1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
use std::cell::OnceCell;

use rustc_data_structures::graph::iterate::DepthFirstSearch;
use rustc_data_structures::graph::vec_graph::VecGraph;
use rustc_data_structures::graph::{self};
use rustc_data_structures::unord::{UnordBag, UnordMap, UnordSet};
use rustc_hir as hir;
use rustc_hir::intravisit::Visitor;
use rustc_hir::HirId;
use rustc_infer::infer::{DefineOpaqueTypes, InferOk};
use rustc_middle::bug;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
use rustc_session::lint;
use rustc_span::def_id::LocalDefId;
use rustc_span::{Span, DUMMY_SP};
use rustc_trait_selection::traits::{ObligationCause, ObligationCtxt};
use tracing::debug;

use crate::{errors, FnCtxt, TypeckRootCtxt};

#[derive(Copy, Clone)]
pub(crate) enum DivergingFallbackBehavior {
    /// Always fallback to `()` (aka "always spontaneous decay")
    ToUnit,
    /// Sometimes fallback to `!`, but mainly fallback to `()` so that most of the crates are not broken.
    ContextDependent,
    /// Always fallback to `!` (which should be equivalent to never falling back + not making
    /// never-to-any coercions unless necessary)
    ToNever,
    /// Don't fallback at all
    NoFallback,
}

impl<'tcx> FnCtxt<'_, 'tcx> {
    /// Performs type inference fallback, setting `FnCtxt::fallback_has_occurred`
    /// if fallback has occurred.
    pub(super) fn type_inference_fallback(&self) {
        debug!(
            "type-inference-fallback start obligations: {:#?}",
            self.fulfillment_cx.borrow_mut().pending_obligations()
        );

        // All type checking constraints were added, try to fallback unsolved variables.
        self.select_obligations_where_possible(|_| {});

        debug!(
            "type-inference-fallback post selection obligations: {:#?}",
            self.fulfillment_cx.borrow_mut().pending_obligations()
        );

        let fallback_occurred = self.fallback_types() | self.fallback_effects();

        if !fallback_occurred {
            return;
        }

        // We now see if we can make progress. This might cause us to
        // unify inference variables for opaque types, since we may
        // have unified some other type variables during the first
        // phase of fallback. This means that we only replace
        // inference variables with their underlying opaque types as a
        // last resort.
        //
        // In code like this:
        //
        // ```rust
        // type MyType = impl Copy;
        // fn produce() -> MyType { true }
        // fn bad_produce() -> MyType { panic!() }
        // ```
        //
        // we want to unify the opaque inference variable in `bad_produce`
        // with the diverging fallback for `panic!` (e.g. `()` or `!`).
        // This will produce a nice error message about conflicting concrete
        // types for `MyType`.
        //
        // If we had tried to fallback the opaque inference variable to `MyType`,
        // we will generate a confusing type-check error that does not explicitly
        // refer to opaque types.
        self.select_obligations_where_possible(|_| {});
    }

    fn fallback_types(&self) -> bool {
        // Check if we have any unresolved variables. If not, no need for fallback.
        let unresolved_variables = self.unresolved_variables();

        if unresolved_variables.is_empty() {
            return false;
        }

        let diverging_fallback = self
            .calculate_diverging_fallback(&unresolved_variables, self.diverging_fallback_behavior);

        // We do fallback in two passes, to try to generate
        // better error messages.
        // The first time, we do *not* replace opaque types.
        let mut fallback_occurred = false;
        for ty in unresolved_variables {
            debug!("unsolved_variable = {:?}", ty);
            fallback_occurred |= self.fallback_if_possible(ty, &diverging_fallback);
        }

        fallback_occurred
    }

    fn fallback_effects(&self) -> bool {
        let unsolved_effects = self.unsolved_effects();

        if unsolved_effects.is_empty() {
            return false;
        }

        // not setting the `fallback_has_occurred` field here because
        // that field is only used for type fallback diagnostics.
        for effect in unsolved_effects {
            let expected = self.tcx.consts.true_;
            let cause = self.misc(DUMMY_SP);
            match self.at(&cause, self.param_env).eq(DefineOpaqueTypes::Yes, expected, effect) {
                Ok(InferOk { obligations, value: () }) => {
                    self.register_predicates(obligations);
                }
                Err(e) => {
                    bug!("cannot eq unsolved effect: {e:?}")
                }
            }
        }

