1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
use std::iter;
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_infer::traits::ObligationCauseCode;
use rustc_middle::bug;
use rustc_middle::ty::{
self, GenericArg, GenericArgKind, GenericArgsRef, Ty, TyCtxt, TypeSuperVisitable,
TypeVisitable, TypeVisitableExt, TypeVisitor,
};
use rustc_span::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
use rustc_span::{Span, DUMMY_SP};
use tracing::{debug, instrument, trace};
use crate::infer::InferCtxt;
use crate::traits;
/// Returns the set of obligations needed to make `arg` well-formed.
/// If `arg` contains unresolved inference variables, this may include
/// further WF obligations. However, if `arg` IS an unresolved
/// inference variable, returns `None`, because we are not able to
/// make any progress at all. This is to prevent "livelock" where we
/// say "$0 is WF if $0 is WF".
pub fn obligations<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: LocalDefId,
recursion_depth: usize,
arg: GenericArg<'tcx>,
span: Span,
) -> Option<Vec<traits::PredicateObligation<'tcx>>> {
// Handle the "livelock" case (see comment above) by bailing out if necessary.
let arg = match arg.unpack() {
GenericArgKind::Type(ty) => {
match ty.kind() {
ty::Infer(ty::TyVar(_)) => {
let resolved_ty = infcx.shallow_resolve(ty);
if resolved_ty == ty {
// No progress, bail out to prevent "livelock".
return None;
} else {
resolved_ty
}
}
_ => ty,
}
.into()
}
GenericArgKind::Const(ct) => {
match ct.kind() {
ty::ConstKind::Infer(_) => {
let resolved = infcx.shallow_resolve_const(ct);
if resolved == ct {
// No progress.
return None;
} else {
resolved
}
}
_ => ct,
}
.into()
}
// There is nothing we have to do for lifetimes.
GenericArgKind::Lifetime(..) => return Some(Vec::new()),
};
let mut wf =
WfPredicates { infcx, param_env, body_id, span, out: vec![], recursion_depth, item: None };
wf.compute(arg);
debug!("wf::obligations({:?}, body_id={:?}) = {:?}", arg, body_id, wf.out);
let result = wf.normalize(infcx);
debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", arg, body_id, result);
Some(result)
}
/// Compute the predicates that are required for a type to be well-formed.
///
/// This is only intended to be used in the new solver, since it does not
/// take into account recursion depth or proper error-reporting spans.
pub fn unnormalized_obligations<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
arg: GenericArg<'tcx>,
) -> Option<Vec<traits::PredicateObligation<'tcx>>> {
debug_assert_eq!(arg, infcx.resolve_vars_if_possible(arg));
// However, if `arg` IS an unresolved inference variable, returns `None`,
// because we are not able to make any progress at all. This is to prevent
// "livelock" where we say "$0 is WF if $0 is WF".
if arg.is_non_region_infer() {
return None;
}
if let ty::GenericArgKind::Lifetime(..) = arg.unpack() {
return Some(vec![]);
}
let mut wf = WfPredicates {
infcx,
param_env,
body_id: CRATE_DEF_ID,
span: DUMMY_SP,
out: vec![],
recursion_depth: 0,
item: None,
};
wf.compute(arg);
Some(wf.out)
}
/// Returns the obligations that make this trait reference
/// well-formed. For example, if there is a trait `Set` defined like
/// `trait Set<K: Eq>`, then the trait bound `Foo: Set<Bar>` is WF
/// if `Bar: Eq`.
pub fn trait_obligations<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: LocalDefId,
trait_pred: ty::TraitPredicate<'tcx>,
span: Span,
item: &'tcx hir::Item<'tcx>,
) -> Vec<traits::PredicateObligation<'tcx>> {
let mut wf = WfPredicates {
infcx,
param_env,
body_id,
span,
out: vec![],
recursion_depth: 0,
item: Some(item),
};
wf.compute_trait_pred(trait_pred, Elaborate::All);
debug!(obligations = ?wf.out);
wf.normalize(infcx)
}
/// Returns the requirements for `clause` to be well-formed.
