1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
//! Type context book-keeping.

#![allow(rustc::usage_of_ty_tykind)]

pub mod tls;

use crate::arena::Arena;
use crate::dep_graph::{DepGraph, DepKindStruct};
use crate::infer::canonical::{CanonicalParamEnvCache, CanonicalVarInfo, CanonicalVarInfos};
use crate::lint::lint_level;
use crate::metadata::ModChild;
use crate::middle::codegen_fn_attrs::CodegenFnAttrs;
use crate::middle::resolve_bound_vars;
use crate::middle::stability;
use crate::mir::interpret::{self, Allocation, ConstAllocation};
use crate::mir::{Body, Local, Place, PlaceElem, ProjectionKind, Promoted};
use crate::query::plumbing::QuerySystem;
use crate::query::LocalCrate;
use crate::query::Providers;
use crate::query::{IntoQueryParam, TyCtxtAt};
use crate::thir::Thir;
use crate::traits;
use crate::traits::solve;
use crate::traits::solve::{
    ExternalConstraints, ExternalConstraintsData, PredefinedOpaques, PredefinedOpaquesData,
};
use crate::ty::{
    self, AdtDef, AdtDefData, AdtKind, Binder, Clause, Const, ConstData, GenericParamDefKind,
    ImplPolarity, List, ParamConst, ParamTy, PolyExistentialPredicate, PolyFnSig, Predicate,
    PredicateKind, Region, RegionKind, ReprOptions, TraitObjectVisitor, Ty, TyKind, TyVid,
    Visibility,
};
use crate::ty::{GenericArg, GenericArgs, GenericArgsRef};
use rustc_ast::{self as ast, attr};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::intern::Interned;
use rustc_data_structures::profiling::SelfProfilerRef;
use rustc_data_structures::sharded::{IntoPointer, ShardedHashMap};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::steal::Steal;
use rustc_data_structures::sync::{self, FreezeReadGuard, Lock, WorkerLocal};
#[cfg(parallel_compiler)]
use rustc_data_structures::sync::{DynSend, DynSync};
use rustc_data_structures::unord::UnordSet;
use rustc_errors::{
    DecorateLint, DiagCtxt, DiagnosticBuilder, DiagnosticMessage, ErrorGuaranteed, MultiSpan,
};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LOCAL_CRATE};
use rustc_hir::definitions::Definitions;
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{HirId, Node, TraitCandidate};
use rustc_index::IndexVec;
use rustc_macros::HashStable;
use rustc_query_system::dep_graph::DepNodeIndex;
use rustc_query_system::ich::StableHashingContext;
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder};
use rustc_session::config::CrateType;
use rustc_session::cstore::{CrateStoreDyn, Untracked};
use rustc_session::lint::Lint;
use rustc_session::{Limit, MetadataKind, Session};
use rustc_span::def_id::{DefPathHash, StableCrateId};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{FieldIdx, Layout, LayoutS, TargetDataLayout, VariantIdx};
use rustc_target::spec::abi;
use rustc_type_ir::TyKind::*;
use rustc_type_ir::WithCachedTypeInfo;
use rustc_type_ir::{CollectAndApply, Interner, TypeFlags};

use std::borrow::Borrow;
use std::cmp::Ordering;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::iter;
use std::mem;
use std::ops::{Bound, Deref};

#[allow(rustc::usage_of_ty_tykind)]
impl<'tcx> Interner for TyCtxt<'tcx> {
    type DefId = DefId;
    type AdtDef = ty::AdtDef<'tcx>;
    type GenericArgs = ty::GenericArgsRef<'tcx>;
    type GenericArg = ty::GenericArg<'tcx>;
    type Term = ty::Term<'tcx>;

    type Binder<T> = Binder<'tcx, T>;
    type CanonicalVars = CanonicalVarInfos<'tcx>;

    type Ty = Ty<'tcx>;
    type Tys = &'tcx List<Ty<'tcx>>;
    type AliasTy = ty::AliasTy<'tcx>;
    type ParamTy = ParamTy;
    type BoundTy = ty::BoundTy;
    type PlaceholderTy = ty::PlaceholderType;

    type ErrorGuaranteed = ErrorGuaranteed;
    type BoundExistentialPredicates = &'tcx List<PolyExistentialPredicate<'tcx>>;
    type PolyFnSig = PolyFnSig<'tcx>;
    type AllocId = crate::mir::interpret::AllocId;

    type Const = ty::Const<'tcx>;
    type AliasConst = ty::UnevaluatedConst<'tcx>;
    type PlaceholderConst = ty::PlaceholderConst;
    type ParamConst = ty::ParamConst;
    type BoundConst = ty::BoundVar;
    type ValueConst = ty::ValTree<'tcx>;
    type ExprConst = ty::Expr<'tcx>;

    type Region = Region<'tcx>;
    type EarlyParamRegion = ty::EarlyParamRegion;
    type BoundRegion = ty::BoundRegion;
    type LateParamRegion = ty::LateParamRegion;
    type InferRegion = ty::RegionVid;
    type PlaceholderRegion = ty::PlaceholderRegion;

    type Predicate = Predicate<'tcx>;
    type TraitPredicate = ty::TraitPredicate<'tcx>;
    type RegionOutlivesPredicate = ty::RegionOutlivesPredicate<'tcx>;
    type TypeOutlivesPredicate = ty::TypeOutlivesPredicate<'tcx>;
    type ProjectionPredicate = ty::ProjectionPredicate<'tcx>;
    type NormalizesTo = ty::NormalizesTo<'tcx>;
    type SubtypePredicate = ty::SubtypePredicate<'tcx>;
    type CoercePredicate = ty::CoercePredicate<'tcx>;
    type ClosureKind = ty::ClosureKind;

    fn mk_canonical_var_infos(self, infos: &[ty::CanonicalVarInfo<Self>]) -> Self::CanonicalVars {
        self.mk_canonical_var_infos(infos)
    }

    fn mk_bound_ty(self, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self::Ty {
        Ty::new_bound(self, debruijn, ty::BoundTy { var, kind: ty::BoundTyKind::Anon })
    }

    fn mk_bound_region(self, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self::Region {
        Region::new_bound(
            self,
            debruijn,
            ty::BoundRegion { var, kind: ty::BoundRegionKind::BrAnon },
        )
    }

    fn mk_bound_const(
        self,
        debruijn: ty::DebruijnIndex,
        var: ty::BoundVar,
        ty: Self::Ty,
    ) -> Self::Const {
        Const::new_bound(self, debruijn, var, ty)
    }
}

type InternedSet<'tcx, T> = ShardedHashMap<InternedInSet<'tcx, T>, ()>;

pub struct CtxtInterners<'tcx> {
    /// The arena that types, regions, etc. are allocated from.
    arena: &'tcx WorkerLocal<Arena<'tcx>>,

    // Specifically use a speedy hash algorithm for these hash sets, since
    // they're accessed quite often.
    type_: InternedSet<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>,
    const_lists: InternedSet<'tcx, List<ty::Const<'tcx>>>,
    args: InternedSet<'tcx, GenericArgs<'tcx>>,
    type_lists: InternedSet<'tcx, List<Ty<'tcx>>>,
    canonical_var_infos: InternedSet<'tcx, List<CanonicalVarInfo<'tcx>>>,
    region: InternedSet<'tcx, RegionKind<'tcx>>,
    poly_existential_predicates: InternedSet<'tcx, List<PolyExistentialPredicate<'tcx>>>,
    predicate: InternedSet<'tcx, WithCachedTypeInfo<ty::Binder<'tcx, PredicateKind<'tcx>>>>,
    clauses: InternedSet<'tcx, List<Clause<'tcx>>>,
    projs: InternedSet<'tcx, List<ProjectionKind>>,
    place_elems: InternedSet<'tcx, List<PlaceElem<'tcx>>>,
    const_: InternedSet<'tcx, WithCachedTypeInfo<ConstData<'tcx>>>,
    const_allocation: InternedSet<'tcx, Allocation>,
    bound_variable_kinds: InternedSet<'tcx, List<ty::BoundVariableKind>>,
    layout: InternedSet<'tcx, LayoutS<FieldIdx, VariantIdx>>,
    adt_def: InternedSet<'tcx, AdtDefData>,
    external_constraints: InternedSet<'tcx, ExternalConstraintsData<'tcx>>,
    predefined_opaques_in_body: InternedSet<'tcx, PredefinedOpaquesData<'tcx>>,
    fields: InternedSet<'tcx, List<FieldIdx>>,
    local_def_ids: InternedSet<'tcx, List<LocalDefId>>,
    offset_of: InternedSet<'tcx, List<(VariantIdx, FieldIdx)>>,
}

impl<'tcx> CtxtInterners<'tcx> {
    fn new(arena: &'tcx WorkerLocal<Arena<'tcx>>) -> CtxtInterners<'tcx> {
        CtxtInterners {
            arena,
            type_: Default::default(),
            const_lists: Default::default(),
            args: Default::default(),
            type_lists: Default::default(),
            region: Default::default(),
            poly_existential_predicates: Default::default(),
            canonical_var_infos: Default::default(),
            predicate: Default::default(),
            clauses: Default::default(),
            projs: Default::default(),
            place_elems: Default::default(),
            const_: Default::default(),
            const_allocation: Default::default(),
            bound_variable_kinds: Default::default(),
            layout: Default::default(),
            adt_def: Default::default(),
            external_constraints: Default::default(),
            predefined_opaques_in_body: Default::default(),
            fields: Default::default(),
            local_def_ids: Default::default(),
            offset_of: Default::default(),
        }
    }

    /// Interns a type. (Use `mk_*` functions instead, where possible.)
    #[allow(rustc::usage_of_ty_tykind)]
    #[inline(never)]
    fn intern_ty(&self, kind: TyKind<'tcx>, sess: &Session, untracked: &Untracked) -> Ty<'tcx> {
        Ty(Interned::new_unchecked(
            self.type_
                .intern(kind, |kind| {
                    let flags = super::flags::FlagComputation::for_kind(&kind);
                    let stable_hash = self.stable_hash(&flags, sess, untracked, &kind);

                    InternedInSet(self.arena.alloc(WithCachedTypeInfo {
                        internee: kind,
                        stable_hash,
                        flags: flags.flags,
                        outer_exclusive_binder: flags.outer_exclusive_binder,
                    }))
                })
                .0,
        ))
    }

    /// Interns a const. (Use `mk_*` functions instead, where possible.)
    #[allow(rustc::usage_of_ty_tykind)]
    #[inline(never)]
    fn intern_const(
        &self,
        data: ty::ConstData<'tcx>,
        sess: &Session,
        untracked: &Untracked,
    ) -> Const<'tcx> {
        Const(Interned::new_unchecked(
            self.const_
                .intern(data, |data: ConstData<'_>| {
                    let flags = super::flags::FlagComputation::for_const(&data.kind, data.ty);
                    let stable_hash = self.stable_hash(&flags, sess, untracked, &data);

                    InternedInSet(self.arena.alloc(WithCachedTypeInfo {
                        internee: data,
                        stable_hash,
                        flags: flags.flags,
                        outer_exclusive_binder: flags.outer_exclusive_binder,
                    }))
                })
                .0,
        ))
    }

    fn stable_hash<'a, T: HashStable<StableHashingContext<'a>>>(
        &self,
        flags: &ty::flags::FlagComputation,
        sess: &'a Session,
        untracked: &'a Untracked,
        val: &T,
    ) -> Fingerprint {
        // It's impossible to hash inference variables (and will ICE), so we don't need to try to cache them.
        // Without incremental, we rarely stable-hash types, so let's not do it proactively.
        if flags.flags.intersects(TypeFlags::HAS_INFER) || sess.opts.incremental.is_none() {
            Fingerprint::ZERO
        } else {
            let mut hasher = StableHasher::new();
            let mut hcx = StableHashingContext::new(sess, untracked);
            val.hash_stable(&mut hcx, &mut hasher);
            hasher.finish()
        }
    }