        true
    }

    // Tries to apply a fallback to `ty` if it is an unsolved variable.
    //
    // - Unconstrained ints are replaced with `i32`.
    //
    // - Unconstrained floats are replaced with `f64`.
    //
    // - Non-numerics may get replaced with `()` or `!`, depending on
    //   how they were categorized by `calculate_diverging_fallback`
    //   (and the setting of `#![feature(never_type_fallback)]`).
    //
    // Fallback becomes very dubious if we have encountered
    // type-checking errors. In that case, fallback to Error.
    //
    // Sets `FnCtxt::fallback_has_occurred` if fallback is performed
    // during this call.
    fn fallback_if_possible(
        &self,
        ty: Ty<'tcx>,
        diverging_fallback: &UnordMap<Ty<'tcx>, Ty<'tcx>>,
    ) -> bool {
        // Careful: we do NOT shallow-resolve `ty`. We know that `ty`
        // is an unsolved variable, and we determine its fallback
        // based solely on how it was created, not what other type
        // variables it may have been unified with since then.
        //
        // The reason this matters is that other attempts at fallback
        // may (in principle) conflict with this fallback, and we wish
        // to generate a type error in that case. (However, this
        // actually isn't true right now, because we're only using the
        // builtin fallback rules. This would be true if we were using
        // user-supplied fallbacks. But it's still useful to write the
        // code to detect bugs.)
        //
        // (Note though that if we have a general type variable `?T`
        // that is then unified with an integer type variable `?I`
        // that ultimately never gets resolved to a special integral
        // type, `?T` is not considered unsolved, but `?I` is. The
        // same is true for float variables.)
        let fallback = match ty.kind() {
            _ if let Some(e) = self.tainted_by_errors() => Ty::new_error(self.tcx, e),
            ty::Infer(ty::IntVar(_)) => self.tcx.types.i32,
            ty::Infer(ty::FloatVar(_)) => self.tcx.types.f64,
            _ => match diverging_fallback.get(&ty) {
                Some(&fallback_ty) => fallback_ty,
                None => return false,
            },
        };
        debug!("fallback_if_possible(ty={:?}): defaulting to `{:?}`", ty, fallback);

        let span = ty.ty_vid().map_or(DUMMY_SP, |vid| self.infcx.type_var_origin(vid).span);
        self.demand_eqtype(span, ty, fallback);
        self.fallback_has_occurred.set(true);
        true
    }

