rustc_next_trait_solver/solve/eval_ctxt/
canonical.rs

1//! Canonicalization is used to separate some goal from its context,
2//! throwing away unnecessary information in the process.
3//!
4//! This is necessary to cache goals containing inference variables
5//! and placeholders without restricting them to the current `InferCtxt`.
6//!
7//! Canonicalization is fairly involved, for more details see the relevant
8//! section of the [rustc-dev-guide][c].
9//!
10//! [c]: https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html
11
12use std::iter;
13
14use rustc_index::IndexVec;
15use rustc_type_ir::data_structures::HashSet;
16use rustc_type_ir::inherent::*;
17use rustc_type_ir::relate::solver_relating::RelateExt;
18use rustc_type_ir::{
19    self as ty, Canonical, CanonicalVarValues, InferCtxtLike, Interner, TypeFoldable,
20};
21use tracing::{debug, instrument, trace};
22
23use crate::canonicalizer::Canonicalizer;
24use crate::delegate::SolverDelegate;
25use crate::resolve::eager_resolve_vars;
26use crate::solve::eval_ctxt::CurrentGoalKind;
27use crate::solve::{
28    CanonicalInput, CanonicalResponse, Certainty, EvalCtxt, ExternalConstraintsData, Goal,
29    MaybeCause, NestedNormalizationGoals, NoSolution, PredefinedOpaquesData, QueryInput,
30    QueryResult, Response, inspect, response_no_constraints_raw,
31};
32
33trait ResponseT<I: Interner> {
34    fn var_values(&self) -> CanonicalVarValues<I>;
35}
36
37impl<I: Interner> ResponseT<I> for Response<I> {
38    fn var_values(&self) -> CanonicalVarValues<I> {
39        self.var_values
40    }
41}
42
43impl<I: Interner, T> ResponseT<I> for inspect::State<I, T> {
44    fn var_values(&self) -> CanonicalVarValues<I> {
45        self.var_values
46    }
47}
48
49impl<D, I> EvalCtxt<'_, D>
50where
51    D: SolverDelegate<Interner = I>,
52    I: Interner,
53{
54    /// Canonicalizes the goal remembering the original values
55    /// for each bound variable.
56    ///
57    /// This expects `goal` and `opaque_types` to be eager resolved.
58    pub(super) fn canonicalize_goal(
59        &self,
60        is_hir_typeck_root_goal: bool,
61        goal: Goal<I, I::Predicate>,
62        opaque_types: Vec<(ty::OpaqueTypeKey<I>, I::Ty)>,
63    ) -> (Vec<I::GenericArg>, CanonicalInput<I, I::Predicate>) {
64        let mut orig_values = Default::default();
65        let canonical = Canonicalizer::canonicalize_input(
66            self.delegate,
67            &mut orig_values,
68            is_hir_typeck_root_goal,
69            QueryInput {
70                goal,
71                predefined_opaques_in_body: self
72                    .cx()
73                    .mk_predefined_opaques_in_body(PredefinedOpaquesData { opaque_types }),
74            },
75        );
76        let query_input = ty::CanonicalQueryInput { canonical, typing_mode: self.typing_mode() };
77        (orig_values, query_input)
78    }
79
80    /// To return the constraints of a canonical query to the caller, we canonicalize:
81    ///
82    /// - `var_values`: a map from bound variables in the canonical goal to
83    ///   the values inferred while solving the instantiated goal.
84    /// - `external_constraints`: additional constraints which aren't expressible
85    ///   using simple unification of inference variables.
86    ///
87    /// This takes the `shallow_certainty` which represents whether we're confident
88    /// that the final result of the current goal only depends on the nested goals.
89    ///
90    /// In case this is `Certainty::Maybe`, there may still be additional nested goals
91    /// or inference constraints required for this candidate to be hold. The candidate
92    /// always requires all already added constraints and nested goals.
93    #[instrument(level = "trace", skip(self), ret)]
94    pub(in crate::solve) fn evaluate_added_goals_and_make_canonical_response(
95        &mut self,
96        shallow_certainty: Certainty,
97    ) -> QueryResult<I> {
98        self.inspect.make_canonical_response(shallow_certainty);
99
100        let goals_certainty = self.try_evaluate_added_goals()?;
101        assert_eq!(
102            self.tainted,
103            Ok(()),
104            "EvalCtxt is tainted -- nested goals may have been dropped in a \
105            previous call to `try_evaluate_added_goals!`"
106        );
107
108        // We only check for leaks from universes which were entered inside
109        // of the query.
