rustc_middle/mir/
mono.rs

1use std::borrow::Cow;
2use std::fmt;
3use std::hash::Hash;
4
5use rustc_ast::expand::autodiff_attrs::AutoDiffItem;
6use rustc_data_structures::base_n::{BaseNString, CASE_INSENSITIVE, ToBaseN};
7use rustc_data_structures::fingerprint::Fingerprint;
8use rustc_data_structures::fx::FxIndexMap;
9use rustc_data_structures::stable_hasher::{HashStable, StableHasher, ToStableHashKey};
10use rustc_data_structures::unord::UnordMap;
11use rustc_hashes::Hash128;
12use rustc_hir::ItemId;
13use rustc_hir::attrs::InlineAttr;
14use rustc_hir::def_id::{CrateNum, DefId, DefIdSet, LOCAL_CRATE};
15use rustc_index::Idx;
16use rustc_macros::{HashStable, TyDecodable, TyEncodable};
17use rustc_query_system::ich::StableHashingContext;
18use rustc_session::config::OptLevel;
19use rustc_span::{Span, Symbol};
20use rustc_target::spec::SymbolVisibility;
21use tracing::debug;
22
23use crate::dep_graph::{DepNode, WorkProduct, WorkProductId};
24use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
25use crate::ty::{self, GenericArgs, Instance, InstanceKind, SymbolName, Ty, TyCtxt};
26
27/// Describes how a monomorphization will be instantiated in object files.
28#[derive(PartialEq)]
29pub enum InstantiationMode {
30    /// There will be exactly one instance of the given MonoItem. It will have
31    /// external linkage so that it can be linked to from other codegen units.
32    GloballyShared {
33        /// In some compilation scenarios we may decide to take functions that
34        /// are typically `LocalCopy` and instead move them to `GloballyShared`
35        /// to avoid codegenning them a bunch of times. In this situation,
36        /// however, our local copy may conflict with other crates also
37        /// inlining the same function.
38        ///
39        /// This flag indicates that this situation is occurring, and informs
40        /// symbol name calculation that some extra mangling is needed to
41        /// avoid conflicts. Note that this may eventually go away entirely if
42        /// ThinLTO enables us to *always* have a globally shared instance of a
43        /// function within one crate's compilation.
44        may_conflict: bool,
45    },
46
47    /// Each codegen unit containing a reference to the given MonoItem will
48    /// have its own private copy of the function (with internal linkage).
49    LocalCopy,
50}
51
52#[derive(PartialEq, Eq, Clone, Copy, Debug, Hash, HashStable, TyEncodable, TyDecodable)]
53pub enum MonoItem<'tcx> {
54    Fn(Instance<'tcx>),
55    Static(DefId),
56    GlobalAsm(ItemId),
57}
58
59fn opt_incr_drop_glue_mode<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> InstantiationMode {
60    // Non-ADTs can't have a Drop impl. This case is mostly hit by closures whose captures require
61    // dropping.
62    let ty::Adt(adt_def, _) = ty.kind() else {
63        return InstantiationMode::LocalCopy;
64    };
65
66    // Types that don't have a direct Drop impl, but have fields that require dropping.
67    let Some(dtor) = adt_def.destructor(tcx) else {
68        // We use LocalCopy for drops of enums only; this code is inherited from
69        // https://github.com/rust-lang/rust/pull/67332 and the theory is that we get to optimize
70        // out code like drop_in_place(Option::None) before crate-local ThinLTO, which improves
71        // compile time. At the time of writing, simply removing this entire check does seem to
72        // regress incr-opt compile times. But it sure seems like a more sophisticated check could
73        // do better here.
74        if adt_def.is_enum() {
75            return InstantiationMode::LocalCopy;
76        } else {
77            return InstantiationMode::GloballyShared { may_conflict: true };
78        }
79    };
80
81    // We've gotten to a drop_in_place for a type that directly implements Drop.
82    // The drop glue is a wrapper for the Drop::drop impl, and we are an optimized build, so in an
83    // effort to coordinate with the mode that the actual impl will get, we make the glue also
84    // LocalCopy.
85    if tcx.cross_crate_inlinable(dtor.did) {
86        InstantiationMode::LocalCopy
87    } else {
88        InstantiationMode::GloballyShared { may_conflict: true }
89    }
90}
91
92impl<'tcx> MonoItem<'tcx> {
93    /// Returns `true` if the mono item is user-defined (i.e. not compiler-generated, like shims).
