1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//! Traits used to represent [lattices] for use as the domain of a dataflow analysis.
//!
//! # Overview
//!
//! The most common lattice is a powerset of some set `S`, ordered by [set inclusion]. The [Hasse
//! diagram] for the powerset of a set with two elements (`X` and `Y`) is shown below. Note that
//! distinct elements at the same height in a Hasse diagram (e.g. `{X}` and `{Y}`) are
//! *incomparable*, not equal.
//!
//! ```text
//!      {X, Y}    <- top
//!       /  \
//!    {X}    {Y}
//!       \  /
//!        {}      <- bottom
//!
//! ```
//!
//! The defining characteristic of a lattice—the one that differentiates it from a [partially
//! ordered set][poset]—is the existence of a *unique* least upper and greatest lower bound for
//! every pair of elements. The lattice join operator (`∨`) returns the least upper bound, and the
//! lattice meet operator (`∧`) returns the greatest lower bound. Types that implement one operator
//! but not the other are known as semilattices. Dataflow analysis only uses the join operator and
//! will work with any join-semilattice, but both should be specified when possible.
//!
//! ## `PartialOrd`
//!
//! Given that they represent partially ordered sets, you may be surprised that [`JoinSemiLattice`]
//! and [`MeetSemiLattice`] do not have [`PartialOrd`] as a supertrait. This
//! is because most standard library types use lexicographic ordering instead of set inclusion for
//! their `PartialOrd` impl. Since we do not actually need to compare lattice elements to run a
//! dataflow analysis, there's no need for a newtype wrapper with a custom `PartialOrd` impl. The
//! only benefit would be the ability to check that the least upper (or greatest lower) bound
//! returned by the lattice join (or meet) operator was in fact greater (or lower) than the inputs.
//!
//! [lattices]: https://en.wikipedia.org/wiki/Lattice_(order)
//! [set inclusion]: https://en.wikipedia.org/wiki/Subset
//! [Hasse diagram]: https://en.wikipedia.org/wiki/Hasse_diagram
//! [poset]: https://en.wikipedia.org/wiki/Partially_ordered_set

use std::iter;

use rustc_index::bit_set::{BitSet, ChunkedBitSet, HybridBitSet};
use rustc_index::{Idx, IndexVec};

use crate::framework::BitSetExt;

/// A [partially ordered set][poset] that has a [least upper bound][lub] for any pair of elements
/// in the set.
///
/// [lub]: https://en.wikipedia.org/wiki/Infimum_and_supremum
/// [poset]: https://en.wikipedia.org/wiki/Partially_ordered_set
pub trait JoinSemiLattice: Eq {
    /// Computes the least upper bound of two elements, storing the result in `self` and returning
    /// `true` if `self` has changed.
    ///
    /// The lattice join operator is abbreviated as `∨`.
    fn join(&mut self, other: &Self) -> bool;
}

/// A [partially ordered set][poset] that has a [greatest lower bound][glb] for any pair of
/// elements in the set.
///
/// Dataflow analyses only require that their domains implement [`JoinSemiLattice`], not
/// `MeetSemiLattice`. However, types that will be used as dataflow domains should implement both
/// so that they can be used with [`Dual`].
///
/// [glb]: https://en.wikipedia.org/wiki/Infimum_and_supremum
/// [poset]: https://en.wikipedia.org/wiki/Partially_ordered_set
pub trait MeetSemiLattice: Eq {
    /// Computes the greatest lower bound of two elements, storing the result in `self` and
    /// returning `true` if `self` has changed.
    ///
    /// The lattice meet operator is abbreviated as `∧`.
    fn meet(&mut self, other: &Self) -> bool;
}

/// A set that has a "bottom" element, which is less than or equal to any other element.
pub trait HasBottom {
    const BOTTOM: Self;

    fn is_bottom(&self) -> bool;
}

/// A set that has a "top" element, which is greater than or equal to any other element.
pub trait HasTop {
    const TOP: Self;
}