    /// Interns a predicate. (Use `mk_predicate` instead, where possible.)
    #[inline(never)]
    fn intern_predicate(
        &self,
        kind: Binder<'tcx, PredicateKind<'tcx>>,
        sess: &Session,
        untracked: &Untracked,
    ) -> Predicate<'tcx> {
        Predicate(Interned::new_unchecked(
            self.predicate
                .intern(kind, |kind| {
                    let flags = super::flags::FlagComputation::for_predicate(kind);

                    let stable_hash = self.stable_hash(&flags, sess, untracked, &kind);

                    InternedInSet(self.arena.alloc(WithCachedTypeInfo {
                        internee: kind,
                        stable_hash,
                        flags: flags.flags,
                        outer_exclusive_binder: flags.outer_exclusive_binder,
                    }))
                })
                .0,
        ))
    }
}

// For these preinterned values, an alternative would be to have
// variable-length vectors that grow as needed. But that turned out to be
// slightly more complex and no faster.

const NUM_PREINTERNED_TY_VARS: u32 = 100;
const NUM_PREINTERNED_FRESH_TYS: u32 = 20;
const NUM_PREINTERNED_FRESH_INT_TYS: u32 = 3;
const NUM_PREINTERNED_FRESH_FLOAT_TYS: u32 = 3;

// This number may seem high, but it is reached in all but the smallest crates.
const NUM_PREINTERNED_RE_VARS: u32 = 500;
const NUM_PREINTERNED_RE_LATE_BOUNDS_I: u32 = 2;
const NUM_PREINTERNED_RE_LATE_BOUNDS_V: u32 = 20;

pub struct CommonTypes<'tcx> {
    pub unit: Ty<'tcx>,
    pub bool: Ty<'tcx>,
    pub char: Ty<'tcx>,
    pub isize: Ty<'tcx>,
    pub i8: Ty<'tcx>,
    pub i16: Ty<'tcx>,
    pub i32: Ty<'tcx>,
    pub i64: Ty<'tcx>,
    pub i128: Ty<'tcx>,
    pub usize: Ty<'tcx>,
    pub u8: Ty<'tcx>,
    pub u16: Ty<'tcx>,
    pub u32: Ty<'tcx>,
    pub u64: Ty<'tcx>,
    pub u128: Ty<'tcx>,
    pub f32: Ty<'tcx>,
    pub f64: Ty<'tcx>,
    pub str_: Ty<'tcx>,
    pub never: Ty<'tcx>,
    pub self_param: Ty<'tcx>,

    /// Dummy type used for the `Self` of a `TraitRef` created for converting
    /// a trait object, and which gets removed in `ExistentialTraitRef`.
    /// This type must not appear anywhere in other converted types.
    /// `Infer(ty::FreshTy(0))` does the job.
    pub trait_object_dummy_self: Ty<'tcx>,

    /// Pre-interned `Infer(ty::TyVar(n))` for small values of `n`.
    pub ty_vars: Vec<Ty<'tcx>>,

    /// Pre-interned `Infer(ty::FreshTy(n))` for small values of `n`.
    pub fresh_tys: Vec<Ty<'tcx>>,

    /// Pre-interned `Infer(ty::FreshIntTy(n))` for small values of `n`.
    pub fresh_int_tys: Vec<Ty<'tcx>>,

    /// Pre-interned `Infer(ty::FreshFloatTy(n))` for small values of `n`.
    pub fresh_float_tys: Vec<Ty<'tcx>>,
}

pub struct CommonLifetimes<'tcx> {
    /// `ReStatic`
    pub re_static: Region<'tcx>,

    /// Erased region, used outside of type inference.
    pub re_erased: Region<'tcx>,

    /// Pre-interned `ReVar(ty::RegionVar(n))` for small values of `n`.
    pub re_vars: Vec<Region<'tcx>>,

    /// Pre-interned values of the form:
    /// `ReBound(DebruijnIndex(i), BoundRegion { var: v, kind: BrAnon })`
    /// for small values of `i` and `v`.
    pub re_late_bounds: Vec<Vec<Region<'tcx>>>,
}

pub struct CommonConsts<'tcx> {
    pub unit: Const<'tcx>,
    pub true_: Const<'tcx>,
    pub false_: Const<'tcx>,
}

impl<'tcx> CommonTypes<'tcx> {
    fn new(
        interners: &CtxtInterners<'tcx>,
        sess: &Session,
        untracked: &Untracked,
    ) -> CommonTypes<'tcx> {
        let mk = |ty| interners.intern_ty(ty, sess, untracked);

        let ty_vars =
            (0..NUM_PREINTERNED_TY_VARS).map(|n| mk(Infer(ty::TyVar(TyVid::from(n))))).collect();
        let fresh_tys: Vec<_> =
            (0..NUM_PREINTERNED_FRESH_TYS).map(|n| mk(Infer(ty::FreshTy(n)))).collect();
        let fresh_int_tys: Vec<_> =
            (0..NUM_PREINTERNED_FRESH_INT_TYS).map(|n| mk(Infer(ty::FreshIntTy(n)))).collect();
        let fresh_float_tys: Vec<_> =
            (0..NUM_PREINTERNED_FRESH_FLOAT_TYS).map(|n| mk(Infer(ty::FreshFloatTy(n)))).collect();

        CommonTypes {
            unit: mk(Tuple(List::empty())),
            bool: mk(Bool),
            char: mk(Char),
            never: mk(Never),
            isize: mk(Int(ty::IntTy::Isize)),
            i8: mk(Int(ty::IntTy::I8)),
            i16: mk(Int(ty::IntTy::I16)),
            i32: mk(Int(ty::IntTy::I32)),
            i64: mk(Int(ty::IntTy::I64)),
            i128: mk(Int(ty::IntTy::I128)),
            usize: mk(Uint(ty::UintTy::Usize)),
            u8: mk(Uint(ty::UintTy::U8)),
            u16: mk(Uint(ty::UintTy::U16)),
            u32: mk(Uint(ty::UintTy::U32)),
            u64: mk(Uint(ty::UintTy::U64)),
            u128: mk(Uint(ty::UintTy::U128)),
            f32: mk(Float(ty::FloatTy::F32)),
            f64: mk(Float(ty::FloatTy::F64)),
            str_: mk(Str),
            self_param: mk(ty::Param(ty::ParamTy { index: 0, name: kw::SelfUpper })),

            trait_object_dummy_self: fresh_tys[0],

            ty_vars,
            fresh_tys,
            fresh_int_tys,
            fresh_float_tys,
        }
    }
}

impl<'tcx> CommonLifetimes<'tcx> {
    fn new(interners: &CtxtInterners<'tcx>) -> CommonLifetimes<'tcx> {
        let mk = |r| {
            Region(Interned::new_unchecked(
                interners.region.intern(r, |r| InternedInSet(interners.arena.alloc(r))).0,
            ))
        };

        let re_vars =
            (0..NUM_PREINTERNED_RE_VARS).map(|n| mk(ty::ReVar(ty::RegionVid::from(n)))).collect();

        let re_late_bounds = (0..NUM_PREINTERNED_RE_LATE_BOUNDS_I)
            .map(|i| {
                (0..NUM_PREINTERNED_RE_LATE_BOUNDS_V)
                    .map(|v| {
                        mk(ty::ReBound(
                            ty::DebruijnIndex::from(i),
                            ty::BoundRegion { var: ty::BoundVar::from(v), kind: ty::BrAnon },
                        ))
                    })
                    .collect()
            })
            .collect();

        CommonLifetimes {
            re_static: mk(ty::ReStatic),
            re_erased: mk(ty::ReErased),
            re_vars,
            re_late_bounds,
        }
    }
}

impl<'tcx> CommonConsts<'tcx> {
    fn new(
        interners: &CtxtInterners<'tcx>,
        types: &CommonTypes<'tcx>,
        sess: &Session,
        untracked: &Untracked,
    ) -> CommonConsts<'tcx> {
        let mk_const = |c| {
            interners.intern_const(
                c, sess, // This is only used to create a stable hashing context.
                untracked,
            )
        };

        CommonConsts {
            unit: mk_const(ty::ConstData {
                kind: ty::ConstKind::Value(ty::ValTree::zst()),
                ty: types.unit,
            }),
            true_: mk_const(ty::ConstData {
                kind: ty::ConstKind::Value(ty::ValTree::Leaf(ty::ScalarInt::TRUE)),
                ty: types.bool,
            }),
            false_: mk_const(ty::ConstData {
                kind: ty::ConstKind::Value(ty::ValTree::Leaf(ty::ScalarInt::FALSE)),
                ty: types.bool,
            }),
        }
    }
}

/// This struct contains information regarding a free parameter region,
/// either a `ReEarlyParam` or `ReLateParam`.
#[derive(Debug)]
pub struct FreeRegionInfo {
    /// `LocalDefId` of the free region.
    pub def_id: LocalDefId,
    /// the bound region corresponding to free region.
    pub bound_region: ty::BoundRegionKind,
    /// checks if bound region is in Impl Item
    pub is_impl_item: bool,
}

/// This struct should only be created by `create_def`.
#[derive(Copy, Clone)]
pub struct TyCtxtFeed<'tcx, KEY: Copy> {
    pub tcx: TyCtxt<'tcx>,
    // Do not allow direct access, as downstream code must not mutate this field.
    key: KEY,
}

impl<'tcx> TyCtxt<'tcx> {
    pub fn feed_unit_query(self) -> TyCtxtFeed<'tcx, ()> {
        TyCtxtFeed { tcx: self, key: () }
    }
    pub fn feed_local_crate(self) -> TyCtxtFeed<'tcx, CrateNum> {
        TyCtxtFeed { tcx: self, key: LOCAL_CRATE }
    }
    pub fn feed_local_def_id(self, key: LocalDefId) -> TyCtxtFeed<'tcx, LocalDefId> {
        TyCtxtFeed { tcx: self, key }
    }

    /// In order to break cycles involving `AnonConst`, we need to set the expected type by side
    /// effect. However, we do not want this as a general capability, so this interface restricts
    /// to the only allowed case.
    pub fn feed_anon_const_type(self, key: LocalDefId, value: ty::EarlyBinder<Ty<'tcx>>) {
        debug_assert_eq!(self.def_kind(key), DefKind::AnonConst);
        TyCtxtFeed { tcx: self, key }.type_of(value)
    }
}

impl<'tcx, KEY: Copy> TyCtxtFeed<'tcx, KEY> {
    #[inline(always)]
    pub fn key(&self) -> KEY {
        self.key
    }
}

impl<'tcx> TyCtxtFeed<'tcx, LocalDefId> {
    #[inline(always)]
    pub fn def_id(&self) -> LocalDefId {
        self.key
    }
}