94    pub fn is_user_defined(&self) -> bool {
95        match *self {
96            MonoItem::Fn(instance) => matches!(instance.def, InstanceKind::Item(..)),
97            MonoItem::Static(..) | MonoItem::GlobalAsm(..) => true,
98        }
99    }
100
101    // Note: if you change how item size estimates work, you might need to
102    // change NON_INCR_MIN_CGU_SIZE as well.
103    pub fn size_estimate(&self, tcx: TyCtxt<'tcx>) -> usize {
104        match *self {
105            MonoItem::Fn(instance) => tcx.size_estimate(instance),
106            // Conservatively estimate the size of a static declaration or
107            // assembly item to be 1.
108            MonoItem::Static(_) | MonoItem::GlobalAsm(_) => 1,
109        }
110    }
111
112    pub fn is_generic_fn(&self) -> bool {
113        match self {
114            MonoItem::Fn(instance) => instance.args.non_erasable_generics().next().is_some(),
115            MonoItem::Static(..) | MonoItem::GlobalAsm(..) => false,
116        }
117    }
118
119    pub fn symbol_name(&self, tcx: TyCtxt<'tcx>) -> SymbolName<'tcx> {
120        match *self {
121            MonoItem::Fn(instance) => tcx.symbol_name(instance),
122            MonoItem::Static(def_id) => tcx.symbol_name(Instance::mono(tcx, def_id)),
123            MonoItem::GlobalAsm(item_id) => {
124                SymbolName::new(tcx, &format!("global_asm_{:?}", item_id.owner_id))
125            }
126        }
127    }
128
129    pub fn instantiation_mode(&self, tcx: TyCtxt<'tcx>) -> InstantiationMode {
130        // The case handling here is written in the same style as cross_crate_inlinable, we first
131        // handle the cases where we must use a particular instantiation mode, then cascade down
132        // through a sequence of heuristics.
133
134        // The first thing we do is detect MonoItems which we must instantiate exactly once in the
135        // whole program.
136
137        // Statics and global_asm! must be instantiated exactly once.
138        let instance = match *self {
139            MonoItem::Fn(instance) => instance,
140            MonoItem::Static(..) | MonoItem::GlobalAsm(..) => {
141                return InstantiationMode::GloballyShared { may_conflict: false };
142            }
143        };
144
145        // Similarly, the executable entrypoint must be instantiated exactly once.
146        if tcx.is_entrypoint(instance.def_id()) {
147            return InstantiationMode::GloballyShared { may_conflict: false };
148        }
149
150        // If the function is #[naked] or contains any other attribute that requires exactly-once
151        // instantiation:
152        // We emit an unused_attributes lint for this case, which should be kept in sync if possible.
153        let codegen_fn_attrs = tcx.codegen_instance_attrs(instance.def);
154        if codegen_fn_attrs.contains_extern_indicator()
155            || codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED)
156        {
157            return InstantiationMode::GloballyShared { may_conflict: false };
158        }
159
160        // This is technically a heuristic even though it's in the "not a heuristic" part of
161        // instantiation mode selection.
162        // It is surely possible to untangle this; the root problem is that the way we instantiate
163        // InstanceKind other than Item is very complicated.
164        //
165        // The fallback case is to give everything else GloballyShared at OptLevel::No and
166        // LocalCopy at all other opt levels. This is a good default, except for one specific build
167        // configuration: Optimized incremental builds.
168        // In the current compiler architecture there is a fundamental tension between
169        // optimizations (which want big CGUs with as many things LocalCopy as possible) and
170        // incrementality (which wants small CGUs with as many things GloballyShared as possible).
171        // The heuristics implemented here do better than a completely naive approach in the
172        // compiler benchmark suite, but there is no reason to believe they are optimal.
173        if let InstanceKind::DropGlue(_, Some(ty)) = instance.def {
174            if tcx.sess.opts.optimize == OptLevel::No {
175                return InstantiationMode::GloballyShared { may_conflict: false };
176            }
177            if tcx.sess.opts.incremental.is_none() {
178                return InstantiationMode::LocalCopy;
179            }
180            return opt_incr_drop_glue_mode(tcx, ty);
181        }
182
183        // We need to ensure that we do not decide the InstantiationMode of an exported symbol is
184        // LocalCopy. Since exported symbols are computed based on the output of
185        // cross_crate_inlinable, we are beholden to our previous decisions.