/// A `bool` is a "two-point" lattice with `true` as the top element and `false` as the bottom:
///
/// ```text
///      true
///        |
///      false
/// ```
impl JoinSemiLattice for bool {
    fn join(&mut self, other: &Self) -> bool {
        if let (false, true) = (*self, *other) {
            *self = true;
            return true;
        }

        false
    }
}

impl MeetSemiLattice for bool {
    fn meet(&mut self, other: &Self) -> bool {
        if let (true, false) = (*self, *other) {
            *self = false;
            return true;
        }

        false
    }
}

impl HasBottom for bool {
    const BOTTOM: Self = false;

    fn is_bottom(&self) -> bool {
        !self
    }
}

impl HasTop for bool {
    const TOP: Self = true;
}

/// A tuple (or list) of lattices is itself a lattice whose least upper bound is the concatenation
/// of the least upper bounds of each element of the tuple (or list).
///
/// In other words:
///     (A₀, A₁, ..., Aₙ) ∨ (B₀, B₁, ..., Bₙ) = (A₀∨B₀, A₁∨B₁, ..., Aₙ∨Bₙ)
impl<I: Idx, T: JoinSemiLattice> JoinSemiLattice for IndexVec<I, T> {
    fn join(&mut self, other: &Self) -> bool {
        assert_eq!(self.len(), other.len());

        let mut changed = false;
        for (a, b) in iter::zip(self, other) {
            changed |= a.join(b);
        }
        changed
    }
}

impl<I: Idx, T: MeetSemiLattice> MeetSemiLattice for IndexVec<I, T> {
    fn meet(&mut self, other: &Self) -> bool {
        assert_eq!(self.len(), other.len());

        let mut changed = false;
        for (a, b) in iter::zip(self, other) {
            changed |= a.meet(b);
        }
        changed
    }
}

/// A `BitSet` represents the lattice formed by the powerset of all possible values of
/// the index type `T` ordered by inclusion. Equivalently, it is a tuple of "two-point" lattices,
/// one for each possible value of `T`.
impl<T: Idx> JoinSemiLattice for BitSet<T> {
    fn join(&mut self, other: &Self) -> bool {
        self.union(other)
    }
}

impl<T: Idx> MeetSemiLattice for BitSet<T> {
    fn meet(&mut self, other: &Self) -> bool {
        self.intersect(other)
    }
}

impl<T: Idx> JoinSemiLattice for ChunkedBitSet<T> {
    fn join(&mut self, other: &Self) -> bool {
        self.union(other)
    }
}

impl<T: Idx> MeetSemiLattice for ChunkedBitSet<T> {
    fn meet(&mut self, other: &Self) -> bool {
        self.intersect(other)
    }
}

/// The counterpart of a given semilattice `T` using the [inverse order].
///
/// The dual of a join-semilattice is a meet-semilattice and vice versa. For example, the dual of a
/// powerset has the empty set as its top element and the full set as its bottom element and uses
/// set *intersection* as its join operator.
///
/// [inverse order]: https://en.wikipedia.org/wiki/Duality_(order_theory)
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Dual<T>(pub T);

impl<T: Idx> BitSetExt<T> for Dual<BitSet<T>> {
    fn contains(&self, elem: T) -> bool {
        self.0.contains(elem)
    }

    fn union(&mut self, other: &HybridBitSet<T>) {
        self.0.union(other);
    }

    fn subtract(&mut self, other: &HybridBitSet<T>) {
        self.0.subtract(other);
    }
}

impl<T: MeetSemiLattice> JoinSemiLattice for Dual<T> {
    fn join(&mut self, other: &Self) -> bool {
        self.0.meet(&other.0)
    }
}

impl<T: JoinSemiLattice> MeetSemiLattice for Dual<T> {
    fn meet(&mut self, other: &Self) -> bool {
        self.0.join(&other.0)
    }
}

/// Extends a type `T` with top and bottom elements to make it a partially ordered set in which no
/// value of `T` is comparable with any other.
///
/// A flat set has the following [Hasse diagram]:
///
/// ```text
///          top
///  / ... / /  \ \ ... \
/// all possible values of `T`
///  \ ... \ \  / / ... /
///         bottom
/// ```
///
/// [Hasse diagram]: https://en.wikipedia.org/wiki/Hasse_diagram
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum FlatSet<T> {
    Bottom,
    Elem(T),
    Top,
}

impl<T: Clone + Eq> JoinSemiLattice for FlatSet<T> {
    fn join(&mut self, other: &Self) -> bool {
        let result = match (&*self, other) {
            (Self::Top, _) | (_, Self::Bottom) => return false,
            (Self::Elem(a), Self::Elem(b)) if a == b => return false,