110        self.delegate.leak_check(self.max_input_universe).map_err(|NoSolution| {
111            trace!("failed the leak check");
112            NoSolution
113        })?;
114
115        let (certainty, normalization_nested_goals) =
116            match (self.current_goal_kind, shallow_certainty) {
117                // When normalizing, we've replaced the expected term with an unconstrained
118                // inference variable. This means that we dropped information which could
119                // have been important. We handle this by instead returning the nested goals
120                // to the caller, where they are then handled. We only do so if we do not
121                // need to recompute the `NormalizesTo` goal afterwards to avoid repeatedly
122                // uplifting its nested goals. This is the case if the `shallow_certainty` is
123                // `Certainty::Yes`.
124                (CurrentGoalKind::NormalizesTo, Certainty::Yes) => {
125                    let goals = std::mem::take(&mut self.nested_goals);
126                    // As we return all ambiguous nested goals, we can ignore the certainty
127                    // returned by `self.try_evaluate_added_goals()`.
128                    if goals.is_empty() {
129                        assert!(matches!(goals_certainty, Certainty::Yes));
130                    }
131                    (
132                        Certainty::Yes,
133                        NestedNormalizationGoals(
134                            goals.into_iter().map(|(s, g, _)| (s, g)).collect(),
135                        ),
136                    )
137                }
138                _ => {
139                    let certainty = shallow_certainty.and(goals_certainty);
140                    (certainty, NestedNormalizationGoals::empty())
141                }
142            };
143
144        if let Certainty::Maybe(cause @ MaybeCause::Overflow { keep_constraints: false, .. }) =
145            certainty
146        {
147            // If we have overflow, it's probable that we're substituting a type
148            // into itself infinitely and any partial substitutions in the query
149            // response are probably not useful anyways, so just return an empty
150            // query response.
151            //
152            // This may prevent us from potentially useful inference, e.g.
153            // 2 candidates, one ambiguous and one overflow, which both
154            // have the same inference constraints.
155            //
156            // Changing this to retain some constraints in the future
157            // won't be a breaking change, so this is good enough for now.
158            return Ok(self.make_ambiguous_response_no_constraints(cause));
159        }
160
161        let external_constraints =
162            self.compute_external_query_constraints(certainty, normalization_nested_goals);
163        let (var_values, mut external_constraints) =
164            eager_resolve_vars(self.delegate, (self.var_values, external_constraints));
165
166        // Remove any trivial or duplicated region constraints once we've resolved regions
167        let mut unique = HashSet::default();
168        external_constraints.region_constraints.retain(|outlives| {
169            outlives.0.as_region().is_none_or(|re| re != outlives.1) && unique.insert(*outlives)
170        });
171
172        let canonical = Canonicalizer::canonicalize_response(
173            self.delegate,
174            self.max_input_universe,
175            &mut Default::default(),
176            Response {
177                var_values,
178                certainty,
179                external_constraints: self.cx().mk_external_constraints(external_constraints),
180            },
181        );
182
183        // HACK: We bail with overflow if the response would have too many non-region
184        // inference variables. This tends to only happen if we encounter a lot of
185        // ambiguous alias types which get replaced with fresh inference variables
186        // during generalization. This prevents hangs caused by an exponential blowup,
187        // see tests/ui/traits/next-solver/coherence-alias-hang.rs.
188        match self.current_goal_kind {
189            // We don't do so for `NormalizesTo` goals as we erased the expected term and
190            // bailing with overflow here would prevent us from detecting a type-mismatch,
191            // causing a coherence error in diesel, see #131969. We still bail with overflow
192            // when later returning from the parent AliasRelate goal.