/// The central data structure of the compiler. It stores references
/// to the various **arenas** and also houses the results of the
/// various **compiler queries** that have been performed. See the
/// [rustc dev guide] for more details.
///
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/ty.html
///
/// An implementation detail: `TyCtxt` is a wrapper type for [GlobalCtxt],
/// which is the struct that actually holds all the data. `TyCtxt` derefs to
/// `GlobalCtxt`, and in practice `TyCtxt` is passed around everywhere, and all
/// operations are done via `TyCtxt`. A `TyCtxt` is obtained for a `GlobalCtxt`
/// by calling `enter` with a closure `f`. That function creates both the
/// `TyCtxt`, and an `ImplicitCtxt` around it that is put into TLS. Within `f`:
/// - The `ImplicitCtxt` is available implicitly via TLS.
/// - The `TyCtxt` is available explicitly via the `tcx` parameter, and also
///   implicitly within the `ImplicitCtxt`. Explicit access is preferred when
///   possible.
#[derive(Copy, Clone)]
#[rustc_diagnostic_item = "TyCtxt"]
#[rustc_pass_by_value]
pub struct TyCtxt<'tcx> {
    gcx: &'tcx GlobalCtxt<'tcx>,
}

// Explicitly implement `DynSync` and `DynSend` for `TyCtxt` to short circuit trait resolution.
#[cfg(parallel_compiler)]
unsafe impl DynSend for TyCtxt<'_> {}
#[cfg(parallel_compiler)]
unsafe impl DynSync for TyCtxt<'_> {}
fn _assert_tcx_fields() {
    sync::assert_dyn_sync::<&'_ GlobalCtxt<'_>>();
    sync::assert_dyn_send::<&'_ GlobalCtxt<'_>>();
}

impl<'tcx> Deref for TyCtxt<'tcx> {
    type Target = &'tcx GlobalCtxt<'tcx>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.gcx
    }
}

/// See [TyCtxt] for details about this type.
pub struct GlobalCtxt<'tcx> {
    pub arena: &'tcx WorkerLocal<Arena<'tcx>>,
    pub hir_arena: &'tcx WorkerLocal<hir::Arena<'tcx>>,

    interners: CtxtInterners<'tcx>,

    pub sess: &'tcx Session,
    crate_types: Vec<CrateType>,
    /// The `stable_crate_id` is constructed out of the crate name and all the
    /// `-C metadata` arguments passed to the compiler. Its value forms a unique
    /// global identifier for the crate. It is used to allow multiple crates
    /// with the same name to coexist. See the
    /// `rustc_symbol_mangling` crate for more information.
    stable_crate_id: StableCrateId,

    pub dep_graph: DepGraph,

    pub prof: SelfProfilerRef,

    /// Common types, pre-interned for your convenience.
    pub types: CommonTypes<'tcx>,

    /// Common lifetimes, pre-interned for your convenience.
    pub lifetimes: CommonLifetimes<'tcx>,

    /// Common consts, pre-interned for your convenience.
    pub consts: CommonConsts<'tcx>,

    /// Hooks to be able to register functions in other crates that can then still
    /// be called from rustc_middle.
    pub(crate) hooks: crate::hooks::Providers,

    untracked: Untracked,

    pub query_system: QuerySystem<'tcx>,
    pub(crate) query_kinds: &'tcx [DepKindStruct<'tcx>],

    // Internal caches for metadata decoding. No need to track deps on this.
    pub ty_rcache: Lock<FxHashMap<ty::CReaderCacheKey, Ty<'tcx>>>,
    pub pred_rcache: Lock<FxHashMap<ty::CReaderCacheKey, Predicate<'tcx>>>,

    /// Caches the results of trait selection. This cache is used
    /// for things that do not have to do with the parameters in scope.
    pub selection_cache: traits::SelectionCache<'tcx>,

    /// Caches the results of trait evaluation. This cache is used
    /// for things that do not have to do with the parameters in scope.
    /// Merge this with `selection_cache`?
    pub evaluation_cache: traits::EvaluationCache<'tcx>,

    /// Caches the results of goal evaluation in the new solver.
    pub new_solver_evaluation_cache: solve::EvaluationCache<'tcx>,
    pub new_solver_coherence_evaluation_cache: solve::EvaluationCache<'tcx>,

    pub canonical_param_env_cache: CanonicalParamEnvCache<'tcx>,

    /// Data layout specification for the current target.
    pub data_layout: TargetDataLayout,

    /// Stores memory for globals (statics/consts).
    pub(crate) alloc_map: Lock<interpret::AllocMap<'tcx>>,
}

impl<'tcx> GlobalCtxt<'tcx> {
    /// Installs `self` in a `TyCtxt` and `ImplicitCtxt` for the duration of
    /// `f`.
    pub fn enter<'a: 'tcx, F, R>(&'a self, f: F) -> R
    where
        F: FnOnce(TyCtxt<'tcx>) -> R,
    {
        let icx = tls::ImplicitCtxt::new(self);
        tls::enter_context(&icx, || f(icx.tcx))
    }

    pub fn finish(&self) -> FileEncodeResult {
        self.dep_graph.finish_encoding(&self.sess.prof)
    }
}

impl<'tcx> TyCtxt<'tcx> {
    /// Expects a body and returns its codegen attributes.
    ///
    /// Unlike `codegen_fn_attrs`, this returns `CodegenFnAttrs::EMPTY` for
    /// constants.
    pub fn body_codegen_attrs(self, def_id: DefId) -> &'tcx CodegenFnAttrs {
        let def_kind = self.def_kind(def_id);
        if def_kind.has_codegen_attrs() {
            self.codegen_fn_attrs(def_id)
        } else if matches!(
            def_kind,
            DefKind::AnonConst | DefKind::AssocConst | DefKind::Const | DefKind::InlineConst
        ) {
            CodegenFnAttrs::EMPTY
        } else {
            bug!(
                "body_codegen_fn_attrs called on unexpected definition: {:?} {:?}",
                def_id,
                def_kind
            )
        }
    }

    pub fn alloc_steal_thir(self, thir: Thir<'tcx>) -> &'tcx Steal<Thir<'tcx>> {
        self.arena.alloc(Steal::new(thir))
    }

    pub fn alloc_steal_mir(self, mir: Body<'tcx>) -> &'tcx Steal<Body<'tcx>> {
        self.arena.alloc(Steal::new(mir))
    }

    pub fn alloc_steal_promoted(
        self,
        promoted: IndexVec<Promoted, Body<'tcx>>,
    ) -> &'tcx Steal<IndexVec<Promoted, Body<'tcx>>> {
        self.arena.alloc(Steal::new(promoted))
    }

    pub fn mk_adt_def(
        self,
        did: DefId,
        kind: AdtKind,
        variants: IndexVec<VariantIdx, ty::VariantDef>,
        repr: ReprOptions,
    ) -> ty::AdtDef<'tcx> {
        self.mk_adt_def_from_data(ty::AdtDefData::new(self, did, kind, variants, repr))
    }

    /// Allocates a read-only byte or string literal for `mir::interpret`.
    pub fn allocate_bytes(self, bytes: &[u8]) -> interpret::AllocId {
        // Create an allocation that just contains these bytes.
        let alloc = interpret::Allocation::from_bytes_byte_aligned_immutable(bytes);
        let alloc = self.mk_const_alloc(alloc);
        self.reserve_and_set_memory_alloc(alloc)
    }

    /// Returns a range of the start/end indices specified with the
    /// `rustc_layout_scalar_valid_range` attribute.
    // FIXME(eddyb) this is an awkward spot for this method, maybe move it?
    pub fn layout_scalar_valid_range(self, def_id: DefId) -> (Bound<u128>, Bound<u128>) {
        let get = |name| {
            let Some(attr) = self.get_attr(def_id, name) else {
                return Bound::Unbounded;
            };
            debug!("layout_scalar_valid_range: attr={:?}", attr);
            if let Some(
                &[
                    ast::NestedMetaItem::Lit(ast::MetaItemLit {
                        kind: ast::LitKind::Int(a, _),
                        ..
                    }),
                ],
            ) = attr.meta_item_list().as_deref()
            {
                Bound::Included(a.get())
            } else {
                self.dcx().span_delayed_bug(
                    attr.span,
                    "invalid rustc_layout_scalar_valid_range attribute",
                );
                Bound::Unbounded
            }
        };
        (
            get(sym::rustc_layout_scalar_valid_range_start),
            get(sym::rustc_layout_scalar_valid_range_end),
        )
    }

    pub fn lift<T: Lift<'tcx>>(self, value: T) -> Option<T::Lifted> {
        value.lift_to_tcx(self)
    }

    /// Creates a type context. To use the context call `fn enter` which
    /// provides a `TyCtxt`.
    ///
    /// By only providing the `TyCtxt` inside of the closure we enforce that the type
    /// context and any interned alue (types, args, etc.) can only be used while `ty::tls`
    /// has a valid reference to the context, to allow formatting values that need it.
    pub fn create_global_ctxt(
        s: &'tcx Session,
        crate_types: Vec<CrateType>,
        stable_crate_id: StableCrateId,
        arena: &'tcx WorkerLocal<Arena<'tcx>>,
        hir_arena: &'tcx WorkerLocal<hir::Arena<'tcx>>,
        untracked: Untracked,
        dep_graph: DepGraph,
        query_kinds: &'tcx [DepKindStruct<'tcx>],
        query_system: QuerySystem<'tcx>,
        hooks: crate::hooks::Providers,
    ) -> GlobalCtxt<'tcx> {
        let data_layout = s.target.parse_data_layout().unwrap_or_else(|err| {
            s.dcx().emit_fatal(err);
        });
        let interners = CtxtInterners::new(arena);
        let common_types = CommonTypes::new(&interners, s, &untracked);
        let common_lifetimes = CommonLifetimes::new(&interners);
        let common_consts = CommonConsts::new(&interners, &common_types, s, &untracked);

        GlobalCtxt {
            sess: s,
            crate_types,
            stable_crate_id,
            arena,
            hir_arena,
            interners,
            dep_graph,
            hooks,
            prof: s.prof.clone(),
            types: common_types,
            lifetimes: common_lifetimes,
            consts: common_consts,
            untracked,
            query_system,
            query_kinds,
            ty_rcache: Default::default(),
            pred_rcache: Default::default(),
            selection_cache: Default::default(),
            evaluation_cache: Default::default(),
            new_solver_evaluation_cache: Default::default(),
            new_solver_coherence_evaluation_cache: Default::default(),
            canonical_param_env_cache: Default::default(),
            data_layout,
            alloc_map: Lock::new(interpret::AllocMap::new()),
        }
    }

    pub fn consider_optimizing<T: Fn() -> String>(self, msg: T) -> bool {
        self.sess.consider_optimizing(|| self.crate_name(LOCAL_CRATE), msg)
    }

    /// Obtain all lang items of this crate and all dependencies (recursively)
    pub fn lang_items(self) -> &'tcx rustc_hir::lang_items::LanguageItems {
        self.get_lang_items(())
    }

    /// Obtain the given diagnostic item's `DefId`. Use `is_diagnostic_item` if you just want to
    /// compare against another `DefId`, since `is_diagnostic_item` is cheaper.
    pub fn get_diagnostic_item(self, name: Symbol) -> Option<DefId> {
        self.all_diagnostic_items(()).name_to_id.get(&name).copied()
    }

    /// Obtain the diagnostic item's name
    pub fn get_diagnostic_name(self, id: DefId) -> Option<Symbol> {
        self.diagnostic_items(id.krate).id_to_name.get(&id).copied()
    }

    /// Check whether the diagnostic item with the given `name` has the given `DefId`.
    pub fn is_diagnostic_item(self, name: Symbol, did: DefId) -> bool {
        self.diagnostic_items(did.krate).name_to_id.get(&name) == Some(&did)
    }

    pub fn is_coroutine(self, def_id: DefId) -> bool {
        self.coroutine_kind(def_id).is_some()
    }