///
/// For example, if there is a trait `Set` defined like
/// `trait Set<K: Eq>`, then the trait bound `Foo: Set<Bar>` is WF
/// if `Bar: Eq`.
#[instrument(skip(infcx), ret)]
pub fn clause_obligations<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: LocalDefId,
clause: ty::Clause<'tcx>,
span: Span,
) -> Vec<traits::PredicateObligation<'tcx>> {
let mut wf = WfPredicates {
infcx,
param_env,
body_id,
span,
out: vec![],
recursion_depth: 0,
item: None,
};
// It's ok to skip the binder here because wf code is prepared for it
match clause.kind().skip_binder() {
ty::ClauseKind::Trait(t) => {
wf.compute_trait_pred(t, Elaborate::None);
}
ty::ClauseKind::RegionOutlives(..) => {}
ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
wf.compute(ty.into());
}
ty::ClauseKind::Projection(t) => {
wf.compute_alias_term(t.projection_term);
wf.compute(t.term.into_arg());
}
ty::ClauseKind::ConstArgHasType(ct, ty) => {
wf.compute(ct.into());
wf.compute(ty.into());
}
ty::ClauseKind::WellFormed(arg) => {
wf.compute(arg);
}
ty::ClauseKind::ConstEvaluatable(ct) => {
wf.compute(ct.into());
}
}
wf.normalize(infcx)
}
struct WfPredicates<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: LocalDefId,
span: Span,
out: Vec<traits::PredicateObligation<'tcx>>,
recursion_depth: usize,
item: Option<&'tcx hir::Item<'tcx>>,
}
/// Controls whether we "elaborate" supertraits and so forth on the WF
/// predicates. This is a kind of hack to address #43784. The
/// underlying problem in that issue was a trait structure like:
///
/// ```ignore (illustrative)
/// trait Foo: Copy { }
/// trait Bar: Foo { }
/// impl<T: Bar> Foo for T { }
/// impl<T> Bar for T { }
/// ```
///
/// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
/// we decide that this is true because `T: Bar` is in the
/// where-clauses (and we can elaborate that to include `T:
/// Copy`). This wouldn't be a problem, except that when we check the
/// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
/// impl. And so nowhere did we check that `T: Copy` holds!
///
/// To resolve this, we elaborate the WF requirements that must be
/// proven when checking impls. This means that (e.g.) the `impl Bar
/// for T` will be forced to prove not only that `T: Foo` but also `T:
/// Copy` (which it won't be able to do, because there is no `Copy`
/// impl for `T`).
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
enum Elaborate {
All,
None,
}
/// Points the cause span of a super predicate at the relevant associated type.
///
/// Given a trait impl item:
///
/// ```ignore (incomplete)
/// impl TargetTrait for TargetType {
/// type Assoc = SomeType;
/// }
/// ```
///
/// And a super predicate of `TargetTrait` that has any of the following forms:
///
/// 1. `<OtherType as OtherTrait>::Assoc == <TargetType as TargetTrait>::Assoc`
/// 2. `<<TargetType as TargetTrait>::Assoc as OtherTrait>::Assoc == OtherType`
/// 3. `<TargetType as TargetTrait>::Assoc: OtherTrait`
///
/// Replace the span of the cause with the span of the associated item:
///
/// ```ignore (incomplete)
/// impl TargetTrait for TargetType {
/// type Assoc = SomeType;
/// // ^^^^^^^^ this span
/// }
/// ```
///
/// Note that bounds that can be expressed as associated item bounds are **not**
/// super predicates. This means that form 2 and 3 from above are only relevant if
/// the [`GenericArgsRef`] of the projection type are not its identity arguments.