193            CurrentGoalKind::NormalizesTo => {}
194            CurrentGoalKind::Misc | CurrentGoalKind::CoinductiveTrait => {
195                let num_non_region_vars = canonical
196                    .variables
197                    .iter()
198                    .filter(|c| !c.is_region() && c.is_existential())
199                    .count();
200                if num_non_region_vars > self.cx().recursion_limit() {
201                    debug!(?num_non_region_vars, "too many inference variables -> overflow");
202                    return Ok(self.make_ambiguous_response_no_constraints(MaybeCause::Overflow {
203                        suggest_increasing_limit: true,
204                        keep_constraints: false,
205                    }));
206                }
207            }
208        }
209
210        Ok(canonical)
211    }
212
213    /// Constructs a totally unconstrained, ambiguous response to a goal.
214    ///
215    /// Take care when using this, since often it's useful to respond with
216    /// ambiguity but return constrained variables to guide inference.
217    pub(in crate::solve) fn make_ambiguous_response_no_constraints(
218        &self,
219        maybe_cause: MaybeCause,
220    ) -> CanonicalResponse<I> {
221        response_no_constraints_raw(
222            self.cx(),
223            self.max_input_universe,
224            self.variables,
225            Certainty::Maybe(maybe_cause),
226        )
227    }
228
229    /// Computes the region constraints and *new* opaque types registered when
230    /// proving a goal.
231    ///
232    /// If an opaque was already constrained before proving this goal, then the
233    /// external constraints do not need to record that opaque, since if it is
234    /// further constrained by inference, that will be passed back in the var
235    /// values.
236    #[instrument(level = "trace", skip(self), ret)]
237    fn compute_external_query_constraints(
238        &self,
239        certainty: Certainty,
240        normalization_nested_goals: NestedNormalizationGoals<I>,
241    ) -> ExternalConstraintsData<I> {
242        // We only return region constraints once the certainty is `Yes`. This
243        // is necessary as we may drop nested goals on ambiguity, which may result
244        // in unconstrained inference variables in the region constraints. It also
245        // prevents us from emitting duplicate region constraints, avoiding some
246        // unnecessary work. This slightly weakens the leak check in case it uses
247        // region constraints from an ambiguous nested goal. This is tested in both
248        // `tests/ui/higher-ranked/leak-check/leak-check-in-selection-5-ambig.rs` and
249        // `tests/ui/higher-ranked/leak-check/leak-check-in-selection-6-ambig-unify.rs`.
250        let region_constraints = if certainty == Certainty::Yes {
251            self.delegate.make_deduplicated_outlives_constraints()
252        } else {
253            Default::default()
254        };
255
256        // We only return *newly defined* opaque types from canonical queries.
257        //
258        // Constraints for any existing opaque types are already tracked by changes
259        // to the `var_values`.
260        let opaque_types = self
261            .delegate
262            .clone_opaque_types_added_since(self.initial_opaque_types_storage_num_entries);
263
264        ExternalConstraintsData { region_constraints, opaque_types, normalization_nested_goals }
265    }
266
267    /// After calling a canonical query, we apply the constraints returned
268    /// by the query using this function.
269    ///
270    /// This happens in three steps:
271    /// - we instantiate the bound variables of the query response
272    /// - we unify the `var_values` of the response with the `original_values`
273    /// - we apply the `external_constraints` returned by the query, returning
274    ///   the `normalization_nested_goals`
275    pub(super) fn instantiate_and_apply_query_response(
276        &mut self,
277        param_env: I::ParamEnv,
278        original_values: &[I::GenericArg],
279        response: CanonicalResponse<I>,
280    ) -> (NestedNormalizationGoals<I>, Certainty) {
281        let instantiation = Self::compute_query_response_instantiation_values(
282            self.delegate,
283            &original_values,
284            &response,
285            self.origin_span,
286        );
287
288        let Response { var_values, external_constraints, certainty } =
289            self.delegate.instantiate_canonical(response, instantiation);
290
291        Self::unify_query_var_values(
292            self.delegate,
293            param_env,
294            &original_values,
295            var_values,
296            self.origin_span,
297        );
298
299        let ExternalConstraintsData {
300            region_constraints,
301            opaque_types,
302            normalization_nested_goals,
303        } = &*external_constraints;
304
305        self.register_region_constraints(region_constraints);
306        self.register_new_opaque_types(opaque_types);
307
308        (normalization_nested_goals.clone(), certainty)
309    }
310
311    /// This returns the canonical variable values to instantiate the bound variables of
312    /// the canonical response. This depends on the `original_values` for the
313    /// bound variables.