186        //
187        // Note that just like above, this check for requires_inline is technically a heuristic
188        // even though it's in the "not a heuristic" part of instantiation mode selection.
189        if !tcx.cross_crate_inlinable(instance.def_id()) && !instance.def.requires_inline(tcx) {
190            return InstantiationMode::GloballyShared { may_conflict: false };
191        }
192
193        // Beginning of heuristics. The handling of link-dead-code and inline(always) are QoL only,
194        // the compiler should not crash and linkage should work, but codegen may be undesirable.
195
196        // -Clink-dead-code was given an unfortunate name; the point of the flag is to assist
197        // coverage tools which rely on having every function in the program appear in the
198        // generated code. If we select LocalCopy, functions which are not used because they are
199        // missing test coverage will disappear from such coverage reports, defeating the point.
200        // Note that -Cinstrument-coverage does not require such assistance from us, only coverage
201        // tools implemented without compiler support ironically require a special compiler flag.
202        if tcx.sess.link_dead_code() {
203            return InstantiationMode::GloballyShared { may_conflict: true };
204        }
205
206        // To ensure that #[inline(always)] can be inlined as much as possible, especially in unoptimized
207        // builds, we always select LocalCopy.
208        if codegen_fn_attrs.inline.always() {
209            return InstantiationMode::LocalCopy;
210        }
211
212        // #[inline(never)] functions in general are poor candidates for inlining and thus since
213        // LocalCopy generally increases code size for the benefit of optimizations from inlining,
214        // we want to give them GloballyShared codegen.
215        // The slight problem is that generic functions need to always support cross-crate
216        // compilation, so all previous stages of the compiler are obligated to treat generic
217        // functions the same as those that unconditionally get LocalCopy codegen. It's only when
218        // we get here that we can at least not codegen a #[inline(never)] generic function in all
219        // of our CGUs.
220        if let InlineAttr::Never = codegen_fn_attrs.inline
221            && self.is_generic_fn()
222        {
223            return InstantiationMode::GloballyShared { may_conflict: true };
224        }
225
226        // The fallthrough case is to generate LocalCopy for all optimized builds, and
227        // GloballyShared with conflict prevention when optimizations are disabled.
228        match tcx.sess.opts.optimize {
229            OptLevel::No => InstantiationMode::GloballyShared { may_conflict: true },
230            _ => InstantiationMode::LocalCopy,
231        }
232    }
233
234    pub fn explicit_linkage(&self, tcx: TyCtxt<'tcx>) -> Option<Linkage> {
235        let instance_kind = match *self {
236            MonoItem::Fn(ref instance) => instance.def,
237            MonoItem::Static(def_id) => InstanceKind::Item(def_id),
238            MonoItem::GlobalAsm(..) => return None,
239        };
240
241        tcx.codegen_instance_attrs(instance_kind).linkage
242    }
243
244    /// Returns `true` if this instance is instantiable - whether it has no unsatisfied
245    /// predicates.
246    ///
247    /// In order to codegen an item, all of its predicates must hold, because
248    /// otherwise the item does not make sense. Type-checking ensures that
249    /// the predicates of every item that is *used by* a valid item *do*
250    /// hold, so we can rely on that.
251    ///
252    /// However, we codegen collector roots (reachable items) and functions
253    /// in vtables when they are seen, even if they are not used, and so they
254    /// might not be instantiable. For example, a programmer can define this
255    /// public function:
256    ///
257    ///     pub fn foo<'a>(s: &'a mut ()) where &'a mut (): Clone {
258    ///         <&mut () as Clone>::clone(&s);
259    ///     }
260    ///
261    /// That function can't be codegened, because the method `<&mut () as Clone>::clone`
262    /// does not exist. Luckily for us, that function can't ever be used,
263    /// because that would require for `&'a mut (): Clone` to hold, so we
264    /// can just not emit any code, or even a linker reference for it.
265    ///
266    /// Similarly, if a vtable method has such a signature, and therefore can't
267    /// be used, we can just not emit it and have a placeholder (a null pointer,
268    /// which will never be accessed) in its place.