    /// Returns the movability of the coroutine of `def_id`, or panics
    /// if given a `def_id` that is not a coroutine.
    pub fn coroutine_movability(self, def_id: DefId) -> hir::Movability {
        self.coroutine_kind(def_id).expect("expected a coroutine").movability()
    }

    /// Returns `true` if the node pointed to by `def_id` is a coroutine for an async construct.
    pub fn coroutine_is_async(self, def_id: DefId) -> bool {
        matches!(
            self.coroutine_kind(def_id),
            Some(hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _))
        )
    }

    /// Returns `true` if the node pointed to by `def_id` is a general coroutine that implements `Coroutine`.
    /// This means it is neither an `async` or `gen` construct.
    pub fn is_general_coroutine(self, def_id: DefId) -> bool {
        matches!(self.coroutine_kind(def_id), Some(hir::CoroutineKind::Coroutine(_)))
    }

    /// Returns `true` if the node pointed to by `def_id` is a coroutine for a `gen` construct.
    pub fn coroutine_is_gen(self, def_id: DefId) -> bool {
        matches!(
            self.coroutine_kind(def_id),
            Some(hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _))
        )
    }

    /// Returns `true` if the node pointed to by `def_id` is a coroutine for a `async gen` construct.
    pub fn coroutine_is_async_gen(self, def_id: DefId) -> bool {
        matches!(
            self.coroutine_kind(def_id),
            Some(hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _))
        )
    }

    pub fn stability(self) -> &'tcx stability::Index {
        self.stability_index(())
    }

    pub fn features(self) -> &'tcx rustc_feature::Features {
        self.features_query(())
    }

    pub fn def_key(self, id: impl IntoQueryParam<DefId>) -> rustc_hir::definitions::DefKey {
        let id = id.into_query_param();
        // Accessing the DefKey is ok, since it is part of DefPathHash.
        if let Some(id) = id.as_local() {
            self.definitions_untracked().def_key(id)
        } else {
            self.cstore_untracked().def_key(id)
        }
    }

    /// Converts a `DefId` into its fully expanded `DefPath` (every
    /// `DefId` is really just an interned `DefPath`).
    ///
    /// Note that if `id` is not local to this crate, the result will
    ///  be a non-local `DefPath`.
    pub fn def_path(self, id: DefId) -> rustc_hir::definitions::DefPath {
        // Accessing the DefPath is ok, since it is part of DefPathHash.
        if let Some(id) = id.as_local() {
            self.definitions_untracked().def_path(id)
        } else {
            self.cstore_untracked().def_path(id)
        }
    }

    #[inline]
    pub fn def_path_hash(self, def_id: DefId) -> rustc_hir::definitions::DefPathHash {
        // Accessing the DefPathHash is ok, it is incr. comp. stable.
        if let Some(def_id) = def_id.as_local() {
            self.definitions_untracked().def_path_hash(def_id)
        } else {
            self.cstore_untracked().def_path_hash(def_id)
        }
    }

    #[inline]
    pub fn crate_types(self) -> &'tcx [CrateType] {
        &self.crate_types
    }

    pub fn metadata_kind(self) -> MetadataKind {
        self.crate_types()
            .iter()
            .map(|ty| match *ty {
                CrateType::Executable | CrateType::Staticlib | CrateType::Cdylib => {
                    MetadataKind::None
                }
                CrateType::Rlib => MetadataKind::Uncompressed,
                CrateType::Dylib | CrateType::ProcMacro => MetadataKind::Compressed,
            })
            .max()
            .unwrap_or(MetadataKind::None)
    }

    pub fn needs_metadata(self) -> bool {
        self.metadata_kind() != MetadataKind::None
    }

    pub fn needs_crate_hash(self) -> bool {
        // Why is the crate hash needed for these configurations?
        // - debug_assertions: for the "fingerprint the result" check in
        //   `rustc_query_system::query::plumbing::execute_job`.
        // - incremental: for query lookups.
        // - needs_metadata: for putting into crate metadata.
        // - instrument_coverage: for putting into coverage data (see
        //   `hash_mir_source`).
        cfg!(debug_assertions)
            || self.sess.opts.incremental.is_some()
            || self.needs_metadata()
            || self.sess.instrument_coverage()
    }

    #[inline]
    pub fn stable_crate_id(self, crate_num: CrateNum) -> StableCrateId {
        if crate_num == LOCAL_CRATE {
            self.stable_crate_id
        } else {
            self.cstore_untracked().stable_crate_id(crate_num)
        }
    }

    /// Maps a StableCrateId to the corresponding CrateNum. This method assumes
    /// that the crate in question has already been loaded by the CrateStore.
    #[inline]
    pub fn stable_crate_id_to_crate_num(self, stable_crate_id: StableCrateId) -> CrateNum {
        if stable_crate_id == self.stable_crate_id(LOCAL_CRATE) {
            LOCAL_CRATE
        } else {
            self.cstore_untracked().stable_crate_id_to_crate_num(stable_crate_id)
        }
    }

    /// Converts a `DefPathHash` to its corresponding `DefId` in the current compilation
    /// session, if it still exists. This is used during incremental compilation to
    /// turn a deserialized `DefPathHash` into its current `DefId`.
    pub fn def_path_hash_to_def_id(self, hash: DefPathHash, err: &mut dyn FnMut() -> !) -> DefId {
        debug!("def_path_hash_to_def_id({:?})", hash);

        let stable_crate_id = hash.stable_crate_id();

        // If this is a DefPathHash from the local crate, we can look up the
        // DefId in the tcx's `Definitions`.
        if stable_crate_id == self.stable_crate_id(LOCAL_CRATE) {
            self.untracked.definitions.read().local_def_path_hash_to_def_id(hash, err).to_def_id()
        } else {
            // If this is a DefPathHash from an upstream crate, let the CrateStore map
            // it to a DefId.
            let cstore = &*self.cstore_untracked();
            let cnum = cstore.stable_crate_id_to_crate_num(stable_crate_id);
            cstore.def_path_hash_to_def_id(cnum, hash)
        }
    }

    pub fn def_path_debug_str(self, def_id: DefId) -> String {
        // We are explicitly not going through queries here in order to get
        // crate name and stable crate id since this code is called from debug!()
        // statements within the query system and we'd run into endless
        // recursion otherwise.
        let (crate_name, stable_crate_id) = if def_id.is_local() {
            (self.crate_name(LOCAL_CRATE), self.stable_crate_id(LOCAL_CRATE))
        } else {
            let cstore = &*self.cstore_untracked();
            (cstore.crate_name(def_id.krate), cstore.stable_crate_id(def_id.krate))
        };

        format!(
            "{}[{:04x}]{}",
            crate_name,
            // Don't print the whole stable crate id. That's just
            // annoying in debug output.
            stable_crate_id.as_u64() >> (8 * 6),
            self.def_path(def_id).to_string_no_crate_verbose()
        )
    }

    pub fn dcx(self) -> &'tcx DiagCtxt {
        self.sess.dcx()
    }
}

impl<'tcx> TyCtxtAt<'tcx> {
    /// Create a new definition within the incr. comp. engine.
    pub fn create_def(
        self,
        parent: LocalDefId,
        name: Symbol,
        def_kind: DefKind,
    ) -> TyCtxtFeed<'tcx, LocalDefId> {
        // This function modifies `self.definitions` using a side-effect.
        // We need to ensure that these side effects are re-run by the incr. comp. engine.
        // Depending on the forever-red node will tell the graph that the calling query
        // needs to be re-evaluated.
        self.dep_graph.read_index(DepNodeIndex::FOREVER_RED_NODE);

        // The following call has the side effect of modifying the tables inside `definitions`.
        // These very tables are relied on by the incr. comp. engine to decode DepNodes and to
        // decode the on-disk cache.
        //
        // Any LocalDefId which is used within queries, either as key or result, either:
        // - has been created before the construction of the TyCtxt;
        // - has been created by this call to `create_def`.
        // As a consequence, this LocalDefId is always re-created before it is needed by the incr.
        // comp. engine itself.
        //
        // This call also writes to the value of `source_span` and `expn_that_defined` queries.
        // This is fine because:
        // - those queries are `eval_always` so we won't miss their result changing;
        // - this write will have happened before these queries are called.
        let def_id = self.tcx.create_def(parent, name, def_kind);

        let feed = self.tcx.feed_local_def_id(def_id);
        feed.def_span(self.span);
        feed
    }
}

impl<'tcx> TyCtxt<'tcx> {
    /// `tcx`-dependent operations performed for every created definition.
    pub fn create_def(self, parent: LocalDefId, name: Symbol, def_kind: DefKind) -> LocalDefId {
        let data = def_kind.def_path_data(name);
        let def_id = self.untracked.definitions.write().create_def(parent, data);

        let feed = self.feed_local_def_id(def_id);
        feed.def_kind(def_kind);
        // Unique types created for closures participate in type privacy checking.
        // They have visibilities inherited from the module they are defined in.
        // Visibilities for opaque types are meaningless, but still provided
        // so that all items have visibilities.
        if matches!(def_kind, DefKind::Closure | DefKind::OpaqueTy) {
            let parent_mod = self.parent_module_from_def_id(def_id).to_def_id();
            feed.visibility(ty::Visibility::Restricted(parent_mod));
        }

        def_id
    }

    pub fn iter_local_def_id(self) -> impl Iterator<Item = LocalDefId> + 'tcx {
        // Create a dependency to the red node to be sure we re-execute this when the amount of
        // definitions change.
        self.dep_graph.read_index(DepNodeIndex::FOREVER_RED_NODE);

        let definitions = &self.untracked.definitions;
        std::iter::from_coroutine(|| {
            let mut i = 0;

            // Recompute the number of definitions each time, because our caller may be creating
            // new ones.
            while i < { definitions.read().num_definitions() } {
                let local_def_index = rustc_span::def_id::DefIndex::from_usize(i);
                yield LocalDefId { local_def_index };
                i += 1;
            }

            // Freeze definitions once we finish iterating on them, to prevent adding new ones.
            definitions.freeze();
        })
    }

    pub fn def_path_table(self) -> &'tcx rustc_hir::definitions::DefPathTable {
        // Create a dependency to the crate to be sure we re-execute this when the amount of
        // definitions change.
        self.dep_graph.read_index(DepNodeIndex::FOREVER_RED_NODE);

        // Freeze definitions once we start iterating on them, to prevent adding new ones
        // while iterating. If some query needs to add definitions, it should be `ensure`d above.
        self.untracked.definitions.freeze().def_path_table()
    }

    pub fn def_path_hash_to_def_index_map(
        self,
    ) -> &'tcx rustc_hir::def_path_hash_map::DefPathHashMap {
        // Create a dependency to the crate to be sure we re-execute this when the amount of
        // definitions change.
        self.ensure().hir_crate(());
        // Freeze definitions once we start iterating on them, to prevent adding new ones
        // while iterating. If some query needs to add definitions, it should be `ensure`d above.
        self.untracked.definitions.freeze().def_path_hash_to_def_index_map()
    }

    /// Note that this is *untracked* and should only be used within the query
    /// system if the result is otherwise tracked through queries
    #[inline]
    pub fn cstore_untracked(self) -> FreezeReadGuard<'tcx, CrateStoreDyn> {
        FreezeReadGuard::map(self.untracked.cstore.read(), |c| &**c)
    }