314    fn compute_query_response_instantiation_values<T: ResponseT<I>>(
315        delegate: &D,
316        original_values: &[I::GenericArg],
317        response: &Canonical<I, T>,
318        span: I::Span,
319    ) -> CanonicalVarValues<I> {
320        // FIXME: Longterm canonical queries should deal with all placeholders
321        // created inside of the query directly instead of returning them to the
322        // caller.
323        let prev_universe = delegate.universe();
324        let universes_created_in_query = response.max_universe.index();
325        for _ in 0..universes_created_in_query {
326            delegate.create_next_universe();
327        }
328
329        let var_values = response.value.var_values();
330        assert_eq!(original_values.len(), var_values.len());
331
332        // If the query did not make progress with constraining inference variables,
333        // we would normally create a new inference variables for bound existential variables
334        // only then unify this new inference variable with the inference variable from
335        // the input.
336        //
337        // We therefore instantiate the existential variable in the canonical response with the
338        // inference variable of the input right away, which is more performant.
339        let mut opt_values = IndexVec::from_elem_n(None, response.variables.len());
340        for (original_value, result_value) in
341            iter::zip(original_values, var_values.var_values.iter())
342        {
343            match result_value.kind() {
344                ty::GenericArgKind::Type(t) => {
345                    if let ty::Bound(debruijn, b) = t.kind() {
346                        assert_eq!(debruijn, ty::INNERMOST);
347                        opt_values[b.var()] = Some(*original_value);
348                    }
349                }
350                ty::GenericArgKind::Lifetime(r) => {
351                    if let ty::ReBound(debruijn, br) = r.kind() {
352                        assert_eq!(debruijn, ty::INNERMOST);
353                        opt_values[br.var()] = Some(*original_value);
354                    }
355                }
356                ty::GenericArgKind::Const(c) => {
357                    if let ty::ConstKind::Bound(debruijn, bv) = c.kind() {
358                        assert_eq!(debruijn, ty::INNERMOST);
359                        opt_values[bv.var()] = Some(*original_value);
360                    }
361                }
362            }
363        }
364
365        let var_values = delegate.cx().mk_args_from_iter(
366            response.variables.iter().enumerate().map(|(index, var_kind)| {
367                if var_kind.universe() != ty::UniverseIndex::ROOT {
368                    // A variable from inside a binder of the query. While ideally these shouldn't
369                    // exist at all (see the FIXME at the start of this method), we have to deal with
370                    // them for now.
371                    delegate.instantiate_canonical_var_with_infer(var_kind, span, |idx| {
372                        prev_universe + idx.index()
373                    })
374                } else if var_kind.is_existential() {
375                    // As an optimization we sometimes avoid creating a new inference variable here.
376                    //
377                    // All new inference variables we create start out in the current universe of the caller.
378                    // This is conceptually wrong as these inference variables would be able to name
379                    // more placeholders then they should be able to. However the inference variables have
380                    // to "come from somewhere", so by equating them with the original values of the caller
381                    // later on, we pull them down into their correct universe again.
382                    if let Some(v) = opt_values[ty::BoundVar::from_usize(index)] {
383                        v
384                    } else {
385                        delegate
386                            .instantiate_canonical_var_with_infer(var_kind, span, |_| prev_universe)
387                    }
388                } else {
389                    // For placeholders which were already part of the input, we simply map this
390                    // universal bound variable back the placeholder of the input.
391                    original_values[var_kind.expect_placeholder_index()]
392                }
393            }),
394        );
395
396        CanonicalVarValues { var_values }
397    }
398
399    /// Unify the `original_values` with the `var_values` returned by the canonical query..
400    ///
401    /// This assumes that this unification will always succeed. This is the case when
402    /// applying a query response right away. However, calling a canonical query, doing any
403    /// other kind of trait solving, and only then instantiating the result of the query
404    /// can cause the instantiation to fail. This is not supported and we ICE in this case.
405    ///
406    /// We always structurally instantiate aliases. Relating aliases needs to be different
407    /// depending on whether the alias is *rigid* or not. We're only really able to tell
408    /// whether an alias is rigid by using the trait solver. When instantiating a response
409    /// from the solver we assume that the solver correctly handled aliases and therefore
410    /// always relate them structurally here.