    /// The "diverging fallback" system is rather complicated. This is
    /// a result of our need to balance 'do the right thing' with
    /// backwards compatibility.
    ///
    /// "Diverging" type variables are variables created when we
    /// coerce a `!` type into an unbound type variable `?X`. If they
    /// never wind up being constrained, the "right and natural" thing
    /// is that `?X` should "fallback" to `!`. This means that e.g. an
    /// expression like `Some(return)` will ultimately wind up with a
    /// type like `Option<!>` (presuming it is not assigned or
    /// constrained to have some other type).
    ///
    /// However, the fallback used to be `()` (before the `!` type was
    /// added). Moreover, there are cases where the `!` type 'leaks
    /// out' from dead code into type variables that affect live
    /// code. The most common case is something like this:
    ///
    /// ```rust
    /// # fn foo() -> i32 { 4 }
    /// match foo() {
    ///     22 => Default::default(), // call this type `?D`
    ///     _ => return, // return has type `!`
    /// } // call the type of this match `?M`
    /// ```
    ///
    /// Here, coercing the type `!` into `?M` will create a diverging
    /// type variable `?X` where `?X <: ?M`. We also have that `?D <:
    /// ?M`. If `?M` winds up unconstrained, then `?X` will
    /// fallback. If it falls back to `!`, then all the type variables
    /// will wind up equal to `!` -- this includes the type `?D`
    /// (since `!` doesn't implement `Default`, we wind up a "trait
    /// not implemented" error in code like this). But since the
    /// original fallback was `()`, this code used to compile with `?D
    /// = ()`. This is somewhat surprising, since `Default::default()`
    /// on its own would give an error because the types are
    /// insufficiently constrained.
    ///
    /// Our solution to this dilemma is to modify diverging variables
    /// so that they can *either* fallback to `!` (the default) or to
    /// `()` (the backwards compatibility case). We decide which
    /// fallback to use based on whether there is a coercion pattern
    /// like this:
    ///
    /// ```ignore (not-rust)
    /// ?Diverging -> ?V
    /// ?NonDiverging -> ?V
    /// ?V != ?NonDiverging
    /// ```
    ///
    /// Here `?Diverging` represents some diverging type variable and
    /// `?NonDiverging` represents some non-diverging type
    /// variable. `?V` can be any type variable (diverging or not), so
    /// long as it is not equal to `?NonDiverging`.
    ///
    /// Intuitively, what we are looking for is a case where a
    /// "non-diverging" type variable (like `?M` in our example above)
    /// is coerced *into* some variable `?V` that would otherwise
    /// fallback to `!`. In that case, we make `?V` fallback to `!`,
    /// along with anything that would flow into `?V`.
    ///
    /// The algorithm we use:
    /// * Identify all variables that are coerced *into* by a
    ///   diverging variable. Do this by iterating over each
    ///   diverging, unsolved variable and finding all variables
    ///   reachable from there. Call that set `D`.
    /// * Walk over all unsolved, non-diverging variables, and find
    ///   any variable that has an edge into `D`.
    fn calculate_diverging_fallback(
        &self,
        unresolved_variables: &[Ty<'tcx>],
        behavior: DivergingFallbackBehavior,
    ) -> UnordMap<Ty<'tcx>, Ty<'tcx>> {
        debug!("calculate_diverging_fallback({:?})", unresolved_variables);

        // Construct a coercion graph where an edge `A -> B` indicates
        // a type variable is that is coerced
        let coercion_graph = self.create_coercion_graph();

        // Extract the unsolved type inference variable vids; note that some
        // unsolved variables are integer/float variables and are excluded.
        let unsolved_vids = unresolved_variables.iter().filter_map(|ty| ty.ty_vid());

        // Compute the diverging root vids D -- that is, the root vid of
        // those type variables that (a) are the target of a coercion from
        // a `!` type and (b) have not yet been solved.
        //
        // These variables are the ones that are targets for fallback to
        // either `!` or `()`.
        let diverging_roots: UnordSet<ty::TyVid> = self
            .diverging_type_vars
            .borrow()
            .items()
            .map(|&ty| self.shallow_resolve(ty))
            .filter_map(|ty| ty.ty_vid())
            .map(|vid| self.root_var(vid))
            .collect();
        debug!(
            "calculate_diverging_fallback: diverging_type_vars={:?}",
            self.diverging_type_vars.borrow()
        );
        debug!("calculate_diverging_fallback: diverging_roots={:?}", diverging_roots);

        // Find all type variables that are reachable from a diverging
        // type variable. These will typically default to `!`, unless
        // we find later that they are *also* reachable from some
        // other type variable outside this set.
        let mut roots_reachable_from_diverging = DepthFirstSearch::new(&coercion_graph);
        let mut diverging_vids = vec![];
        let mut non_diverging_vids = vec![];
        for unsolved_vid in unsolved_vids {
            let root_vid = self.root_var(unsolved_vid);
            debug!(
                "calculate_diverging_fallback: unsolved_vid={:?} root_vid={:?} diverges={:?}",
                unsolved_vid,
                root_vid,
                diverging_roots.contains(&root_vid),
            );
            if diverging_roots.contains(&root_vid) {
                diverging_vids.push(unsolved_vid);
                roots_reachable_from_diverging.push_start_node(root_vid);

                debug!(
                    "calculate_diverging_fallback: root_vid={:?} reaches {:?}",
                    root_vid,
                    graph::depth_first_search(&coercion_graph, root_vid).collect::<Vec<_>>()
                );

