rustc_hir_analysis/bounds.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
//! Bounds are restrictions applied to some types after they've been lowered from the HIR to the
//! [`rustc_middle::ty`] form.
use rustc_data_structures::fx::FxIndexMap;
use rustc_hir::LangItem;
use rustc_hir::def::DefKind;
use rustc_middle::ty::fold::FnMutDelegate;
use rustc_middle::ty::{self, Ty, TyCtxt, Upcast};
use rustc_span::Span;
use rustc_span::def_id::DefId;
use crate::hir_ty_lowering::OnlySelfBounds;
/// Collects together a list of type bounds. These lists of bounds occur in many places
/// in Rust's syntax:
///
/// ```text
/// trait Foo: Bar + Baz { }
/// ^^^^^^^^^ supertrait list bounding the `Self` type parameter
///
/// fn foo<T: Bar + Baz>() { }
/// ^^^^^^^^^ bounding the type parameter `T`
///
/// impl dyn Bar + Baz
/// ^^^^^^^^^ bounding the type-erased dynamic type
/// ```
///
/// Our representation is a bit mixed here -- in some cases, we
/// include the self type (e.g., `trait_bounds`) but in others we do not
#[derive(Default, PartialEq, Eq, Clone, Debug)]
pub(crate) struct Bounds<'tcx> {
clauses: Vec<(ty::Clause<'tcx>, Span)>,
effects_min_tys: FxIndexMap<Ty<'tcx>, Span>,
}
impl<'tcx> Bounds<'tcx> {
pub(crate) fn push_region_bound(
&mut self,
tcx: TyCtxt<'tcx>,
region: ty::PolyTypeOutlivesPredicate<'tcx>,
span: Span,
) {
self.clauses
.push((region.map_bound(|p| ty::ClauseKind::TypeOutlives(p)).upcast(tcx), span));
}
pub(crate) fn push_trait_bound(
&mut self,
tcx: TyCtxt<'tcx>,
defining_def_id: DefId,
bound_trait_ref: ty::PolyTraitRef<'tcx>,
span: Span,
polarity: ty::PredicatePolarity,
constness: ty::BoundConstness,
only_self_bounds: OnlySelfBounds,
) {
let clause = (
bound_trait_ref
.map_bound(|trait_ref| {
ty::ClauseKind::Trait(ty::TraitPredicate { trait_ref, polarity })
})
.upcast(tcx),
span,
);
// FIXME(-Znext-solver): We can likely remove this hack once the new trait solver lands.
if tcx.is_lang_item(bound_trait_ref.def_id(), LangItem::Sized) {
self.clauses.insert(0, clause);
} else {
self.clauses.push(clause);
}
// FIXME(effects): Lift this out of `push_trait_bound`, and move it somewhere else.
// Perhaps moving this into `lower_poly_trait_ref`, just like we lower associated
// type bounds.
if !tcx.features().effects || only_self_bounds.0 {
return;
}
// For `T: ~const Tr` or `T: const Tr`, we need to add an additional bound on the
// associated type of `<T as Tr>` and make sure that the effect is compatible.
let compat_val = match (tcx.def_kind(defining_def_id), constness) {
// FIXME(effects): revisit the correctness of this
(_, ty::BoundConstness::Const) => tcx.consts.false_,
// body owners that can have trait bounds
(DefKind::Const | DefKind::Fn | DefKind::AssocFn, ty::BoundConstness::ConstIfConst) => {
tcx.expected_host_effect_param_for_body(defining_def_id)
}
(_, ty::BoundConstness::NotConst) => {
if !tcx.is_const_trait(bound_trait_ref.def_id()) {
return;
}
tcx.consts.true_
}
(DefKind::Trait, ty::BoundConstness::ConstIfConst) => {
// we are in a trait, where `bound_trait_ref` could be:
// (1) a super trait `trait Foo: ~const Bar`.
// - This generates `<Self as Foo>::Effects: TyCompat<<Self as Bar>::Effects>`
//
// (2) a where clause `where for<..> Something: ~const Bar`.
