    // We *intentionally* remove the node from the cache at this point. Otherwise
                    // tests must come up with a different type on every type error they
                    // check against.
                    self.active_cache.remove(&node.obligation.as_cache_key());
                    self.insert_into_error_cache(index);
                    node_rewrites[index] = orig_nodes_len;
                    dead_nodes += 1;
                }
                NodeState::Success => unreachable!(),
            }
        }

        if dead_nodes > 0 {
            // Remove the dead nodes and rewrite indices.
            self.nodes.truncate(orig_nodes_len - dead_nodes);
            self.apply_rewrites(&node_rewrites);
        }

        node_rewrites.truncate(0);
        self.reused_node_vec = node_rewrites;
    }

    #[inline(never)]
    fn apply_rewrites(&mut self, node_rewrites: &[usize]) {
        let orig_nodes_len = node_rewrites.len();

        for node in &mut self.nodes {
            let mut i = 0;
            while let Some(dependent) = node.dependents.get_mut(i) {
                let new_index = node_rewrites[*dependent];
                if new_index >= orig_nodes_len {
                    node.dependents.swap_remove(i);
                    if i == 0 && node.has_parent {
                        // We just removed the parent.
                        node.has_parent = false;
                    }
                } else {
                    *dependent = new_index;
                    i += 1;
                }
            }
        }

        // This updating of `self.active_cache` is necessary because the
        // removal of nodes within `compress` can fail. See above.
        self.active_cache.retain(|_predicate, index| {
            let new_index = node_rewrites[*index];
            if new_index >= orig_nodes_len {
                false
            } else {
                *index = new_index;
                true
            }
        });
    }
}