                // drain the iterator to visit all nodes reachable from this node
                roots_reachable_from_diverging.complete_search();
            } else {
                non_diverging_vids.push(unsolved_vid);
            }
        }

        debug!(
            "calculate_diverging_fallback: roots_reachable_from_diverging={:?}",
            roots_reachable_from_diverging,
        );

        // Find all type variables N0 that are not reachable from a
        // diverging variable, and then compute the set reachable from
        // N0, which we call N. These are the *non-diverging* type
        // variables. (Note that this set consists of "root variables".)
        let mut roots_reachable_from_non_diverging = DepthFirstSearch::new(&coercion_graph);
        for &non_diverging_vid in &non_diverging_vids {
            let root_vid = self.root_var(non_diverging_vid);
            if roots_reachable_from_diverging.visited(root_vid) {
                continue;
            }
            roots_reachable_from_non_diverging.push_start_node(root_vid);
            roots_reachable_from_non_diverging.complete_search();
        }
        debug!(
            "calculate_diverging_fallback: roots_reachable_from_non_diverging={:?}",
            roots_reachable_from_non_diverging,
        );

        debug!("obligations: {:#?}", self.fulfillment_cx.borrow_mut().pending_obligations());

        // For each diverging variable, figure out whether it can
        // reach a member of N. If so, it falls back to `()`. Else
        // `!`.
        let mut diverging_fallback = UnordMap::with_capacity(diverging_vids.len());
        let unsafe_infer_vars = OnceCell::new();

        self.lint_obligations_broken_by_never_type_fallback_change(behavior, &diverging_vids);

        for &diverging_vid in &diverging_vids {
            let diverging_ty = Ty::new_var(self.tcx, diverging_vid);
            let root_vid = self.root_var(diverging_vid);
            let can_reach_non_diverging = graph::depth_first_search(&coercion_graph, root_vid)
                .any(|n| roots_reachable_from_non_diverging.visited(n));

            let infer_var_infos: UnordBag<_> = self
                .infer_var_info
                .borrow()
                .items()
                .filter(|&(vid, _)| self.infcx.root_var(*vid) == root_vid)
                .map(|(_, info)| *info)
                .collect();

            let found_infer_var_info = ty::InferVarInfo {
                self_in_trait: infer_var_infos.items().any(|info| info.self_in_trait),
                output: infer_var_infos.items().any(|info| info.output),
            };

            let mut fallback_to = |ty| {
                self.lint_never_type_fallback_flowing_into_unsafe_code(
                    &unsafe_infer_vars,
                    &coercion_graph,
                    root_vid,
                );

                diverging_fallback.insert(diverging_ty, ty);
            };

            match behavior {
                DivergingFallbackBehavior::ToUnit => {
                    debug!("fallback to () - legacy: {:?}", diverging_vid);
                    fallback_to(self.tcx.types.unit);
                }
                DivergingFallbackBehavior::ContextDependent => {
                    if found_infer_var_info.self_in_trait && found_infer_var_info.output {
                        // This case falls back to () to ensure that the code pattern in
                        // tests/ui/never_type/fallback-closure-ret.rs continues to
                        // compile when never_type_fallback is enabled.
                        //
                        // This rule is not readily explainable from first principles,
                        // but is rather intended as a patchwork fix to ensure code
                        // which compiles before the stabilization of never type
                        // fallback continues to work.
                        //
                        // Typically this pattern is encountered in a function taking a
                        // closure as a parameter, where the return type of that closure
                        // (checked by `relationship.output`) is expected to implement
                        // some trait (checked by `relationship.self_in_trait`). This
                        // can come up in non-closure cases too, so we do not limit this
                        // rule to specifically `FnOnce`.
                        //
                        // When the closure's body is something like `panic!()`, the
                        // return type would normally be inferred to `!`. However, it
                        // needs to fall back to `()` in order to still compile, as the
                        // trait is specifically implemented for `()` but not `!`.
                        //
                        // For details on the requirements for these relationships to be
                        // set, see the relationship finding module in
                        // compiler/rustc_trait_selection/src/traits/relationships.rs.
                        debug!("fallback to () - found trait and projection: {:?}", diverging_vid);
                        fallback_to(self.tcx.types.unit);
                    } else if can_reach_non_diverging {
                        debug!("fallback to () - reached non-diverging: {:?}", diverging_vid);
                        fallback_to(self.tcx.types.unit);
                    } else {
                        debug!("fallback to ! - all diverging: {:?}", diverging_vid);
                        fallback_to(self.tcx.types.never);
                    }
                }
                DivergingFallbackBehavior::ToNever => {
                    debug!(
                        "fallback to ! - `rustc_never_type_mode = \"fallback_to_never\")`: {:?}",
                        diverging_vid
                    );
                    fallback_to(self.tcx.types.never);
                }
                DivergingFallbackBehavior::NoFallback => {
                    debug!(
                        "no fallback - `rustc_never_type_mode = \"no_fallback\"`: {:?}",
                        diverging_vid
                    );
                }
            }
        }