// - This generates `for<..> <Self as Foo>::Effects: TyCompat<<Something as Bar>::Effects>`
let Some(own_fx) = tcx.associated_type_for_effects(defining_def_id) else {
tcx.dcx().span_delayed_bug(span, "should not have allowed `~const` on a trait that doesn't have `#[const_trait]`");
return;
};
let own_fx_ty = Ty::new_projection(
tcx,
own_fx,
ty::GenericArgs::identity_for_item(tcx, own_fx),
);
let Some(their_fx) = tcx.associated_type_for_effects(bound_trait_ref.def_id())
else {
tcx.dcx().span_delayed_bug(span, "`~const` on trait without Effects assoc");
return;
};
let their_fx_ty =
Ty::new_projection(tcx, their_fx, bound_trait_ref.skip_binder().args);
let compat = tcx.require_lang_item(LangItem::EffectsTyCompat, Some(span));
let clause = bound_trait_ref
.map_bound(|_| {
let trait_ref = ty::TraitRef::new(tcx, compat, [own_fx_ty, their_fx_ty]);
ty::ClauseKind::Trait(ty::TraitPredicate {
trait_ref,
polarity: ty::PredicatePolarity::Positive,
})
})
.upcast(tcx);
self.clauses.push((clause, span));
return;
}
(DefKind::Impl { of_trait: true }, ty::BoundConstness::ConstIfConst) => {
// this is a where clause on an impl header.
// push `<T as Tr>::Effects` into the set for the `Min` bound.
let Some(assoc) = tcx.associated_type_for_effects(bound_trait_ref.def_id()) else {
tcx.dcx().span_delayed_bug(span, "`~const` on trait without Effects assoc");
return;
};
let ty = bound_trait_ref
.map_bound(|trait_ref| Ty::new_projection(tcx, assoc, trait_ref.args));
// When the user has written `for<'a, T> X<'a, T>: ~const Foo`, replace the
// binders to dummy ones i.e. `X<'static, ()>` so they can be referenced in
// the `Min` associated type properly (which doesn't allow using `for<>`)
// This should work for any bound variables as long as they don't have any
// bounds e.g. `for<T: Trait>`.
// FIXME(effects) reconsider this approach to allow compatibility with `for<T: Tr>`
let ty = tcx.replace_bound_vars_uncached(ty, FnMutDelegate {
regions: &mut |_| tcx.lifetimes.re_static,
types: &mut |_| tcx.types.unit,
consts: &mut |_| unimplemented!("`~const` does not support const binders"),
});
self.effects_min_tys.insert(ty, span);
return;
}
// for
// ```
// trait Foo { type Bar: ~const Trait }
// ```
// ensure that `<Self::Bar as Trait>::Effects: TyCompat<Self::Effects>`.
//
// FIXME(effects) this is equality for now, which wouldn't be helpful for a non-const implementor
// that uses a `Bar` that implements `Trait` with `Maybe` effects.
(DefKind::AssocTy, ty::BoundConstness::ConstIfConst) => {
// FIXME(effects): implement this
return;
}
// probably illegal in this position.
(_, ty::BoundConstness::ConstIfConst) => {
tcx.dcx().span_delayed_bug(span, "invalid `~const` encountered");
return;
}
};
// create a new projection type `<T as Tr>::Effects`
let Some(assoc) = tcx.associated_type_for_effects(bound_trait_ref.def_id()) else {
tcx.dcx().span_delayed_bug(
span,
"`~const` trait bound has no effect assoc yet no errors encountered?",
);
return;
};
let self_ty = Ty::new_projection(tcx, assoc, bound_trait_ref.skip_binder().args);
// make `<T as Tr>::Effects: Compat<runtime>`
let new_trait_ref =
ty::TraitRef::new(tcx, tcx.require_lang_item(LangItem::EffectsCompat, Some(span)), [
ty::GenericArg::from(self_ty),
compat_val.into(),
]);
self.clauses.push((bound_trait_ref.rebind(new_trait_ref).upcast(tcx), span));
}
pub(crate) fn push_projection_bound(
&mut self,
tcx: TyCtxt<'tcx>,
projection: ty::PolyProjectionPredicate<'tcx>,
span: Span,
) {
self.clauses.push((
projection.map_bound(|proj| ty::ClauseKind::Projection(proj)).upcast(tcx),
span,
));
}
pub(crate) fn push_sized(&mut self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, span: Span) {
let sized_def_id = tcx.require_lang_item(LangItem::Sized, Some(span));
let trait_ref = ty::TraitRef::new(tcx, sized_def_id, [ty]);
// Preferable to put this obligation first, since we report better errors for sized ambiguity.
self.clauses.insert(0, (trait_ref.upcast(tcx), span));
}
pub(crate) fn clauses(
&self,
// FIXME(effects): remove tcx
_tcx: TyCtxt<'tcx>,
) -> impl Iterator<Item = (ty::Clause<'tcx>, Span)> + '_ {
self.clauses.iter().cloned()
}
pub(crate) fn effects_min_tys(&self) -> impl Iterator<Item = Ty<'tcx>> + '_ {
self.effects_min_tys.keys().copied()
}
}