fn extend_cause_with_original_assoc_item_obligation<'tcx>(
tcx: TyCtxt<'tcx>,
item: Option<&hir::Item<'tcx>>,
cause: &mut traits::ObligationCause<'tcx>,
pred: ty::Predicate<'tcx>,
) {
debug!(?item, ?cause, ?pred, "extended_cause_with_original_assoc_item_obligation");
let (items, impl_def_id) = match item {
Some(hir::Item { kind: hir::ItemKind::Impl(impl_), owner_id, .. }) => {
(impl_.items, *owner_id)
}
_ => return,
};
let ty_to_impl_span = |ty: Ty<'_>| {
if let ty::Alias(ty::Projection, projection_ty) = ty.kind()
&& let Some(&impl_item_id) =
tcx.impl_item_implementor_ids(impl_def_id).get(&projection_ty.def_id)
&& let Some(impl_item) =
items.iter().find(|item| item.id.owner_id.to_def_id() == impl_item_id)
{
Some(tcx.hir().impl_item(impl_item.id).expect_type().span)
} else {
None
}
};
// It is fine to skip the binder as we don't care about regions here.
match pred.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj)) => {
// Form 1: The obligation comes not from the current `impl` nor the `trait` being
// implemented, but rather from a "second order" obligation, where an associated
// type has a projection coming from another associated type.
// See `tests/ui/traits/assoc-type-in-superbad.rs` for an example.
if let Some(term_ty) = proj.term.as_type()
&& let Some(impl_item_span) = ty_to_impl_span(term_ty)
{
cause.span = impl_item_span;
}
// Form 2: A projection obligation for an associated item failed to be met.
// We overwrite the span from above to ensure that a bound like
// `Self::Assoc1: Trait<OtherAssoc = Self::Assoc2>` gets the same
// span for both obligations that it is lowered to.
if let Some(impl_item_span) = ty_to_impl_span(proj.self_ty()) {
cause.span = impl_item_span;
}
}
ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
// Form 3: A trait obligation for an associated item failed to be met.
debug!("extended_cause_with_original_assoc_item_obligation trait proj {:?}", pred);
if let Some(impl_item_span) = ty_to_impl_span(pred.self_ty()) {
cause.span = impl_item_span;
}
}
_ => {}
}
}
impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn cause(&self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
traits::ObligationCause::new(self.span, self.body_id, code)
}
fn normalize(self, infcx: &InferCtxt<'tcx>) -> Vec<traits::PredicateObligation<'tcx>> {
// Do not normalize `wf` obligations with the new solver.
//
// The current deep normalization routine with the new solver does not
// handle ambiguity and the new solver correctly deals with unnnormalized goals.
// If the user relies on normalized types, e.g. for `fn implied_outlives_bounds`,
// it is their responsibility to normalize while avoiding ambiguity.
if infcx.next_trait_solver() {
return self.out;
}
let cause = self.cause(ObligationCauseCode::WellFormed(None));
let param_env = self.param_env;
let mut obligations = Vec::with_capacity(self.out.len());
for mut obligation in self.out {
assert!(!obligation.has_escaping_bound_vars());
let mut selcx = traits::SelectionContext::new(infcx);
// Don't normalize the whole obligation, the param env is either
// already normalized, or we're currently normalizing the
// param_env. Either way we should only normalize the predicate.
let normalized_predicate = traits::normalize::normalize_with_depth_to(
&mut selcx,
param_env,
cause.clone(),
self.recursion_depth,
obligation.predicate,
&mut obligations,
);
obligation.predicate = normalized_predicate;
obligations.push(obligation);
}
obligations
}
/// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
fn compute_trait_pred(&mut self, trait_pred: ty::TraitPredicate<'tcx>, elaborate: Elaborate) {
let tcx = self.tcx();
let trait_ref = trait_pred.trait_ref;
// Negative trait predicates don't require supertraits to hold, just
// that their args are WF.