        diverging_fallback
    }

    fn lint_never_type_fallback_flowing_into_unsafe_code(
        &self,
        unsafe_infer_vars: &OnceCell<UnordMap<ty::TyVid, (HirId, Span, UnsafeUseReason)>>,
        coercion_graph: &VecGraph<ty::TyVid, true>,
        root_vid: ty::TyVid,
    ) {
        let unsafe_infer_vars = unsafe_infer_vars.get_or_init(|| {
            let unsafe_infer_vars = compute_unsafe_infer_vars(self.root_ctxt, self.body_id);
            debug!(?unsafe_infer_vars);
            unsafe_infer_vars
        });

        let affected_unsafe_infer_vars =
            graph::depth_first_search_as_undirected(&coercion_graph, root_vid)
                .filter_map(|x| unsafe_infer_vars.get(&x).copied())
                .collect::<Vec<_>>();

        for (hir_id, span, reason) in affected_unsafe_infer_vars {
            self.tcx.emit_node_span_lint(
                lint::builtin::NEVER_TYPE_FALLBACK_FLOWING_INTO_UNSAFE,
                hir_id,
                span,
                match reason {
                    UnsafeUseReason::Call => errors::NeverTypeFallbackFlowingIntoUnsafe::Call,
                    UnsafeUseReason::Method => errors::NeverTypeFallbackFlowingIntoUnsafe::Method,
                    UnsafeUseReason::Path => errors::NeverTypeFallbackFlowingIntoUnsafe::Path,
                    UnsafeUseReason::UnionField => {
                        errors::NeverTypeFallbackFlowingIntoUnsafe::UnionField
                    }
                    UnsafeUseReason::Deref => errors::NeverTypeFallbackFlowingIntoUnsafe::Deref,
                },
            );
        }
    }

    fn lint_obligations_broken_by_never_type_fallback_change(
        &self,
        behavior: DivergingFallbackBehavior,
        diverging_vids: &[ty::TyVid],
    ) {
        let DivergingFallbackBehavior::ToUnit = behavior else { return };

        // Fallback happens if and only if there are diverging variables
        if diverging_vids.is_empty() {
            return;
        }

        // Returns errors which happen if fallback is set to `fallback`
        let remaining_errors_if_fallback_to = |fallback| {
            self.probe(|_| {
                let obligations = self.fulfillment_cx.borrow().pending_obligations();
                let ocx = ObligationCtxt::new_with_diagnostics(&self.infcx);
                ocx.register_obligations(obligations.iter().cloned());

                for &diverging_vid in diverging_vids {
                    let diverging_ty = Ty::new_var(self.tcx, diverging_vid);

                    ocx.eq(&ObligationCause::dummy(), self.param_env, diverging_ty, fallback)
                        .expect("expected diverging var to be unconstrained");
                }

                ocx.select_where_possible()
            })
        };

        // If we have no errors with `fallback = ()`, but *do* have errors with `fallback = !`,
        // then this code will be broken by the never type fallback change.qba
        let unit_errors = remaining_errors_if_fallback_to(self.tcx.types.unit);
        if unit_errors.is_empty()
            && let mut never_errors = remaining_errors_if_fallback_to(self.tcx.types.never)
            && let [ref mut never_error, ..] = never_errors.as_mut_slice()
        {
            self.adjust_fulfillment_error_for_expr_obligation(never_error);
            self.tcx.emit_node_span_lint(
                lint::builtin::DEPENDENCY_ON_UNIT_NEVER_TYPE_FALLBACK,
                self.tcx.local_def_id_to_hir_id(self.body_id),
                self.tcx.def_span(self.body_id),
                errors::DependencyOnUnitNeverTypeFallback {
                    obligation_span: never_error.obligation.cause.span,
                    obligation: never_error.obligation.predicate,
                },
            )
        }
    }