    /// Give out access to the untracked data without any sanity checks.
    pub fn untracked(self) -> &'tcx Untracked {
        &self.untracked
    }
    /// Note that this is *untracked* and should only be used within the query
    /// system if the result is otherwise tracked through queries
    #[inline]
    pub fn definitions_untracked(self) -> FreezeReadGuard<'tcx, Definitions> {
        self.untracked.definitions.read()
    }

    /// Note that this is *untracked* and should only be used within the query
    /// system if the result is otherwise tracked through queries
    #[inline]
    pub fn source_span_untracked(self, def_id: LocalDefId) -> Span {
        self.untracked.source_span.get(def_id).unwrap_or(DUMMY_SP)
    }

    #[inline(always)]
    pub fn with_stable_hashing_context<R>(
        self,
        f: impl FnOnce(StableHashingContext<'_>) -> R,
    ) -> R {
        f(StableHashingContext::new(self.sess, &self.untracked))
    }

    pub fn serialize_query_result_cache(self, encoder: FileEncoder) -> FileEncodeResult {
        self.query_system.on_disk_cache.as_ref().map_or(Ok(0), |c| c.serialize(self, encoder))
    }

    #[inline]
    pub fn local_crate_exports_generics(self) -> bool {
        debug_assert!(self.sess.opts.share_generics());

        self.crate_types().iter().any(|crate_type| {
            match crate_type {
                CrateType::Executable
                | CrateType::Staticlib
                | CrateType::ProcMacro
                | CrateType::Cdylib => false,

                // FIXME rust-lang/rust#64319, rust-lang/rust#64872:
                // We want to block export of generics from dylibs,
                // but we must fix rust-lang/rust#65890 before we can
                // do that robustly.
                CrateType::Dylib => true,

                CrateType::Rlib => true,
            }
        })
    }

    /// Returns the `DefId` and the `BoundRegionKind` corresponding to the given region.
    pub fn is_suitable_region(self, mut region: Region<'tcx>) -> Option<FreeRegionInfo> {
        let (suitable_region_binding_scope, bound_region) = loop {
            let def_id = match region.kind() {
                ty::ReLateParam(fr) => fr.bound_region.get_id()?.as_local()?,
                ty::ReEarlyParam(ebr) => ebr.def_id.expect_local(),
                _ => return None, // not a free region
            };
            let scope = self.local_parent(def_id);
            if self.def_kind(scope) == DefKind::OpaqueTy {
                // Lifetime params of opaque types are synthetic and thus irrelevant to
                // diagnostics. Map them back to their origin!
                region = self.map_rpit_lifetime_to_fn_lifetime(def_id);
                continue;
            }
            break (scope, ty::BrNamed(def_id.into(), self.item_name(def_id.into())));
        };

        let is_impl_item = match self.opt_hir_node_by_def_id(suitable_region_binding_scope) {
            Some(Node::Item(..) | Node::TraitItem(..)) => false,
            Some(Node::ImplItem(..)) => {
                self.is_bound_region_in_impl_item(suitable_region_binding_scope)
            }
            _ => false,
        };

        Some(FreeRegionInfo { def_id: suitable_region_binding_scope, bound_region, is_impl_item })
    }

    /// Given a `DefId` for an `fn`, return all the `dyn` and `impl` traits in its return type.
    pub fn return_type_impl_or_dyn_traits(
        self,
        scope_def_id: LocalDefId,
    ) -> Vec<&'tcx hir::Ty<'tcx>> {
        let hir_id = self.local_def_id_to_hir_id(scope_def_id);
        let Some(hir::FnDecl { output: hir::FnRetTy::Return(hir_output), .. }) =
            self.hir().fn_decl_by_hir_id(hir_id)
        else {
            return vec![];
        };

        let mut v = TraitObjectVisitor(vec![], self.hir());
        v.visit_ty(hir_output);
        v.0
    }

    /// Given a `DefId` for an `fn`, return all the `dyn` and `impl` traits in
    /// its return type, and the associated alias span when type alias is used,
    /// along with a span for lifetime suggestion (if there are existing generics).
    pub fn return_type_impl_or_dyn_traits_with_type_alias(
        self,
        scope_def_id: LocalDefId,
    ) -> Option<(Vec<&'tcx hir::Ty<'tcx>>, Span, Option<Span>)> {
        let hir_id = self.local_def_id_to_hir_id(scope_def_id);
        let mut v = TraitObjectVisitor(vec![], self.hir());
        // when the return type is a type alias
        if let Some(hir::FnDecl { output: hir::FnRetTy::Return(hir_output), .. }) = self.hir().fn_decl_by_hir_id(hir_id)
            && let hir::TyKind::Path(hir::QPath::Resolved(
                None,
                hir::Path { res: hir::def::Res::Def(DefKind::TyAlias, def_id), .. }, )) = hir_output.kind
            && let Some(local_id) = def_id.as_local()
            && let Some(alias_ty) = self.hir_node_by_def_id(local_id).alias_ty() // it is type alias
            && let Some(alias_generics) = self.hir_node_by_def_id(local_id).generics()
        {
            v.visit_ty(alias_ty);
            if !v.0.is_empty() {
                return Some((
                    v.0,
                    alias_generics.span,
                    alias_generics.span_for_lifetime_suggestion(),
                ));
            }
        }
        return None;
    }

    /// Checks if the bound region is in Impl Item.
    pub fn is_bound_region_in_impl_item(self, suitable_region_binding_scope: LocalDefId) -> bool {
        let container_id = self.parent(suitable_region_binding_scope.to_def_id());
        if self.impl_trait_ref(container_id).is_some() {
            // For now, we do not try to target impls of traits. This is
            // because this message is going to suggest that the user
            // change the fn signature, but they may not be free to do so,
            // since the signature must match the trait.
            //
            // FIXME(#42706) -- in some cases, we could do better here.
            return true;
        }
        false
    }

    /// Determines whether identifiers in the assembly have strict naming rules.
    /// Currently, only NVPTX* targets need it.
    pub fn has_strict_asm_symbol_naming(self) -> bool {
        self.sess.target.arch.contains("nvptx")
    }

    /// Returns `&'static core::panic::Location<'static>`.
    pub fn caller_location_ty(self) -> Ty<'tcx> {
        Ty::new_imm_ref(
            self,
            self.lifetimes.re_static,
            self.type_of(self.require_lang_item(LangItem::PanicLocation, None))
                .instantiate(self, self.mk_args(&[self.lifetimes.re_static.into()])),
        )
    }

    /// Returns a displayable description and article for the given `def_id` (e.g. `("a", "struct")`).
    pub fn article_and_description(self, def_id: DefId) -> (&'static str, &'static str) {
        let kind = self.def_kind(def_id);
        (self.def_kind_descr_article(kind, def_id), self.def_kind_descr(kind, def_id))
    }

    pub fn type_length_limit(self) -> Limit {
        self.limits(()).type_length_limit
    }

    pub fn recursion_limit(self) -> Limit {
        self.limits(()).recursion_limit
    }

    pub fn move_size_limit(self) -> Limit {
        self.limits(()).move_size_limit
    }

    pub fn all_traits(self) -> impl Iterator<Item = DefId> + 'tcx {
        iter::once(LOCAL_CRATE)
            .chain(self.crates(()).iter().copied())
            .flat_map(move |cnum| self.traits(cnum).iter().copied())
    }

    #[inline]
    pub fn local_visibility(self, def_id: LocalDefId) -> Visibility {
        self.visibility(def_id).expect_local()
    }

    /// Returns the origin of the opaque type `def_id`.
    #[instrument(skip(self), level = "trace", ret)]
    pub fn opaque_type_origin(self, def_id: LocalDefId) -> hir::OpaqueTyOrigin {
        self.hir().expect_item(def_id).expect_opaque_ty().origin
    }
}

/// A trait implemented for all `X<'a>` types that can be safely and
/// efficiently converted to `X<'tcx>` as long as they are part of the
/// provided `TyCtxt<'tcx>`.
/// This can be done, for example, for `Ty<'tcx>` or `GenericArgsRef<'tcx>`
/// by looking them up in their respective interners.
///
/// However, this is still not the best implementation as it does
/// need to compare the components, even for interned values.
/// It would be more efficient if `TypedArena` provided a way to
/// determine whether the address is in the allocated range.
///
/// `None` is returned if the value or one of the components is not part
/// of the provided context.
/// For `Ty`, `None` can be returned if either the type interner doesn't
/// contain the `TyKind` key or if the address of the interned
/// pointer differs. The latter case is possible if a primitive type,
/// e.g., `()` or `u8`, was interned in a different context.
pub trait Lift<'tcx>: fmt::Debug {
    type Lifted: fmt::Debug + 'tcx;
    fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted>;
}

macro_rules! nop_lift {
    ($set:ident; $ty:ty => $lifted:ty) => {
        impl<'a, 'tcx> Lift<'tcx> for $ty {
            type Lifted = $lifted;
            fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
                // Assert that the set has the right type.
                // Given an argument that has an interned type, the return type has the type of
                // the corresponding interner set. This won't actually return anything, we're
                // just doing this to compute said type!
                fn _intern_set_ty_from_interned_ty<'tcx, Inner>(
                    _x: Interned<'tcx, Inner>,
                ) -> InternedSet<'tcx, Inner> {
                    unreachable!()
                }
                fn _type_eq<T>(_x: &T, _y: &T) {}
                fn _test<'tcx>(x: $lifted, tcx: TyCtxt<'tcx>) {
                    // If `x` is a newtype around an `Interned<T>`, then `interner` is an
                    // interner of appropriate type. (Ideally we'd also check that `x` is a
                    // newtype with just that one field. Not sure how to do that.)
                    let interner = _intern_set_ty_from_interned_ty(x.0);
                    // Now check that this is the same type as `interners.$set`.
                    _type_eq(&interner, &tcx.interners.$set);
                }

                tcx.interners
                    .$set
                    .contains_pointer_to(&InternedInSet(&*self.0.0))
                    // SAFETY: `self` is interned and therefore valid
                    // for the entire lifetime of the `TyCtxt`.
                    .then(|| unsafe { mem::transmute(self) })
            }
        }
    };
}

macro_rules! nop_list_lift {
    ($set:ident; $ty:ty => $lifted:ty) => {
        impl<'a, 'tcx> Lift<'tcx> for &'a List<$ty> {
            type Lifted = &'tcx List<$lifted>;
            fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
                // Assert that the set has the right type.
                if false {
                    let _x: &InternedSet<'tcx, List<$lifted>> = &tcx.interners.$set;
                }

                if self.is_empty() {
                    return Some(List::empty());
                }
                tcx.interners
                    .$set
                    .contains_pointer_to(&InternedInSet(self))
                    .then(|| unsafe { mem::transmute(self) })
            }
        }
    };
}

nop_lift! {type_; Ty<'a> => Ty<'tcx>}
nop_lift! {region; Region<'a> => Region<'tcx>}
nop_lift! {const_; Const<'a> => Const<'tcx>}
nop_lift! {const_allocation; ConstAllocation<'a> => ConstAllocation<'tcx>}
nop_lift! {predicate; Predicate<'a> => Predicate<'tcx>}
nop_lift! {predicate; Clause<'a> => Clause<'tcx>}
nop_lift! {layout; Layout<'a> => Layout<'tcx>}

nop_list_lift! {type_lists; Ty<'a> => Ty<'tcx>}
nop_list_lift! {poly_existential_predicates; PolyExistentialPredicate<'a> => PolyExistentialPredicate<'tcx>}
nop_list_lift! {bound_variable_kinds; ty::BoundVariableKind => ty::BoundVariableKind}