if trait_pred.polarity == ty::PredicatePolarity::Negative {
self.compute_negative_trait_pred(trait_ref);
return;
}
// if the trait predicate is not const, the wf obligations should not be const as well.
let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.args);
debug!("compute_trait_pred obligations {:?}", obligations);
let param_env = self.param_env;
let depth = self.recursion_depth;
let item = self.item;
let extend = |traits::PredicateObligation { predicate, mut cause, .. }| {
if let Some(parent_trait_pred) = predicate.as_trait_clause() {
cause = cause.derived_cause(
parent_trait_pred,
traits::ObligationCauseCode::WellFormedDerived,
);
}
extend_cause_with_original_assoc_item_obligation(tcx, item, &mut cause, predicate);
traits::Obligation::with_depth(tcx, cause, depth, param_env, predicate)
};
if let Elaborate::All = elaborate {
let implied_obligations = traits::util::elaborate(tcx, obligations);
let implied_obligations = implied_obligations.map(extend);
self.out.extend(implied_obligations);
} else {
self.out.extend(obligations);
}
self.out.extend(
trait_ref
.args
.iter()
.enumerate()
.filter(|(_, arg)| {
matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
})
.filter(|(_, arg)| !arg.has_escaping_bound_vars())
.map(|(i, arg)| {
let mut cause = traits::ObligationCause::misc(self.span, self.body_id);
// The first arg is the self ty - use the correct span for it.
if i == 0 {
if let Some(hir::ItemKind::Impl(hir::Impl { self_ty, .. })) =
item.map(|i| &i.kind)
{
cause.span = self_ty.span;
}
}
traits::Obligation::with_depth(
tcx,
cause,
depth,
param_env,
ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
arg,
))),
)
}),
);
}
// Compute the obligations that are required for `trait_ref` to be WF,
// given that it is a *negative* trait predicate.
fn compute_negative_trait_pred(&mut self, trait_ref: ty::TraitRef<'tcx>) {
for arg in trait_ref.args {
self.compute(arg);
}
}
/// Pushes the obligations required for an alias (except inherent) to be WF
/// into `self.out`.
fn compute_alias_term(&mut self, data: ty::AliasTerm<'tcx>) {
// A projection is well-formed if
//
// (a) its predicates hold (*)
// (b) its args are wf
//
// (*) The predicates of an associated type include the predicates of
// the trait that it's contained in. For example, given
//
// trait A<T>: Clone {
// type X where T: Copy;
// }
//
// The predicates of `<() as A<i32>>::X` are:
// [
// `(): Sized`
// `(): Clone`
// `(): A<i32>`
// `i32: Sized`
// `i32: Clone`
// `i32: Copy`
// ]
let obligations = self.nominal_obligations(data.def_id, data.args);
self.out.extend(obligations);
self.compute_projection_args(data.args);
}
/// Pushes the obligations required for an inherent alias to be WF
/// into `self.out`.
// FIXME(inherent_associated_types): Merge this function with `fn compute_alias`.
fn compute_inherent_projection(&mut self, data: ty::AliasTy<'tcx>) {
// An inherent projection is well-formed if
//
// (a) its predicates hold (*)
// (b) its args are wf
//
// (*) The predicates of an inherent associated type include the
// predicates of the impl that it's contained in.
if !data.self_ty().has_escaping_bound_vars() {
// FIXME(inherent_associated_types): Should this happen inside of a snapshot?