269    pub fn is_instantiable(&self, tcx: TyCtxt<'tcx>) -> bool {
270        debug!("is_instantiable({:?})", self);
271        let (def_id, args) = match *self {
272            MonoItem::Fn(ref instance) => (instance.def_id(), instance.args),
273            MonoItem::Static(def_id) => (def_id, GenericArgs::empty()),
274            // global asm never has predicates
275            MonoItem::GlobalAsm(..) => return true,
276        };
277
278        !tcx.instantiate_and_check_impossible_predicates((def_id, &args))
279    }
280
281    pub fn local_span(&self, tcx: TyCtxt<'tcx>) -> Option<Span> {
282        match *self {
283            MonoItem::Fn(Instance { def, .. }) => def.def_id().as_local(),
284            MonoItem::Static(def_id) => def_id.as_local(),
285            MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.def_id),
286        }
287        .map(|def_id| tcx.def_span(def_id))
288    }
289
290    // Only used by rustc_codegen_cranelift
291    pub fn codegen_dep_node(&self, tcx: TyCtxt<'tcx>) -> DepNode {
292        crate::dep_graph::make_compile_mono_item(tcx, self)
293    }
294
295    /// Returns the item's `CrateNum`
296    pub fn krate(&self) -> CrateNum {
297        match self {
298            MonoItem::Fn(instance) => instance.def_id().krate,
299            MonoItem::Static(def_id) => def_id.krate,
300            MonoItem::GlobalAsm(..) => LOCAL_CRATE,
301        }
302    }
303
304    /// Returns the item's `DefId`
305    pub fn def_id(&self) -> DefId {
306        match *self {
307            MonoItem::Fn(Instance { def, .. }) => def.def_id(),
308            MonoItem::Static(def_id) => def_id,
309            MonoItem::GlobalAsm(item_id) => item_id.owner_id.to_def_id(),
310        }
311    }
312}
313
314impl<'tcx> fmt::Display for MonoItem<'tcx> {
315    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
316        match *self {
317            MonoItem::Fn(instance) => write!(f, "fn {instance}"),
318            MonoItem::Static(def_id) => {
319                write!(f, "static {}", Instance::new_raw(def_id, GenericArgs::empty()))
320            }
321            MonoItem::GlobalAsm(..) => write!(f, "global_asm"),
322        }
323    }
324}
325
326impl ToStableHashKey<StableHashingContext<'_>> for MonoItem<'_> {
327    type KeyType = Fingerprint;
328
329    fn to_stable_hash_key(&self, hcx: &StableHashingContext<'_>) -> Self::KeyType {
330        let mut hasher = StableHasher::new();
331        self.hash_stable(&mut hcx.clone(), &mut hasher);
332        hasher.finish()
333    }
334}
335
336#[derive(Debug, HashStable, Copy, Clone)]
337pub struct MonoItemPartitions<'tcx> {
338    pub codegen_units: &'tcx [CodegenUnit<'tcx>],
339    pub all_mono_items: &'tcx DefIdSet,
340    pub autodiff_items: &'tcx [AutoDiffItem],
341}
342
343#[derive(Debug, HashStable)]
344pub struct CodegenUnit<'tcx> {
345    /// A name for this CGU. Incremental compilation requires that
346    /// name be unique amongst **all** crates. Therefore, it should
347    /// contain something unique to this crate (e.g., a module path)
348    /// as well as the crate name and disambiguator.
349    name: Symbol,
350    items: FxIndexMap<MonoItem<'tcx>, MonoItemData>,
351    size_estimate: usize,
352    primary: bool,
353    /// True if this is CGU is used to hold code coverage information for dead code,
354    /// false otherwise.
355    is_code_coverage_dead_code_cgu: bool,
356}
357
358/// Auxiliary info about a `MonoItem`.
359#[derive(Copy, Clone, PartialEq, Debug, HashStable)]
360pub struct MonoItemData {
361    /// A cached copy of the result of `MonoItem::instantiation_mode`, where
362    /// `GloballyShared` maps to `false` and `LocalCopy` maps to `true`.
363    pub inlined: bool,
364
365    pub linkage: Linkage,
366    pub visibility: Visibility,
367
368    /// A cached copy of the result of `MonoItem::size_estimate`.
369    pub size_estimate: usize,
370}
371
372/// Specifies the linkage type for a `MonoItem`.
373///
374/// See <https://llvm.org/docs/LangRef.html#linkage-types> for more details about these variants.