            (Self::Bottom, Self::Elem(x)) => Self::Elem(x.clone()),

            _ => Self::Top,
        };

        *self = result;
        true
    }
}

impl<T: Clone + Eq> MeetSemiLattice for FlatSet<T> {
    fn meet(&mut self, other: &Self) -> bool {
        let result = match (&*self, other) {
            (Self::Bottom, _) | (_, Self::Top) => return false,
            (Self::Elem(ref a), Self::Elem(ref b)) if a == b => return false,

            (Self::Top, Self::Elem(ref x)) => Self::Elem(x.clone()),

            _ => Self::Bottom,
        };

        *self = result;
        true
    }
}

impl<T> HasBottom for FlatSet<T> {
    const BOTTOM: Self = Self::Bottom;

    fn is_bottom(&self) -> bool {
        matches!(self, Self::Bottom)
    }
}

impl<T> HasTop for FlatSet<T> {
    const TOP: Self = Self::Top;
}

/// Extend a lattice with a bottom value to represent an unreachable execution.
///
/// The only useful action on an unreachable state is joining it with a reachable one to make it
/// reachable. All other actions, gen/kill for instance, are no-ops.
#[derive(PartialEq, Eq, Debug)]
pub enum MaybeReachable<T> {
    Unreachable,
    Reachable(T),
}

impl<T> MaybeReachable<T> {
    pub fn is_reachable(&self) -> bool {
        matches!(self, MaybeReachable::Reachable(_))
    }
}

impl<T> HasBottom for MaybeReachable<T> {
    const BOTTOM: Self = MaybeReachable::Unreachable;

    fn is_bottom(&self) -> bool {
        matches!(self, Self::Unreachable)
    }
}

impl<T: HasTop> HasTop for MaybeReachable<T> {
    const TOP: Self = MaybeReachable::Reachable(T::TOP);
}

impl<S> MaybeReachable<S> {
    /// Return whether the current state contains the given element. If the state is unreachable,
    /// it does no contain anything.
    pub fn contains<T>(&self, elem: T) -> bool
    where
        S: BitSetExt<T>,
    {
        match self {
            MaybeReachable::Unreachable => false,
            MaybeReachable::Reachable(set) => set.contains(elem),
        }
    }
}

impl<T, S: BitSetExt<T>> BitSetExt<T> for MaybeReachable<S> {
    fn contains(&self, elem: T) -> bool {
        self.contains(elem)
    }

    fn union(&mut self, other: &HybridBitSet<T>) {
        match self {
            MaybeReachable::Unreachable => {}
            MaybeReachable::Reachable(set) => set.union(other),
        }
    }

    fn subtract(&mut self, other: &HybridBitSet<T>) {
        match self {
            MaybeReachable::Unreachable => {}
            MaybeReachable::Reachable(set) => set.subtract(other),
        }
    }
}

impl<V: Clone> Clone for MaybeReachable<V> {
    fn clone(&self) -> Self {
        match self {
            MaybeReachable::Reachable(x) => MaybeReachable::Reachable(x.clone()),
            MaybeReachable::Unreachable => MaybeReachable::Unreachable,
        }
    }

    fn clone_from(&mut self, source: &Self) {
        match (&mut *self, source) {
            (MaybeReachable::Reachable(x), MaybeReachable::Reachable(y)) => {
                x.clone_from(y);
            }
            _ => *self = source.clone(),
        }
    }
}

impl<T: JoinSemiLattice + Clone> JoinSemiLattice for MaybeReachable<T> {
    fn join(&mut self, other: &Self) -> bool {
        // Unreachable acts as a bottom.
        match (&mut *self, &other) {
            (_, MaybeReachable::Unreachable) => false,
            (MaybeReachable::Unreachable, _) => {
                *self = other.clone();
                true
            }
            (MaybeReachable::Reachable(this), MaybeReachable::Reachable(other)) => this.join(other),
        }
    }
}