// FIXME(inherent_associated_types): This is incompatible with the new solver and lazy norm!
let args = traits::project::compute_inherent_assoc_ty_args(
&mut traits::SelectionContext::new(self.infcx),
self.param_env,
data,
self.cause(ObligationCauseCode::WellFormed(None)),
self.recursion_depth,
&mut self.out,
);
let obligations = self.nominal_obligations(data.def_id, args);
self.out.extend(obligations);
}
data.args.visit_with(self);
}
fn compute_projection_args(&mut self, args: GenericArgsRef<'tcx>) {
let tcx = self.tcx();
let cause = self.cause(ObligationCauseCode::WellFormed(None));
let param_env = self.param_env;
let depth = self.recursion_depth;
self.out.extend(
args.iter()
.filter(|arg| {
matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
})
.filter(|arg| !arg.has_escaping_bound_vars())
.map(|arg| {
traits::Obligation::with_depth(
tcx,
cause.clone(),
depth,
param_env,
ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
arg,
))),
)
}),
);
}
fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
if !subty.has_escaping_bound_vars() {
let cause = self.cause(cause);
let trait_ref = ty::TraitRef::new(
self.tcx(),
self.tcx().require_lang_item(LangItem::Sized, Some(cause.span)),
[subty],
);
self.out.push(traits::Obligation::with_depth(
self.tcx(),
cause,
self.recursion_depth,
self.param_env,
ty::Binder::dummy(trait_ref),
));
}
}
/// Pushes all the predicates needed to validate that `ty` is WF into `out`.
#[instrument(level = "debug", skip(self))]
fn compute(&mut self, arg: GenericArg<'tcx>) {
arg.visit_with(self);
debug!(?self.out);
}
#[instrument(level = "debug", skip(self))]
fn nominal_obligations(
&mut self,
def_id: DefId,
args: GenericArgsRef<'tcx>,
) -> Vec<traits::PredicateObligation<'tcx>> {
let predicates = self.tcx().predicates_of(def_id);
let mut origins = vec![def_id; predicates.predicates.len()];
let mut head = predicates;
while let Some(parent) = head.parent {
head = self.tcx().predicates_of(parent);
origins.extend(iter::repeat(parent).take(head.predicates.len()));
}
let predicates = predicates.instantiate(self.tcx(), args);
trace!("{:#?}", predicates);
debug_assert_eq!(predicates.predicates.len(), origins.len());
iter::zip(predicates, origins.into_iter().rev())
.map(|((pred, span), origin_def_id)| {
let code = ObligationCauseCode::WhereClause(origin_def_id, span);
let cause = self.cause(code);
traits::Obligation::with_depth(
self.tcx(),
cause,
self.recursion_depth,
self.param_env,
pred,
)
})
.filter(|pred| !pred.has_escaping_bound_vars())
.collect()
}
fn from_object_ty(
&mut self,
ty: Ty<'tcx>,
data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
region: ty::Region<'tcx>,
) {
// Imagine a type like this:
//
// trait Foo { }
// trait Bar<'c> : 'c { }
//
// &'b (Foo+'c+Bar<'d>)
// ^
//
// In this case, the following relationships must hold:
//
// 'b <= 'c
// 'd <= 'c
//
// The first conditions is due to the normal region pointer
// rules, which say that a reference cannot outlive its
// referent.
//
// The final condition may be a bit surprising. In particular,
// you may expect that it would have been `'c <= 'd`, since
// usually lifetimes of outer things are conservative
// approximations for inner things. However, it works somewhat
// differently with trait objects: here the idea is that if the
// user specifies a region bound (`'c`, in this case) it is the
// "master bound" that *implies* that bounds from other traits are
// all met. (Remember that *all bounds* in a type like
// `Foo+Bar+Zed` must be met, not just one, hence if we write
// `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
// 'y.)
//
// Note: in fact we only permit builtin traits, not `Bar<'d>`, I
// am looking forward to the future here.
if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
let implicit_bounds = object_region_bounds(self.tcx(), data);
let explicit_bound = region;
self.out.reserve(implicit_bounds.len());
for implicit_bound in implicit_bounds {
let cause = self.cause(ObligationCauseCode::ObjectTypeBound(ty, explicit_bound));
let outlives =
ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
self.out.push(traits::Obligation::with_depth(
self.tcx(),
cause,
self.recursion_depth,
self.param_env,
outlives,
));
}
}
}
}
impl<'a, 'tcx> TypeVisitor<TyCtxt<'tcx>> for WfPredicates<'a, 'tcx> {
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
debug!("wf bounds for t={:?} t.kind={:#?}", t, t.kind());
let tcx = self.tcx();
match *t.kind() {
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::Error(_)
| ty::Str
| ty::CoroutineWitness(..)