411    #[instrument(level = "trace", skip(delegate))]
412    fn unify_query_var_values(
413        delegate: &D,
414        param_env: I::ParamEnv,
415        original_values: &[I::GenericArg],
416        var_values: CanonicalVarValues<I>,
417        span: I::Span,
418    ) {
419        assert_eq!(original_values.len(), var_values.len());
420
421        for (&orig, response) in iter::zip(original_values, var_values.var_values.iter()) {
422            let goals =
423                delegate.eq_structurally_relating_aliases(param_env, orig, response, span).unwrap();
424            assert!(goals.is_empty());
425        }
426    }
427
428    fn register_region_constraints(
429        &mut self,
430        outlives: &[ty::OutlivesPredicate<I, I::GenericArg>],
431    ) {
432        for &ty::OutlivesPredicate(lhs, rhs) in outlives {
433            match lhs.kind() {
434                ty::GenericArgKind::Lifetime(lhs) => self.register_region_outlives(lhs, rhs),
435                ty::GenericArgKind::Type(lhs) => self.register_ty_outlives(lhs, rhs),
436                ty::GenericArgKind::Const(_) => panic!("const outlives: {lhs:?}: {rhs:?}"),
437            }
438        }
439    }
440
441    fn register_new_opaque_types(&mut self, opaque_types: &[(ty::OpaqueTypeKey<I>, I::Ty)]) {
442        for &(key, ty) in opaque_types {
443            let prev = self.delegate.register_hidden_type_in_storage(key, ty, self.origin_span);
444            // We eagerly resolve inference variables when computing the query response.
445            // This can cause previously distinct opaque type keys to now be structurally equal.
446            //
447            // To handle this, we store any duplicate entries in a separate list to check them
448            // at the end of typeck/borrowck. We could alternatively eagerly equate the hidden
449            // types here. However, doing so is difficult as it may result in nested goals and
450            // any errors may make it harder to track the control flow for diagnostics.
451            if let Some(prev) = prev {
452                self.delegate.add_duplicate_opaque_type(key, prev, self.origin_span);
453            }
454        }
455    }
456}
457
458/// Used by proof trees to be able to recompute intermediate actions while
459/// evaluating a goal. The `var_values` not only include the bound variables
460/// of the query input, but also contain all unconstrained inference vars
461/// created while evaluating this goal.
462pub(in crate::solve) fn make_canonical_state<D, T, I>(
463    delegate: &D,
464    var_values: &[I::GenericArg],
465    max_input_universe: ty::UniverseIndex,
466    data: T,
467) -> inspect::CanonicalState<I, T>
468where
469    D: SolverDelegate<Interner = I>,
470    I: Interner,
471    T: TypeFoldable<I>,
472{
473    let var_values = CanonicalVarValues { var_values: delegate.cx().mk_args(var_values) };
474    let state = inspect::State { var_values, data };
475    let state = eager_resolve_vars(delegate, state);
476    Canonicalizer::canonicalize_response(delegate, max_input_universe, &mut vec![], state)
477}
478
479// FIXME: needs to be pub to be accessed by downstream
480// `rustc_trait_selection::solve::inspect::analyse`.
481pub fn instantiate_canonical_state<D, I, T: TypeFoldable<I>>(
482    delegate: &D,
483    span: I::Span,
484    param_env: I::ParamEnv,
485    orig_values: &mut Vec<I::GenericArg>,
486    state: inspect::CanonicalState<I, T>,
487) -> T
488where
489    D: SolverDelegate<Interner = I>,
490    I: Interner,
491{
492    // In case any fresh inference variables have been created between `state`
493    // and the previous instantiation, extend `orig_values` for it.
494    orig_values.extend(
495        state.value.var_values.var_values.as_slice()[orig_values.len()..]
496            .iter()
497            .map(|&arg| delegate.fresh_var_for_kind_with_span(arg, span)),
498    );
499
500    let instantiation =
501        EvalCtxt::compute_query_response_instantiation_values(delegate, orig_values, &state, span);
502
503    let inspect::State { var_values, data } = delegate.instantiate_canonical(state, instantiation);
504
505    EvalCtxt::unify_query_var_values(delegate, param_env, orig_values, var_values, span);
506    data
507}