// This is the impl for `&'a GenericArgs<'a>`.
nop_list_lift! {args; GenericArg<'a> => GenericArg<'tcx>}

macro_rules! nop_slice_lift {
    ($ty:ty => $lifted:ty) => {
        impl<'a, 'tcx> Lift<'tcx> for &'a [$ty] {
            type Lifted = &'tcx [$lifted];
            fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
                if self.is_empty() {
                    return Some(&[]);
                }
                tcx.interners
                    .arena
                    .dropless
                    .contains_slice(self)
                    .then(|| unsafe { mem::transmute(self) })
            }
        }
    };
}

nop_slice_lift! {ty::ValTree<'a> => ty::ValTree<'tcx>}

TrivialLiftImpls! {
    ImplPolarity, Promoted
}

macro_rules! sty_debug_print {
    ($fmt: expr, $ctxt: expr, $($variant: ident),*) => {{
        // Curious inner module to allow variant names to be used as
        // variable names.
        #[allow(non_snake_case)]
        mod inner {
            use crate::ty::{self, TyCtxt};
            use crate::ty::context::InternedInSet;

            #[derive(Copy, Clone)]
            struct DebugStat {
                total: usize,
                lt_infer: usize,
                ty_infer: usize,
                ct_infer: usize,
                all_infer: usize,
            }

            pub fn go(fmt: &mut std::fmt::Formatter<'_>, tcx: TyCtxt<'_>) -> std::fmt::Result {
                let mut total = DebugStat {
                    total: 0,
                    lt_infer: 0,
                    ty_infer: 0,
                    ct_infer: 0,
                    all_infer: 0,
                };
                $(let mut $variant = total;)*

                for shard in tcx.interners.type_.lock_shards() {
                    let types = shard.keys();
                    for &InternedInSet(t) in types {
                        let variant = match t.internee {
                            ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) |
                                ty::Float(..) | ty::Str | ty::Never => continue,
                            ty::Error(_) => /* unimportant */ continue,
                            $(ty::$variant(..) => &mut $variant,)*
                        };
                        let lt = t.flags.intersects(ty::TypeFlags::HAS_RE_INFER);
                        let ty = t.flags.intersects(ty::TypeFlags::HAS_TY_INFER);
                        let ct = t.flags.intersects(ty::TypeFlags::HAS_CT_INFER);

                        variant.total += 1;
                        total.total += 1;
                        if lt { total.lt_infer += 1; variant.lt_infer += 1 }
                        if ty { total.ty_infer += 1; variant.ty_infer += 1 }
                        if ct { total.ct_infer += 1; variant.ct_infer += 1 }
                        if lt && ty && ct { total.all_infer += 1; variant.all_infer += 1 }
                    }
                }
                writeln!(fmt, "Ty interner             total           ty lt ct all")?;
                $(writeln!(fmt, "    {:18}: {uses:6} {usespc:4.1}%, \
                            {ty:4.1}% {lt:5.1}% {ct:4.1}% {all:4.1}%",
                    stringify!($variant),
                    uses = $variant.total,
                    usespc = $variant.total as f64 * 100.0 / total.total as f64,
                    ty = $variant.ty_infer as f64 * 100.0  / total.total as f64,
                    lt = $variant.lt_infer as f64 * 100.0  / total.total as f64,
                    ct = $variant.ct_infer as f64 * 100.0  / total.total as f64,
                    all = $variant.all_infer as f64 * 100.0  / total.total as f64)?;
                )*
                writeln!(fmt, "                  total {uses:6}        \
                          {ty:4.1}% {lt:5.1}% {ct:4.1}% {all:4.1}%",
                    uses = total.total,
                    ty = total.ty_infer as f64 * 100.0  / total.total as f64,
                    lt = total.lt_infer as f64 * 100.0  / total.total as f64,
                    ct = total.ct_infer as f64 * 100.0  / total.total as f64,
                    all = total.all_infer as f64 * 100.0  / total.total as f64)
            }
        }

        inner::go($fmt, $ctxt)
    }}
}

impl<'tcx> TyCtxt<'tcx> {
    pub fn debug_stats(self) -> impl std::fmt::Debug + 'tcx {
        struct DebugStats<'tcx>(TyCtxt<'tcx>);

        impl<'tcx> std::fmt::Debug for DebugStats<'tcx> {
            fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                sty_debug_print!(
                    fmt,
                    self.0,
                    Adt,
                    Array,
                    Slice,
                    RawPtr,
                    Ref,
                    FnDef,
                    FnPtr,
                    Placeholder,
                    Coroutine,
                    CoroutineWitness,
                    Dynamic,
                    Closure,
                    Tuple,
                    Bound,
                    Param,
                    Infer,
                    Alias,
                    Foreign
                )?;

                writeln!(fmt, "GenericArgs interner: #{}", self.0.interners.args.len())?;
                writeln!(fmt, "Region interner: #{}", self.0.interners.region.len())?;
                writeln!(
                    fmt,
                    "Const Allocation interner: #{}",
                    self.0.interners.const_allocation.len()
                )?;
                writeln!(fmt, "Layout interner: #{}", self.0.interners.layout.len())?;

                Ok(())
            }
        }

        DebugStats(self)
    }
}

// This type holds a `T` in the interner. The `T` is stored in the arena and
// this type just holds a pointer to it, but it still effectively owns it. It
// impls `Borrow` so that it can be looked up using the original
// (non-arena-memory-owning) types.
struct InternedInSet<'tcx, T: ?Sized>(&'tcx T);

impl<'tcx, T: 'tcx + ?Sized> Clone for InternedInSet<'tcx, T> {
    fn clone(&self) -> Self {
        InternedInSet(self.0)
    }
}

impl<'tcx, T: 'tcx + ?Sized> Copy for InternedInSet<'tcx, T> {}

impl<'tcx, T: 'tcx + ?Sized> IntoPointer for InternedInSet<'tcx, T> {
    fn into_pointer(&self) -> *const () {
        self.0 as *const _ as *const ()
    }
}

#[allow(rustc::usage_of_ty_tykind)]
impl<'tcx, T> Borrow<T> for InternedInSet<'tcx, WithCachedTypeInfo<T>> {
    fn borrow(&self) -> &T {
        &self.0.internee
    }
}

impl<'tcx, T: PartialEq> PartialEq for InternedInSet<'tcx, WithCachedTypeInfo<T>> {
    fn eq(&self, other: &InternedInSet<'tcx, WithCachedTypeInfo<T>>) -> bool {
        // The `Borrow` trait requires that `x.borrow() == y.borrow()` equals
        // `x == y`.
        self.0.internee == other.0.internee
    }
}

impl<'tcx, T: Eq> Eq for InternedInSet<'tcx, WithCachedTypeInfo<T>> {}

impl<'tcx, T: Hash> Hash for InternedInSet<'tcx, WithCachedTypeInfo<T>> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        // The `Borrow` trait requires that `x.borrow().hash(s) == x.hash(s)`.
        self.0.internee.hash(s)
    }
}

impl<'tcx, T> Borrow<[T]> for InternedInSet<'tcx, List<T>> {
    fn borrow(&self) -> &[T] {
        &self.0[..]
    }
}

impl<'tcx, T: PartialEq> PartialEq for InternedInSet<'tcx, List<T>> {
    fn eq(&self, other: &InternedInSet<'tcx, List<T>>) -> bool {
        // The `Borrow` trait requires that `x.borrow() == y.borrow()` equals
        // `x == y`.
        self.0[..] == other.0[..]
    }
}

impl<'tcx, T: Eq> Eq for InternedInSet<'tcx, List<T>> {}

impl<'tcx, T: Hash> Hash for InternedInSet<'tcx, List<T>> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        // The `Borrow` trait requires that `x.borrow().hash(s) == x.hash(s)`.
        self.0[..].hash(s)
    }
}

macro_rules! direct_interners {
    ($($name:ident: $vis:vis $method:ident($ty:ty): $ret_ctor:ident -> $ret_ty:ty,)+) => {
        $(impl<'tcx> Borrow<$ty> for InternedInSet<'tcx, $ty> {
            fn borrow<'a>(&'a self) -> &'a $ty {
                &self.0
            }
        }

        impl<'tcx> PartialEq for InternedInSet<'tcx, $ty> {
            fn eq(&self, other: &Self) -> bool {
                // The `Borrow` trait requires that `x.borrow() == y.borrow()`
                // equals `x == y`.
                self.0 == other.0
            }
        }

        impl<'tcx> Eq for InternedInSet<'tcx, $ty> {}

        impl<'tcx> Hash for InternedInSet<'tcx, $ty> {
            fn hash<H: Hasher>(&self, s: &mut H) {
                // The `Borrow` trait requires that `x.borrow().hash(s) ==
                // x.hash(s)`.
                self.0.hash(s)
            }
        }

        impl<'tcx> TyCtxt<'tcx> {
            $vis fn $method(self, v: $ty) -> $ret_ty {
                $ret_ctor(Interned::new_unchecked(self.interners.$name.intern(v, |v| {
                    InternedInSet(self.interners.arena.alloc(v))
                }).0))
            }
        })+
    }
}

// Functions with a `mk_` prefix are intended for use outside this file and
// crate. Functions with an `intern_` prefix are intended for use within this
// crate only, and have a corresponding `mk_` function.
direct_interners! {
    region: pub(crate) intern_region(RegionKind<'tcx>): Region -> Region<'tcx>,
    const_allocation: pub mk_const_alloc(Allocation): ConstAllocation -> ConstAllocation<'tcx>,
    layout: pub mk_layout(LayoutS<FieldIdx, VariantIdx>): Layout -> Layout<'tcx>,
    adt_def: pub mk_adt_def_from_data(AdtDefData): AdtDef -> AdtDef<'tcx>,
    external_constraints: pub mk_external_constraints(ExternalConstraintsData<'tcx>):
        ExternalConstraints -> ExternalConstraints<'tcx>,
    predefined_opaques_in_body: pub mk_predefined_opaques_in_body(PredefinedOpaquesData<'tcx>):
        PredefinedOpaques -> PredefinedOpaques<'tcx>,
}

macro_rules! slice_interners {
    ($($field:ident: $vis:vis $method:ident($ty:ty)),+ $(,)?) => (
        impl<'tcx> TyCtxt<'tcx> {
            $($vis fn $method(self, v: &[$ty]) -> &'tcx List<$ty> {
                if v.is_empty() {
                    List::empty()
                } else {
                    self.interners.$field.intern_ref(v, || {
                        InternedInSet(List::from_arena(&*self.arena, v))
                    }).0
                }
            })+
        }
    );
}