| ty::Never
| ty::Param(_)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Foreign(..) => {
// WfScalar, WfParameter, etc
}
// Can only infer to `ty::Int(_) | ty::Uint(_)`.
ty::Infer(ty::IntVar(_)) => {}
// Can only infer to `ty::Float(_)`.
ty::Infer(ty::FloatVar(_)) => {}
ty::Slice(subty) => {
self.require_sized(subty, ObligationCauseCode::SliceOrArrayElem);
}
ty::Array(subty, len) => {
self.require_sized(subty, ObligationCauseCode::SliceOrArrayElem);
// Note that the len being WF is implicitly checked while visiting.
// Here we just check that it's of type usize.
let cause = self.cause(ObligationCauseCode::Misc);
self.out.push(traits::Obligation::with_depth(
tcx,
cause,
self.recursion_depth,
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(
len,
tcx.types.usize,
))),
));
}
ty::Pat(subty, _) => {
self.require_sized(subty, ObligationCauseCode::Misc);
}
ty::Tuple(tys) => {
if let Some((_last, rest)) = tys.split_last() {
for &elem in rest {
self.require_sized(elem, ObligationCauseCode::TupleElem);
}
}
}
ty::RawPtr(_, _) => {
// Simple cases that are WF if their type args are WF.
}
ty::Alias(ty::Projection | ty::Opaque | ty::Weak, data) => {
let obligations = self.nominal_obligations(data.def_id, data.args);
self.out.extend(obligations);
}
ty::Alias(ty::Inherent, data) => {
self.compute_inherent_projection(data);
return; // Subtree handled by compute_inherent_projection.
}
ty::Adt(def, args) => {
// WfNominalType
let obligations = self.nominal_obligations(def.did(), args);
self.out.extend(obligations);
}
ty::FnDef(did, args) => {
// HACK: Check the return type of function definitions for
// well-formedness to mostly fix #84533. This is still not
// perfect and there may be ways to abuse the fact that we
// ignore requirements with escaping bound vars. That's a
// more general issue however.
let fn_sig = tcx.fn_sig(did).instantiate(tcx, args);
fn_sig.output().skip_binder().visit_with(self);
let obligations = self.nominal_obligations(did, args);
self.out.extend(obligations);
}
ty::Ref(r, rty, _) => {
// WfReference
if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
let cause = self.cause(ObligationCauseCode::ReferenceOutlivesReferent(t));
self.out.push(traits::Obligation::with_depth(
tcx,
cause,
self.recursion_depth,
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
ty::OutlivesPredicate(rty, r),
))),
));
}
}
ty::Coroutine(did, args, ..) => {
// Walk ALL the types in the coroutine: this will
// include the upvar types as well as the yield
// type. Note that this is mildly distinct from
// the closure case, where we have to be careful
// about the signature of the closure. We don't
// have the problem of implied bounds here since
// coroutines don't take arguments.
let obligations = self.nominal_obligations(did, args);
self.out.extend(obligations);
}
ty::Closure(did, args) => {
// Note that we cannot skip the generic types
// types. Normally, within the fn
// body where they are created, the generics will
// always be WF, and outside of that fn body we
// are not directly inspecting closure types
// anyway, except via auto trait matching (which
// only inspects the upvar types).
// But when a closure is part of a type-alias-impl-trait
// then the function that created the defining site may
// have had more bounds available than the type alias
// specifies. This may cause us to have a closure in the
// hidden type that is not actually well formed and
// can cause compiler crashes when the user abuses unsafe
// code to procure such a closure.