    /// Returns a graph whose nodes are (unresolved) inference variables and where
    /// an edge `?A -> ?B` indicates that the variable `?A` is coerced to `?B`.
    fn create_coercion_graph(&self) -> VecGraph<ty::TyVid, true> {
        let pending_obligations = self.fulfillment_cx.borrow_mut().pending_obligations();
        debug!("create_coercion_graph: pending_obligations={:?}", pending_obligations);
        let coercion_edges: Vec<(ty::TyVid, ty::TyVid)> = pending_obligations
            .into_iter()
            .filter_map(|obligation| {
                // The predicates we are looking for look like `Coerce(?A -> ?B)`.
                // They will have no bound variables.
                obligation.predicate.kind().no_bound_vars()
            })
            .filter_map(|atom| {
                // We consider both subtyping and coercion to imply 'flow' from
                // some position in the code `a` to a different position `b`.
                // This is then used to determine which variables interact with
                // live code, and as such must fall back to `()` to preserve
                // soundness.
                //
                // In practice currently the two ways that this happens is
                // coercion and subtyping.
                let (a, b) = match atom {
                    ty::PredicateKind::Coerce(ty::CoercePredicate { a, b }) => (a, b),
                    ty::PredicateKind::Subtype(ty::SubtypePredicate { a_is_expected: _, a, b }) => {
                        (a, b)
                    }
                    _ => return None,
                };

                let a_vid = self.root_vid(a)?;
                let b_vid = self.root_vid(b)?;
                Some((a_vid, b_vid))
            })
            .collect();
        debug!("create_coercion_graph: coercion_edges={:?}", coercion_edges);
        let num_ty_vars = self.num_ty_vars();

        VecGraph::new(num_ty_vars, coercion_edges)
    }

    /// If `ty` is an unresolved type variable, returns its root vid.
    fn root_vid(&self, ty: Ty<'tcx>) -> Option<ty::TyVid> {
        Some(self.root_var(self.shallow_resolve(ty).ty_vid()?))
    }
}

#[derive(Debug, Copy, Clone)]
pub(crate) enum UnsafeUseReason {
    Call,
    Method,
    Path,
    UnionField,
    Deref,
}

/// Finds all type variables which are passed to an `unsafe` operation.
///
/// For example, for this function `f`:
/// ```ignore (demonstrative)
/// fn f() {
///     unsafe {
///         let x /* ?X */ = core::mem::zeroed();
///         //               ^^^^^^^^^^^^^^^^^^^ -- hir_id, span, reason
///
///         let y = core::mem::zeroed::<Option<_ /* ?Y */>>();
///         //      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -- hir_id, span, reason
///     }
/// }
/// ```
///
/// `compute_unsafe_infer_vars` will return `{ id(?X) -> (hir_id, span, Call) }`
fn compute_unsafe_infer_vars<'a, 'tcx>(
    root_ctxt: &'a TypeckRootCtxt<'tcx>,
    body_id: LocalDefId,
) -> UnordMap<ty::TyVid, (HirId, Span, UnsafeUseReason)> {
    let body =
        root_ctxt.tcx.hir().maybe_body_owned_by(body_id).expect("body id must have an owner");
    let mut res = UnordMap::default();

    struct UnsafeInferVarsVisitor<'a, 'tcx, 'r> {
        root_ctxt: &'a TypeckRootCtxt<'tcx>,
        res: &'r mut UnordMap<ty::TyVid, (HirId, Span, UnsafeUseReason)>,
    }

    impl Visitor<'_> for UnsafeInferVarsVisitor<'_, '_, '_> {
        fn visit_expr(&mut self, ex: &'_ hir::Expr<'_>) {
            let typeck_results = self.root_ctxt.typeck_results.borrow();

            match ex.kind {
                hir::ExprKind::MethodCall(..) => {
                    if let Some(def_id) = typeck_results.type_dependent_def_id(ex.hir_id)
                        && let method_ty = self.root_ctxt.tcx.type_of(def_id).instantiate_identity()
                        && let sig = method_ty.fn_sig(self.root_ctxt.tcx)
                        && let hir::Safety::Unsafe = sig.safety()
                    {
                        let mut collector = InferVarCollector {
                            value: (ex.hir_id, ex.span, UnsafeUseReason::Method),
                            res: self.res,
                        };