// These functions intern slices. They all have a corresponding
// `mk_foo_from_iter` function that interns an iterator. The slice version
// should be used when possible, because it's faster.
slice_interners!(
    const_lists: pub mk_const_list(Const<'tcx>),
    args: pub mk_args(GenericArg<'tcx>),
    type_lists: pub mk_type_list(Ty<'tcx>),
    canonical_var_infos: pub mk_canonical_var_infos(CanonicalVarInfo<'tcx>),
    poly_existential_predicates: intern_poly_existential_predicates(PolyExistentialPredicate<'tcx>),
    clauses: intern_clauses(Clause<'tcx>),
    projs: pub mk_projs(ProjectionKind),
    place_elems: pub mk_place_elems(PlaceElem<'tcx>),
    bound_variable_kinds: pub mk_bound_variable_kinds(ty::BoundVariableKind),
    fields: pub mk_fields(FieldIdx),
    local_def_ids: intern_local_def_ids(LocalDefId),
    offset_of: pub mk_offset_of((VariantIdx, FieldIdx)),
);

impl<'tcx> TyCtxt<'tcx> {
    /// Given a `fn` type, returns an equivalent `unsafe fn` type;
    /// that is, a `fn` type that is equivalent in every way for being
    /// unsafe.
    pub fn safe_to_unsafe_fn_ty(self, sig: PolyFnSig<'tcx>) -> Ty<'tcx> {
        assert_eq!(sig.unsafety(), hir::Unsafety::Normal);
        Ty::new_fn_ptr(
            self,
            sig.map_bound(|sig| ty::FnSig { unsafety: hir::Unsafety::Unsafe, ..sig }),
        )
    }

    /// Given the def_id of a Trait `trait_def_id` and the name of an associated item `assoc_name`
    /// returns true if the `trait_def_id` defines an associated item of name `assoc_name`.
    pub fn trait_may_define_assoc_item(self, trait_def_id: DefId, assoc_name: Ident) -> bool {
        self.super_traits_of(trait_def_id).any(|trait_did| {
            self.associated_items(trait_did)
                .filter_by_name_unhygienic(assoc_name.name)
                .any(|item| self.hygienic_eq(assoc_name, item.ident(self), trait_did))
        })
    }

    /// Given a `ty`, return whether it's an `impl Future<...>`.
    pub fn ty_is_opaque_future(self, ty: Ty<'_>) -> bool {
        let ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) = ty.kind() else { return false };
        let future_trait = self.require_lang_item(LangItem::Future, None);

        self.explicit_item_bounds(def_id).skip_binder().iter().any(|&(predicate, _)| {
            let ty::ClauseKind::Trait(trait_predicate) = predicate.kind().skip_binder() else {
                return false;
            };
            trait_predicate.trait_ref.def_id == future_trait
                && trait_predicate.polarity == ImplPolarity::Positive
        })
    }

    /// Computes the def-ids of the transitive supertraits of `trait_def_id`. This (intentionally)
    /// does not compute the full elaborated super-predicates but just the set of def-ids. It is used
    /// to identify which traits may define a given associated type to help avoid cycle errors.
    /// Returns a `DefId` iterator.
    fn super_traits_of(self, trait_def_id: DefId) -> impl Iterator<Item = DefId> + 'tcx {
        let mut set = FxHashSet::default();
        let mut stack = vec![trait_def_id];

        set.insert(trait_def_id);

        iter::from_fn(move || -> Option<DefId> {
            let trait_did = stack.pop()?;
            let generic_predicates = self.super_predicates_of(trait_did);

            for (predicate, _) in generic_predicates.predicates {
                if let ty::ClauseKind::Trait(data) = predicate.kind().skip_binder() {
                    if set.insert(data.def_id()) {
                        stack.push(data.def_id());
                    }
                }
            }

            Some(trait_did)
        })
    }

    /// Given a closure signature, returns an equivalent fn signature. Detuples
    /// and so forth -- so e.g., if we have a sig with `Fn<(u32, i32)>` then
    /// you would get a `fn(u32, i32)`.
    /// `unsafety` determines the unsafety of the fn signature. If you pass
    /// `hir::Unsafety::Unsafe` in the previous example, then you would get
    /// an `unsafe fn (u32, i32)`.
    /// It cannot convert a closure that requires unsafe.
    pub fn signature_unclosure(
        self,
        sig: PolyFnSig<'tcx>,
        unsafety: hir::Unsafety,
    ) -> PolyFnSig<'tcx> {
        sig.map_bound(|s| {
            let params = match s.inputs()[0].kind() {
                ty::Tuple(params) => *params,
                _ => bug!(),
            };
            self.mk_fn_sig(params, s.output(), s.c_variadic, unsafety, abi::Abi::Rust)
        })
    }

    #[inline]
    pub fn mk_predicate(self, binder: Binder<'tcx, PredicateKind<'tcx>>) -> Predicate<'tcx> {
        self.interners.intern_predicate(
            binder,
            self.sess,
            // This is only used to create a stable hashing context.
            &self.untracked,
        )
    }

    #[inline]
    pub fn reuse_or_mk_predicate(
        self,
        pred: Predicate<'tcx>,
        binder: Binder<'tcx, PredicateKind<'tcx>>,
    ) -> Predicate<'tcx> {
        if pred.kind() != binder { self.mk_predicate(binder) } else { pred }
    }

    #[inline(always)]
    pub(crate) fn check_and_mk_args(
        self,
        _def_id: DefId,
        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
    ) -> GenericArgsRef<'tcx> {
        let args = args.into_iter().map(Into::into);
        #[cfg(debug_assertions)]
        {
            let generics = self.generics_of(_def_id);

            let n = if let DefKind::AssocTy = self.def_kind(_def_id)
                && let DefKind::Impl { of_trait: false } = self.def_kind(self.parent(_def_id))
            {
                // If this is an inherent projection.
                generics.params.len() + 1
            } else {
                generics.count()
            };
            assert_eq!(
                (n, Some(n)),
                args.size_hint(),
                "wrong number of generic parameters for {_def_id:?}: {:?}",
                args.collect::<Vec<_>>(),
            );
        }
        self.mk_args_from_iter(args)
    }

    #[inline]
    pub fn mk_ct_from_kind(self, kind: ty::ConstKind<'tcx>, ty: Ty<'tcx>) -> Const<'tcx> {
        self.interners.intern_const(
            ty::ConstData { kind, ty },
            self.sess,
            // This is only used to create a stable hashing context.
            &self.untracked,
        )
    }

    // Avoid this in favour of more specific `Ty::new_*` methods, where possible.
    #[allow(rustc::usage_of_ty_tykind)]
    #[inline]
    pub fn mk_ty_from_kind(self, st: TyKind<'tcx>) -> Ty<'tcx> {
        self.interners.intern_ty(
            st,
            self.sess,
            // This is only used to create a stable hashing context.
            &self.untracked,
        )
    }

    pub fn mk_param_from_def(self, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
        match param.kind {
            GenericParamDefKind::Lifetime => {
                ty::Region::new_early_param(self, param.to_early_bound_region_data()).into()
            }
            GenericParamDefKind::Type { .. } => Ty::new_param(self, param.index, param.name).into(),
            GenericParamDefKind::Const { .. } => ty::Const::new_param(
                self,
                ParamConst { index: param.index, name: param.name },
                self.type_of(param.def_id)
                    .no_bound_vars()
                    .expect("const parameter types cannot be generic"),
            )
            .into(),
        }
    }

    pub fn mk_place_field(self, place: Place<'tcx>, f: FieldIdx, ty: Ty<'tcx>) -> Place<'tcx> {
        self.mk_place_elem(place, PlaceElem::Field(f, ty))
    }

    pub fn mk_place_deref(self, place: Place<'tcx>) -> Place<'tcx> {
        self.mk_place_elem(place, PlaceElem::Deref)
    }

    pub fn mk_place_downcast(
        self,
        place: Place<'tcx>,
        adt_def: AdtDef<'tcx>,
        variant_index: VariantIdx,
    ) -> Place<'tcx> {
        self.mk_place_elem(
            place,
            PlaceElem::Downcast(Some(adt_def.variant(variant_index).name), variant_index),
        )
    }

    pub fn mk_place_downcast_unnamed(
        self,
        place: Place<'tcx>,
        variant_index: VariantIdx,
    ) -> Place<'tcx> {
        self.mk_place_elem(place, PlaceElem::Downcast(None, variant_index))
    }

    pub fn mk_place_index(self, place: Place<'tcx>, index: Local) -> Place<'tcx> {
        self.mk_place_elem(place, PlaceElem::Index(index))
    }

    /// This method copies `Place`'s projection, add an element and reintern it. Should not be used
    /// to build a full `Place` it's just a convenient way to grab a projection and modify it in
    /// flight.
    pub fn mk_place_elem(self, place: Place<'tcx>, elem: PlaceElem<'tcx>) -> Place<'tcx> {
        let mut projection = place.projection.to_vec();
        projection.push(elem);

        Place { local: place.local, projection: self.mk_place_elems(&projection) }
    }

    pub fn mk_poly_existential_predicates(
        self,
        eps: &[PolyExistentialPredicate<'tcx>],
    ) -> &'tcx List<PolyExistentialPredicate<'tcx>> {
        assert!(!eps.is_empty());
        assert!(
            eps.array_windows()
                .all(|[a, b]| a.skip_binder().stable_cmp(self, &b.skip_binder())
                    != Ordering::Greater)
        );
        self.intern_poly_existential_predicates(eps)
    }

    pub fn mk_clauses(self, clauses: &[Clause<'tcx>]) -> &'tcx List<Clause<'tcx>> {
        // FIXME consider asking the input slice to be sorted to avoid
        // re-interning permutations, in which case that would be asserted
        // here.
        self.intern_clauses(clauses)
    }

    pub fn mk_local_def_ids(self, clauses: &[LocalDefId]) -> &'tcx List<LocalDefId> {
        // FIXME consider asking the input slice to be sorted to avoid
        // re-interning permutations, in which case that would be asserted
        // here.
        self.intern_local_def_ids(clauses)
    }

    pub fn mk_const_list_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<ty::Const<'tcx>, &'tcx List<ty::Const<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_const_list(xs))
    }

    // Unlike various other `mk_*_from_iter` functions, this one uses `I:
    // IntoIterator` instead of `I: Iterator`, and it doesn't have a slice
    // variant, because of the need to combine `inputs` and `output`. This
    // explains the lack of `_from_iter` suffix.
    pub fn mk_fn_sig<I, T>(
        self,
        inputs: I,
        output: I::Item,
        c_variadic: bool,
        unsafety: hir::Unsafety,
        abi: abi::Abi,
    ) -> T::Output
    where
        I: IntoIterator<Item = T>,
        T: CollectAndApply<Ty<'tcx>, ty::FnSig<'tcx>>,
    {
        T::collect_and_apply(inputs.into_iter().chain(iter::once(output)), |xs| ty::FnSig {
            inputs_and_output: self.mk_type_list(xs),
            c_variadic,
            unsafety,
            abi,
        })
    }

    pub fn mk_poly_existential_predicates_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<
                PolyExistentialPredicate<'tcx>,
                &'tcx List<PolyExistentialPredicate<'tcx>>,
            >,
    {
        T::collect_and_apply(iter, |xs| self.mk_poly_existential_predicates(xs))
    }

    pub fn mk_clauses_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<Clause<'tcx>, &'tcx List<Clause<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_clauses(xs))
    }

    pub fn mk_type_list_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<Ty<'tcx>, &'tcx List<Ty<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_type_list(xs))
    }

    pub fn mk_args_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<GenericArg<'tcx>, &'tcx List<GenericArg<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_args(xs))
    }

    pub fn mk_canonical_var_infos_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<CanonicalVarInfo<'tcx>, &'tcx List<CanonicalVarInfo<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_canonical_var_infos(xs))
    }

    pub fn mk_place_elems_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<PlaceElem<'tcx>, &'tcx List<PlaceElem<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_place_elems(xs))
    }

    pub fn mk_fields_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<FieldIdx, &'tcx List<FieldIdx>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_fields(xs))
    }

    pub fn mk_offset_of_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<(VariantIdx, FieldIdx), &'tcx List<(VariantIdx, FieldIdx)>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_offset_of(xs))
    }

    pub fn mk_args_trait(
        self,
        self_ty: Ty<'tcx>,
        rest: impl IntoIterator<Item = GenericArg<'tcx>>,
    ) -> GenericArgsRef<'tcx> {
        self.mk_args_from_iter(iter::once(self_ty.into()).chain(rest))
    }

    pub fn mk_bound_variable_kinds_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<ty::BoundVariableKind, &'tcx List<ty::BoundVariableKind>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_bound_variable_kinds(xs))
    }