375#[derive(Copy, Clone, PartialEq, Debug, TyEncodable, TyDecodable, HashStable)]
376pub enum Linkage {
377    External,
378    AvailableExternally,
379    LinkOnceAny,
380    LinkOnceODR,
381    WeakAny,
382    WeakODR,
383    Internal,
384    ExternalWeak,
385    Common,
386}
387
388/// Specifies the symbol visibility with regards to dynamic linking.
389///
390/// Visibility doesn't have any effect when linkage is internal.
391///
392/// DSO means dynamic shared object, that is a dynamically linked executable or dylib.
393#[derive(Copy, Clone, PartialEq, Debug, HashStable)]
394pub enum Visibility {
395    /// Export the symbol from the DSO and apply overrides of the symbol by outside DSOs to within
396    /// the DSO if the object file format supports this.
397    Default,
398    /// Hide the symbol outside of the defining DSO even when external linkage is used to export it
399    /// from the object file.
400    Hidden,
401    /// Export the symbol from the DSO, but don't apply overrides of the symbol by outside DSOs to
402    /// within the DSO. Equivalent to default visibility with object file formats that don't support
403    /// overriding exported symbols by another DSO.
404    Protected,
405}
406
407impl From<SymbolVisibility> for Visibility {
408    fn from(value: SymbolVisibility) -> Self {
409        match value {
410            SymbolVisibility::Hidden => Visibility::Hidden,
411            SymbolVisibility::Protected => Visibility::Protected,
412            SymbolVisibility::Interposable => Visibility::Default,
413        }
414    }
415}
416
417impl<'tcx> CodegenUnit<'tcx> {
418    #[inline]
419    pub fn new(name: Symbol) -> CodegenUnit<'tcx> {
420        CodegenUnit {
421            name,
422            items: Default::default(),
423            size_estimate: 0,
424            primary: false,
425            is_code_coverage_dead_code_cgu: false,
426        }
427    }
428
429    pub fn name(&self) -> Symbol {
430        self.name
431    }
432
433    pub fn set_name(&mut self, name: Symbol) {
434        self.name = name;
435    }
436
437    pub fn is_primary(&self) -> bool {
438        self.primary
439    }
440
441    pub fn make_primary(&mut self) {
442        self.primary = true;
443    }
444
445    pub fn items(&self) -> &FxIndexMap<MonoItem<'tcx>, MonoItemData> {
446        &self.items
447    }
448
449    pub fn items_mut(&mut self) -> &mut FxIndexMap<MonoItem<'tcx>, MonoItemData> {
450        &mut self.items
451    }
452
453    pub fn is_code_coverage_dead_code_cgu(&self) -> bool {
454        self.is_code_coverage_dead_code_cgu
455    }
456
457    /// Marks this CGU as the one used to contain code coverage information for dead code.
458    pub fn make_code_coverage_dead_code_cgu(&mut self) {
459        self.is_code_coverage_dead_code_cgu = true;
460    }
461
462    pub fn mangle_name(human_readable_name: &str) -> BaseNString {
463        let mut hasher = StableHasher::new();
464        human_readable_name.hash(&mut hasher);
465        let hash: Hash128 = hasher.finish();
466        hash.as_u128().to_base_fixed_len(CASE_INSENSITIVE)
467    }
468
469    pub fn shorten_name(human_readable_name: &str) -> Cow<'_, str> {
470        // Set a limit a somewhat below the common platform limits for file names.
471        const MAX_CGU_NAME_LENGTH: usize = 200;
472        const TRUNCATED_NAME_PREFIX: &str = "-trunc-";
473        if human_readable_name.len() > MAX_CGU_NAME_LENGTH {
474            let mangled_name = Self::mangle_name(human_readable_name);
475            // Determine a safe byte offset to truncate the name to
476            let truncate_to = human_readable_name.floor_char_boundary(
477                MAX_CGU_NAME_LENGTH - TRUNCATED_NAME_PREFIX.len() - mangled_name.len(),
478            );
479            format!(
480                "{}{}{}",
481                &human_readable_name[..truncate_to],
482                TRUNCATED_NAME_PREFIX,
483                mangled_name
484            )
485            .into()
486        } else {
487            // If the name is short enough, we can just return it as is.
488            human_readable_name.into()
489        }
490    }
491
492    pub fn compute_size_estimate(&mut self) {
493        // The size of a codegen unit as the sum of the sizes of the items
494        // within it.