                        // Collect generic arguments (incl. `Self`) of the method
                        typeck_results
                            .node_args(ex.hir_id)
                            .types()
                            .for_each(|t| t.visit_with(&mut collector));
                    }
                }

                hir::ExprKind::Call(func, ..) => {
                    let func_ty = typeck_results.expr_ty(func);

                    if func_ty.is_fn()
                        && let sig = func_ty.fn_sig(self.root_ctxt.tcx)
                        && let hir::Safety::Unsafe = sig.safety()
                    {
                        let mut collector = InferVarCollector {
                            value: (ex.hir_id, ex.span, UnsafeUseReason::Call),
                            res: self.res,
                        };

                        // Try collecting generic arguments of the function.
                        // Note that we do this below for any paths (that don't have to be called),
                        // but there we do it with a different span/reason.
                        // This takes priority.
                        typeck_results
                            .node_args(func.hir_id)
                            .types()
                            .for_each(|t| t.visit_with(&mut collector));

                        // Also check the return type, for cases like `returns_unsafe_fn_ptr()()`
                        sig.output().visit_with(&mut collector);
                    }
                }

                // Check paths which refer to functions.
                // We do this, instead of only checking `Call` to make sure the lint can't be
                // avoided by storing unsafe function in a variable.
                hir::ExprKind::Path(_) => {
                    let ty = typeck_results.expr_ty(ex);

                    // If this path refers to an unsafe function, collect inference variables which may affect it.
                    // `is_fn` excludes closures, but those can't be unsafe.
                    if ty.is_fn()
                        && let sig = ty.fn_sig(self.root_ctxt.tcx)
                        && let hir::Safety::Unsafe = sig.safety()
                    {
                        let mut collector = InferVarCollector {
                            value: (ex.hir_id, ex.span, UnsafeUseReason::Path),
                            res: self.res,
                        };

                        // Collect generic arguments of the function
                        typeck_results
                            .node_args(ex.hir_id)
                            .types()
                            .for_each(|t| t.visit_with(&mut collector));
                    }
                }

                hir::ExprKind::Unary(hir::UnOp::Deref, pointer) => {
                    if let ty::RawPtr(pointee, _) = typeck_results.expr_ty(pointer).kind() {
                        pointee.visit_with(&mut InferVarCollector {
                            value: (ex.hir_id, ex.span, UnsafeUseReason::Deref),
                            res: self.res,
                        });
                    }
                }

                hir::ExprKind::Field(base, _) => {
                    let base_ty = typeck_results.expr_ty(base);

                    if base_ty.is_union() {
                        typeck_results.expr_ty(ex).visit_with(&mut InferVarCollector {
                            value: (ex.hir_id, ex.span, UnsafeUseReason::UnionField),
                            res: self.res,
                        });
                    }
                }

                _ => (),
            };

            hir::intravisit::walk_expr(self, ex);
        }
    }

    struct InferVarCollector<'r, V> {
        value: V,
        res: &'r mut UnordMap<ty::TyVid, V>,
    }

    impl<'tcx, V: Copy> ty::TypeVisitor<TyCtxt<'tcx>> for InferVarCollector<'_, V> {
        fn visit_ty(&mut self, t: Ty<'tcx>) {
            if let Some(vid) = t.ty_vid() {
                _ = self.res.try_insert(vid, self.value);
            } else {
                t.super_visit_with(self)
            }
        }
    }

    UnsafeInferVarsVisitor { root_ctxt, res: &mut res }.visit_expr(&body.value);

    debug!(?res, "collected the following unsafe vars for {body_id:?}");

    res
}