    /// Emit a lint at `span` from a lint struct (some type that implements `DecorateLint`,
    /// typically generated by `#[derive(LintDiagnostic)]`).
    #[track_caller]
    pub fn emit_node_span_lint(
        self,
        lint: &'static Lint,
        hir_id: HirId,
        span: impl Into<MultiSpan>,
        decorator: impl for<'a> DecorateLint<'a, ()>,
    ) {
        let msg = decorator.msg();
        let (level, src) = self.lint_level_at_node(lint, hir_id);
        lint_level(self.sess, lint, level, src, Some(span.into()), msg, |diag| {
            decorator.decorate_lint(diag);
        })
    }

    /// Emit a lint at the appropriate level for a hir node, with an associated span.
    ///
    /// [`lint_level`]: rustc_middle::lint::lint_level#decorate-signature
    #[rustc_lint_diagnostics]
    #[track_caller]
    pub fn node_span_lint(
        self,
        lint: &'static Lint,
        hir_id: HirId,
        span: impl Into<MultiSpan>,
        msg: impl Into<DiagnosticMessage>,
        decorate: impl for<'a, 'b> FnOnce(&'b mut DiagnosticBuilder<'a, ()>),
    ) {
        let (level, src) = self.lint_level_at_node(lint, hir_id);
        lint_level(self.sess, lint, level, src, Some(span.into()), msg, decorate);
    }

    /// Emit a lint from a lint struct (some type that implements `DecorateLint`, typically
    /// generated by `#[derive(LintDiagnostic)]`).
    #[track_caller]
    pub fn emit_node_lint(
        self,
        lint: &'static Lint,
        id: HirId,
        decorator: impl for<'a> DecorateLint<'a, ()>,
    ) {
        self.node_lint(lint, id, decorator.msg(), |diag| {
            decorator.decorate_lint(diag);
        })
    }

    /// Emit a lint at the appropriate level for a hir node.
    ///
    /// [`lint_level`]: rustc_middle::lint::lint_level#decorate-signature
    #[rustc_lint_diagnostics]
    #[track_caller]
    pub fn node_lint(
        self,
        lint: &'static Lint,
        id: HirId,
        msg: impl Into<DiagnosticMessage>,
        decorate: impl for<'a, 'b> FnOnce(&'b mut DiagnosticBuilder<'a, ()>),
    ) {
        let (level, src) = self.lint_level_at_node(lint, id);
        lint_level(self.sess, lint, level, src, None, msg, decorate);
    }

    pub fn in_scope_traits(self, id: HirId) -> Option<&'tcx [TraitCandidate]> {
        let map = self.in_scope_traits_map(id.owner)?;
        let candidates = map.get(&id.local_id)?;
        Some(candidates)
    }

    pub fn named_bound_var(self, id: HirId) -> Option<resolve_bound_vars::ResolvedArg> {
        debug!(?id, "named_region");
        self.named_variable_map(id.owner).and_then(|map| map.get(&id.local_id).cloned())
    }

    pub fn is_late_bound(self, id: HirId) -> bool {
        self.is_late_bound_map(id.owner).is_some_and(|set| set.contains(&id.local_id))
    }

    pub fn late_bound_vars(self, id: HirId) -> &'tcx List<ty::BoundVariableKind> {
        self.mk_bound_variable_kinds(
            &self
                .late_bound_vars_map(id.owner)
                .and_then(|map| map.get(&id.local_id).cloned())
                .unwrap_or_else(|| {
                    bug!("No bound vars found for {}", self.hir().node_to_string(id))
                }),
        )
    }

    /// Given the def-id of an early-bound lifetime on an RPIT corresponding to
    /// a duplicated captured lifetime, map it back to the early- or late-bound
    /// lifetime of the function from which it originally as captured. If it is
    /// a late-bound lifetime, this will represent the liberated (`ReLateParam`) lifetime
    /// of the signature.
    // FIXME(RPITIT): if we ever synthesize new lifetimes for RPITITs and not just
    // re-use the generics of the opaque, this function will need to be tweaked slightly.
    pub fn map_rpit_lifetime_to_fn_lifetime(
        self,
        mut rpit_lifetime_param_def_id: LocalDefId,
    ) -> ty::Region<'tcx> {
        debug_assert!(
            matches!(self.def_kind(rpit_lifetime_param_def_id), DefKind::LifetimeParam),
            "{rpit_lifetime_param_def_id:?} is a {}",
            self.def_descr(rpit_lifetime_param_def_id.to_def_id())
        );

        loop {
            let parent = self.local_parent(rpit_lifetime_param_def_id);
            let hir::OpaqueTy { lifetime_mapping, .. } =
                self.hir_node_by_def_id(parent).expect_item().expect_opaque_ty();

            let Some((lifetime, _)) = lifetime_mapping
                .iter()
                .find(|(_, duplicated_param)| *duplicated_param == rpit_lifetime_param_def_id)
            else {
                bug!("duplicated lifetime param should be present");
            };

            match self.named_bound_var(lifetime.hir_id) {
                Some(resolve_bound_vars::ResolvedArg::EarlyBound(ebv)) => {
                    let new_parent = self.parent(ebv);

                    // If we map to another opaque, then it should be a parent
                    // of the opaque we mapped from. Continue mapping.
                    if matches!(self.def_kind(new_parent), DefKind::OpaqueTy) {
                        debug_assert_eq!(self.parent(parent.to_def_id()), new_parent);
                        rpit_lifetime_param_def_id = ebv.expect_local();
                        continue;
                    }

                    let generics = self.generics_of(new_parent);
                    return ty::Region::new_early_param(
                        self,
                        ty::EarlyParamRegion {
                            def_id: ebv,
                            index: generics
                                .param_def_id_to_index(self, ebv)
                                .expect("early-bound var should be present in fn generics"),
                            name: self.hir().name(self.local_def_id_to_hir_id(ebv.expect_local())),
                        },
                    );
                }
                Some(resolve_bound_vars::ResolvedArg::LateBound(_, _, lbv)) => {
                    let new_parent = self.parent(lbv);
                    return ty::Region::new_late_param(
                        self,
                        new_parent,
                        ty::BoundRegionKind::BrNamed(
                            lbv,
                            self.hir().name(self.local_def_id_to_hir_id(lbv.expect_local())),
                        ),
                    );
                }
                Some(resolve_bound_vars::ResolvedArg::Error(guar)) => {
                    return ty::Region::new_error(self, guar);
                }
                _ => {
                    return ty::Region::new_error_with_message(
                        self,
                        lifetime.ident.span,
                        "cannot resolve lifetime",
                    );
                }
            }
        }
    }

    /// Whether the `def_id` counts as const fn in the current crate, considering all active
    /// feature gates
    pub fn is_const_fn(self, def_id: DefId) -> bool {
        if self.is_const_fn_raw(def_id) {
            match self.lookup_const_stability(def_id) {
                Some(stability) if stability.is_const_unstable() => {
                    // has a `rustc_const_unstable` attribute, check whether the user enabled the
                    // corresponding feature gate.
                    self.features()
                        .declared_lib_features
                        .iter()
                        .any(|&(sym, _)| sym == stability.feature)
                }
                // functions without const stability are either stable user written
                // const fn or the user is using feature gates and we thus don't
                // care what they do
                _ => true,
            }
        } else {
            false
        }
    }

    /// Whether the trait impl is marked const. This does not consider stability or feature gates.
    pub fn is_const_trait_impl_raw(self, def_id: DefId) -> bool {
        let Some(local_def_id) = def_id.as_local() else { return false };
        let node = self.hir_node_by_def_id(local_def_id);

        matches!(
            node,
            hir::Node::Item(hir::Item {
                kind: hir::ItemKind::Impl(hir::Impl { generics, .. }),
                ..
            }) if generics.params.iter().any(|p| matches!(p.kind, hir::GenericParamKind::Const { is_host_effect: true, .. }))
        )
    }

    pub fn local_def_id_to_hir_id(self, local_def_id: LocalDefId) -> HirId {
        self.opt_local_def_id_to_hir_id(local_def_id).unwrap()
    }

    pub fn next_trait_solver_globally(self) -> bool {
        self.sess.opts.unstable_opts.next_solver.map_or(false, |c| c.globally)
    }

    pub fn next_trait_solver_in_coherence(self) -> bool {
        self.sess.opts.unstable_opts.next_solver.map_or(false, |c| c.coherence)
    }

    pub fn is_impl_trait_in_trait(self, def_id: DefId) -> bool {
        self.opt_rpitit_info(def_id).is_some()
    }

    /// Named module children from all kinds of items, including imports.
    /// In addition to regular items this list also includes struct and variant constructors, and
    /// items inside `extern {}` blocks because all of them introduce names into parent module.
    ///
    /// Module here is understood in name resolution sense - it can be a `mod` item,
    /// or a crate root, or an enum, or a trait.
    ///
    /// This is not a query, making it a query causes perf regressions
    /// (probably due to hashing spans in `ModChild`ren).
    pub fn module_children_local(self, def_id: LocalDefId) -> &'tcx [ModChild] {
        self.resolutions(()).module_children.get(&def_id).map_or(&[], |v| &v[..])
    }
}

/// Parameter attributes that can only be determined by examining the body of a function instead
/// of just its signature.
///
/// These can be useful for optimization purposes when a function is directly called. We compute
/// them and store them into the crate metadata so that downstream crates can make use of them.
///
/// Right now, we only have `read_only`, but `no_capture` and `no_alias` might be useful in the
/// future.
#[derive(Clone, Copy, PartialEq, Debug, Default, TyDecodable, TyEncodable, HashStable)]
pub struct DeducedParamAttrs {
    /// The parameter is marked immutable in the function and contains no `UnsafeCell` (i.e. its
    /// type is freeze).
    pub read_only: bool,
}

pub fn provide(providers: &mut Providers) {
    providers.maybe_unused_trait_imports =
        |tcx, ()| &tcx.resolutions(()).maybe_unused_trait_imports;
    providers.names_imported_by_glob_use = |tcx, id| {
        tcx.arena.alloc(UnordSet::from(
            tcx.resolutions(()).glob_map.get(&id).cloned().unwrap_or_default(),
        ))
    };

    providers.extern_mod_stmt_cnum =
        |tcx, id| tcx.resolutions(()).extern_crate_map.get(&id).cloned();
    providers.is_panic_runtime =
        |tcx, LocalCrate| attr::contains_name(tcx.hir().krate_attrs(), sym::panic_runtime);
    providers.is_compiler_builtins =
        |tcx, LocalCrate| attr::contains_name(tcx.hir().krate_attrs(), sym::compiler_builtins);
    providers.has_panic_handler = |tcx, LocalCrate| {
        // We want to check if the panic handler was defined in this crate
        tcx.lang_items().panic_impl().is_some_and(|did| did.is_local())
    };
    providers.source_span = |tcx, def_id| tcx.untracked.source_span.get(def_id).unwrap_or(DUMMY_SP);
}