// See tests/ui/type-alias-impl-trait/wf_check_closures.rs
let obligations = self.nominal_obligations(did, args);
self.out.extend(obligations);
// Only check the upvar types for WF, not the rest
// of the types within. This is needed because we
// capture the signature and it may not be WF
// without the implied bounds. Consider a closure
// like `|x: &'a T|` -- it may be that `T: 'a` is
// not known to hold in the creator's context (and
// indeed the closure may not be invoked by its
// creator, but rather turned to someone who *can*
// verify that).
//
// The special treatment of closures here really
// ought not to be necessary either; the problem
// is related to #25860 -- there is no way for us
// to express a fn type complete with the implied
// bounds that it is assuming. I think in reality
// the WF rules around fn are a bit messed up, and
// that is the rot problem: `fn(&'a T)` should
// probably always be WF, because it should be
// shorthand for something like `where(T: 'a) {
// fn(&'a T) }`, as discussed in #25860.
let upvars = args.as_closure().tupled_upvars_ty();
return upvars.visit_with(self);
}
ty::CoroutineClosure(did, args) => {
// See the above comments. The same apply to coroutine-closures.
let obligations = self.nominal_obligations(did, args);
self.out.extend(obligations);
let upvars = args.as_coroutine_closure().tupled_upvars_ty();
return upvars.visit_with(self);
}
ty::FnPtr(..) => {
// Let the visitor iterate into the argument/return
// types appearing in the fn signature.
}
ty::Dynamic(data, r, _) => {
// WfObject
//
// Here, we defer WF checking due to higher-ranked
// regions. This is perhaps not ideal.
self.from_object_ty(t, data, r);
// FIXME(#27579) RFC also considers adding trait
// obligations that don't refer to Self and
// checking those
let defer_to_coercion = tcx.features().object_safe_for_dispatch;
if !defer_to_coercion {
if let Some(principal) = data.principal_def_id() {
self.out.push(traits::Obligation::with_depth(
tcx,
self.cause(ObligationCauseCode::WellFormed(None)),
self.recursion_depth,
self.param_env,
ty::Binder::dummy(ty::PredicateKind::ObjectSafe(principal)),
));
}
}
}
// Inference variables are the complicated case, since we don't
// know what type they are. We do two things:
//
// 1. Check if they have been resolved, and if so proceed with
// THAT type.
// 2. If not, we've at least simplified things (e.g., we went
// from `Vec<$0>: WF` to `$0: WF`), so we can
// register a pending obligation and keep
// moving. (Goal is that an "inductive hypothesis"
// is satisfied to ensure termination.)
// See also the comment on `fn obligations`, describing "livelock"
// prevention, which happens before this can be reached.
ty::Infer(_) => {
let cause = self.cause(ObligationCauseCode::WellFormed(None));
self.out.push(traits::Obligation::with_depth(
tcx,
cause,
self.recursion_depth,
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
t.into(),
))),
));
}
}
t.super_visit_with(self)
}
fn visit_const(&mut self, c: ty::Const<'tcx>) -> Self::Result {
let tcx = self.tcx();
match c.kind() {
ty::ConstKind::Unevaluated(uv) => {
if !c.has_escaping_bound_vars() {
let obligations = self.nominal_obligations(uv.def, uv.args);
self.out.extend(obligations);
let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(
ty::ClauseKind::ConstEvaluatable(c),
));
let cause = self.cause(ObligationCauseCode::WellFormed(None));
self.out.push(traits::Obligation::with_depth(
tcx,
cause,
self.recursion_depth,
self.param_env,
predicate,
));
}
}
ty::ConstKind::Infer(_) => {
let cause = self.cause(ObligationCauseCode::WellFormed(None));
self.out.push(traits::Obligation::with_depth(
tcx,
cause,
self.recursion_depth,
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
c.into(),
))),
));
}
ty::ConstKind::Expr(_) => {
// FIXME(generic_const_exprs): this doesn't verify that given `Expr(N + 1)` the
// trait bound `typeof(N): Add<typeof(1)>` holds. This is currently unnecessary
// as `ConstKind::Expr` is only produced via normalization of `ConstKind::Unevaluated`
// which means that the `DefId` would have been typeck'd elsewhere. However in
// the future we may allow directly lowering to `ConstKind::Expr` in which case
// we would not be proving bounds we should.