495        self.size_estimate = self.items.values().map(|data| data.size_estimate).sum();
496    }
497
498    /// Should only be called if [`compute_size_estimate`] has previously been called.
499    ///
500    /// [`compute_size_estimate`]: Self::compute_size_estimate
501    #[inline]
502    pub fn size_estimate(&self) -> usize {
503        // Items are never zero-sized, so if we have items the estimate must be
504        // non-zero, unless we forgot to call `compute_size_estimate` first.
505        assert!(self.items.is_empty() || self.size_estimate != 0);
506        self.size_estimate
507    }
508
509    pub fn contains_item(&self, item: &MonoItem<'tcx>) -> bool {
510        self.items().contains_key(item)
511    }
512
513    pub fn work_product_id(&self) -> WorkProductId {
514        WorkProductId::from_cgu_name(self.name().as_str())
515    }
516
517    pub fn previous_work_product(&self, tcx: TyCtxt<'_>) -> WorkProduct {
518        let work_product_id = self.work_product_id();
519        tcx.dep_graph
520            .previous_work_product(&work_product_id)
521            .unwrap_or_else(|| panic!("Could not find work-product for CGU `{}`", self.name()))
522    }
523
524    pub fn items_in_deterministic_order(
525        &self,
526        tcx: TyCtxt<'tcx>,
527    ) -> Vec<(MonoItem<'tcx>, MonoItemData)> {
528        // The codegen tests rely on items being process in the same order as
529        // they appear in the file, so for local items, we sort by node_id first
530        #[derive(PartialEq, Eq, PartialOrd, Ord)]
531        struct ItemSortKey<'tcx>(Option<usize>, SymbolName<'tcx>);
532
533        fn item_sort_key<'tcx>(tcx: TyCtxt<'tcx>, item: MonoItem<'tcx>) -> ItemSortKey<'tcx> {
534            ItemSortKey(
535                match item {
536                    MonoItem::Fn(ref instance) => {
537                        match instance.def {
538                            // We only want to take HirIds of user-defined
539                            // instances into account. The others don't matter for
540                            // the codegen tests and can even make item order
541                            // unstable.
542                            InstanceKind::Item(def) => def.as_local().map(Idx::index),
543                            InstanceKind::VTableShim(..)
544                            | InstanceKind::ReifyShim(..)
545                            | InstanceKind::Intrinsic(..)
546                            | InstanceKind::FnPtrShim(..)
547                            | InstanceKind::Virtual(..)
548                            | InstanceKind::ClosureOnceShim { .. }
549                            | InstanceKind::ConstructCoroutineInClosureShim { .. }
550                            | InstanceKind::DropGlue(..)
551                            | InstanceKind::CloneShim(..)
552                            | InstanceKind::ThreadLocalShim(..)
553                            | InstanceKind::FnPtrAddrShim(..)
554                            | InstanceKind::AsyncDropGlue(..)
555                            | InstanceKind::FutureDropPollShim(..)
556                            | InstanceKind::AsyncDropGlueCtorShim(..) => None,
557                        }
558                    }
559                    MonoItem::Static(def_id) => def_id.as_local().map(Idx::index),
560                    MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.def_id.index()),
561                },
562                item.symbol_name(tcx),
563            )
564        }
565
566        let mut items: Vec<_> = self.items().iter().map(|(&i, &data)| (i, data)).collect();
567        items.sort_by_cached_key(|&(i, _)| item_sort_key(tcx, i));
568        items
569    }
570
571    pub fn codegen_dep_node(&self, tcx: TyCtxt<'tcx>) -> DepNode {
572        crate::dep_graph::make_compile_codegen_unit(tcx, self.name())
573    }
574}
575
576impl ToStableHashKey<StableHashingContext<'_>> for CodegenUnit<'_> {
577    type KeyType = String;
578
579    fn to_stable_hash_key(&self, _: &StableHashingContext<'_>) -> Self::KeyType {
580        // Codegen unit names are conceptually required to be stable across
581        // compilation session so that object file names match up.
582        self.name.to_string()
583    }
584}
585
586pub struct CodegenUnitNameBuilder<'tcx> {
587    tcx: TyCtxt<'tcx>,
588    cache: UnordMap<CrateNum, String>,
589}
590
591impl<'tcx> CodegenUnitNameBuilder<'tcx> {
592    pub fn new(tcx: TyCtxt<'tcx>) -> Self {
593        CodegenUnitNameBuilder { tcx, cache: Default::default() }
594    }
595
596    /// CGU names should fulfill the following requirements:
597    /// - They should be able to act as a file name on any kind of file system
598    /// - They should not collide with other CGU names, even for different versions
599    ///   of the same crate.
600    ///
601    /// Consequently, we don't use special characters except for '.' and '-' and we
602    /// prefix each name with the crate-name and crate-disambiguator.
603    ///
604    /// This function will build CGU names of the form:
605    ///
606    /// ```text
607    /// <crate-name>.<crate-disambiguator>[-in-<local-crate-id>](-<component>)*[.<special-suffix>]
608    /// <local-crate-id> = <local-crate-name>.<local-crate-disambiguator>
609    /// ```
610    ///
611    /// The '.' before `<special-suffix>` makes sure that names with a special
612    /// suffix can never collide with a name built out of regular Rust
613    /// identifiers (e.g., module paths).
614    pub fn build_cgu_name<I, C, S>(
615        &mut self,
616        cnum: CrateNum,
617        components: I,
618        special_suffix: Option<S>,
619    ) -> Symbol
620    where
621        I: IntoIterator<Item = C>,
622        C: fmt::Display,
623        S: fmt::Display,
624    {
625        let cgu_name = self.build_cgu_name_no_mangle(cnum, components, special_suffix);
626
627        if self.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
628            Symbol::intern(&CodegenUnit::shorten_name(cgu_name.as_str()))
629        } else {
630            Symbol::intern(&CodegenUnit::mangle_name(cgu_name.as_str()))
631        }
632    }
633
634    /// Same as `CodegenUnit::build_cgu_name()` but will never mangle the
635    /// resulting name.
636    pub fn build_cgu_name_no_mangle<I, C, S>(
637        &mut self,
638        cnum: CrateNum,
639        components: I,
640        special_suffix: Option<S>,
641    ) -> Symbol
642    where
643        I: IntoIterator<Item = C>,
644        C: fmt::Display,
645        S: fmt::Display,
646    {
647        use std::fmt::Write;
648
649        let mut cgu_name = String::with_capacity(64);
650
651        // Start out with the crate name and disambiguator
652        let tcx = self.tcx;
653        let crate_prefix = self.cache.entry(cnum).or_insert_with(|| {
654            // Whenever the cnum is not LOCAL_CRATE we also mix in the
655            // local crate's ID. Otherwise there can be collisions between CGUs
656            // instantiating stuff for upstream crates.
657            let local_crate_id = if cnum != LOCAL_CRATE {
658                let local_stable_crate_id = tcx.stable_crate_id(LOCAL_CRATE);
659                format!("-in-{}.{:08x}", tcx.crate_name(LOCAL_CRATE), local_stable_crate_id)
660            } else {
661                String::new()
662            };
663
664            let stable_crate_id = tcx.stable_crate_id(LOCAL_CRATE);
665            format!("{}.{:08x}{}", tcx.crate_name(cnum), stable_crate_id, local_crate_id)
666        });
667
668        write!(cgu_name, "{crate_prefix}").unwrap();
669
670        // Add the components
671        for component in components {
672            write!(cgu_name, "-{component}").unwrap();
673        }
674
675        if let Some(special_suffix) = special_suffix {
676            // We add a dot in here so it cannot clash with anything in a regular
677            // Rust identifier
678            write!(cgu_name, ".{special_suffix}").unwrap();
679        }
680
681        Symbol::intern(&cgu_name)
682    }
683}
684
685/// See module-level docs of `rustc_monomorphize::collector` on some context for "mentioned" items.
686#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
687pub enum CollectionMode {
688    /// Collect items that are used, i.e., actually needed for codegen.
689    ///
690    /// Which items are used can depend on optimization levels, as MIR optimizations can remove
691    /// uses.
692    UsedItems,
693    /// Collect items that are mentioned. The goal of this mode is that it is independent of
694    /// optimizations: the set of "mentioned" items is computed before optimizations are run.
695    ///
696    /// The exact contents of this set are *not* a stable guarantee. (For instance, it is currently
697    /// computed after drop-elaboration. If we ever do some optimizations even in debug builds, we
698    /// might decide to run them before computing mentioned items.) The key property of this set is
699    /// that it is optimization-independent.
700    MentionedItems,
701}