let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(
ty::ClauseKind::ConstEvaluatable(c),
));
let cause = self.cause(ObligationCauseCode::WellFormed(None));
self.out.push(traits::Obligation::with_depth(
tcx,
cause,
self.recursion_depth,
self.param_env,
predicate,
));
}
ty::ConstKind::Error(_)
| ty::ConstKind::Param(_)
| ty::ConstKind::Bound(..)
| ty::ConstKind::Placeholder(..) => {
// These variants are trivially WF, so nothing to do here.
}
ty::ConstKind::Value(..) => {
// FIXME: Enforce that values are structurally-matchable.
}
}
c.super_visit_with(self)
}
fn visit_predicate(&mut self, _p: ty::Predicate<'tcx>) -> Self::Result {
bug!("predicate should not be checked for well-formedness");
}
}
/// Given an object type like `SomeTrait + Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `infer::required_region_bounds`, see that for more information.
pub fn object_region_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
existential_predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
) -> Vec<ty::Region<'tcx>> {
let predicates = existential_predicates.iter().filter_map(|predicate| {
if let ty::ExistentialPredicate::Projection(_) = predicate.skip_binder() {
None
} else {
Some(predicate.with_self_ty(tcx, tcx.types.trait_object_dummy_self))
}
});
required_region_bounds(tcx, tcx.types.trait_object_dummy_self, predicates)
}
/// Given a set of predicates that apply to an object type, returns
/// the region bounds that the (erased) `Self` type must
/// outlive. Precisely *because* the `Self` type is erased, the
/// parameter `erased_self_ty` must be supplied to indicate what type
/// has been used to represent `Self` in the predicates
/// themselves. This should really be a unique type; `FreshTy(0)` is a
/// popular choice.
///
/// N.B., in some cases, particularly around higher-ranked bounds,
/// this function returns a kind of conservative approximation.
/// That is, all regions returned by this function are definitely
/// required, but there may be other region bounds that are not
/// returned, as well as requirements like `for<'a> T: 'a`.
///
/// Requires that trait definitions have been processed so that we can
/// elaborate predicates and walk supertraits.
#[instrument(skip(tcx, predicates), level = "debug", ret)]
pub(crate) fn required_region_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
erased_self_ty: Ty<'tcx>,
predicates: impl Iterator<Item = ty::Clause<'tcx>>,
) -> Vec<ty::Region<'tcx>> {
assert!(!erased_self_ty.has_escaping_bound_vars());
traits::elaborate(tcx, predicates)
.filter_map(|pred| {
debug!(?pred);
match pred.kind().skip_binder() {
ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ref t, ref r)) => {
// Search for a bound of the form `erased_self_ty
// : 'a`, but be wary of something like `for<'a>
// erased_self_ty : 'a` (we interpret a
// higher-ranked bound like that as 'static,
// though at present the code in `fulfill.rs`
// considers such bounds to be unsatisfiable, so
// it's kind of a moot point since you could never
// construct such an object, but this seems
// correct even if that code changes).
if t == &erased_self_ty && !r.has_escaping_bound_vars() {
Some(*r)
} else {
None
}
}
ty::ClauseKind::Trait(_)
| ty::ClauseKind::RegionOutlives(_)
| ty::ClauseKind::Projection(_)
| ty::ClauseKind::ConstArgHasType(_, _)
| ty::ClauseKind::WellFormed(_)
| ty::ClauseKind::ConstEvaluatable(_) => None,
}
})
.collect()
}