1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet, IndexEntry};
use rustc_hir as hir;
use rustc_infer::infer::region_constraints::{Constraint, RegionConstraintData};
use rustc_middle::bug;
use rustc_middle::ty::{self, Region, Ty};
use rustc_span::def_id::DefId;
use rustc_span::symbol::{kw, Symbol};
use rustc_trait_selection::traits::auto_trait::{self, RegionTarget};
use thin_vec::ThinVec;
use tracing::{debug, instrument};
use crate::clean::{
self, clean_generic_param_def, clean_middle_ty, clean_predicate,
clean_trait_ref_with_constraints, clean_ty_generics, simplify, Lifetime,
};
use crate::core::DocContext;
#[instrument(level = "debug", skip(cx))]
pub(crate) fn synthesize_auto_trait_impls<'tcx>(
cx: &mut DocContext<'tcx>,
item_def_id: DefId,
) -> Vec<clean::Item> {
let tcx = cx.tcx;
let param_env = tcx.param_env(item_def_id);
let ty = tcx.type_of(item_def_id).instantiate_identity();
let finder = auto_trait::AutoTraitFinder::new(tcx);
let mut auto_trait_impls: Vec<_> = cx
.auto_traits
.clone()
.into_iter()
.filter_map(|trait_def_id| {
synthesize_auto_trait_impl(
cx,
ty,
trait_def_id,
param_env,
item_def_id,
&finder,
DiscardPositiveImpls::No,
)
})
.collect();
// We are only interested in case the type *doesn't* implement the `Sized` trait.
if !ty.is_sized(tcx, param_env)
&& let Some(sized_trait_def_id) = tcx.lang_items().sized_trait()
&& let Some(impl_item) = synthesize_auto_trait_impl(
cx,
ty,
sized_trait_def_id,
param_env,
item_def_id,
&finder,
DiscardPositiveImpls::Yes,
)
{
auto_trait_impls.push(impl_item);
}
auto_trait_impls
}
#[instrument(level = "debug", skip(cx, finder))]
fn synthesize_auto_trait_impl<'tcx>(
cx: &mut DocContext<'tcx>,
ty: Ty<'tcx>,
trait_def_id: DefId,
param_env: ty::ParamEnv<'tcx>,
item_def_id: DefId,
finder: &auto_trait::AutoTraitFinder<'tcx>,
discard_positive_impls: DiscardPositiveImpls,
) -> Option<clean::Item> {
let tcx = cx.tcx;
let trait_ref = ty::Binder::dummy(ty::TraitRef::new(tcx, trait_def_id, [ty]));
if !cx.generated_synthetics.insert((ty, trait_def_id)) {
debug!("already generated, aborting");
return None;
}
let result = finder.find_auto_trait_generics(ty, param_env, trait_def_id, |info| {
clean_param_env(cx, item_def_id, info.full_user_env, info.region_data, info.vid_to_region)
});
let (generics, polarity) = match result {
auto_trait::AutoTraitResult::PositiveImpl(generics) => {
if let DiscardPositiveImpls::Yes = discard_positive_impls {
return None;
}
(generics, ty::ImplPolarity::Positive)
}
auto_trait::AutoTraitResult::NegativeImpl => {
// For negative impls, we use the generic params, but *not* the predicates,
// from the original type. Otherwise, the displayed impl appears to be a
// conditional negative impl, when it's really unconditional.
//
// For example, consider the struct Foo<T: Copy>(*mut T). Using
// the original predicates in our impl would cause us to generate
// `impl !Send for Foo<T: Copy>`, which makes it appear that Foo
// implements Send where T is not copy.
//
// Instead, we generate `impl !Send for Foo<T>`, which better
// expresses the fact that `Foo<T>` never implements `Send`,
// regardless of the choice of `T`.
let mut generics = clean_ty_generics(
cx,
tcx.generics_of(item_def_id),
ty::GenericPredicates::default(),
);
generics.where_predicates.clear();
(generics, ty::ImplPolarity::Negative)
}
auto_trait::AutoTraitResult::ExplicitImpl => return None,
};
Some(clean::Item {
name: None,
attrs: Default::default(),
item_id: clean::ItemId::Auto { trait_: trait_def_id, for_: item_def_id },
kind: Box::new(clean::ImplItem(Box::new(clean::Impl {
safety: hir::Safety::Safe,
generics,
trait_: Some(clean_trait_ref_with_constraints(cx, trait_ref, ThinVec::new())),
for_: clean_middle_ty(ty::Binder::dummy(ty), cx, None, None),
items: Vec::new(),
polarity,
kind: clean::ImplKind::Auto,
}))),
cfg: None,
inline_stmt_id: None,
})
}
#[derive(Debug)]
enum DiscardPositiveImpls {
Yes,
No,
}
#[instrument(level = "debug", skip(cx, region_data, vid_to_region))]
fn clean_param_env<'tcx>(
cx: &mut DocContext<'tcx>,
item_def_id: DefId,
param_env: ty::ParamEnv<'tcx>,
region_data: RegionConstraintData<'tcx>,
vid_to_region: FxIndexMap<ty::RegionVid, ty::Region<'tcx>>,
) -> clean::Generics {
let tcx = cx.tcx;
let generics = tcx.generics_of(item_def_id);
let params: ThinVec<_> = generics
.own_params
.iter()
.inspect(|param| {
if cfg!(debug_assertions) {
debug_assert!(!param.is_anonymous_lifetime() && !param.is_host_effect());
if let ty::GenericParamDefKind::Type { synthetic, .. } = param.kind {
debug_assert!(!synthetic && param.name != kw::SelfUpper);
}
}
})
// We're basing the generics of the synthetic auto trait impl off of the generics of the
// implementing type. Its generic parameters may have defaults, don't copy them over:
// Generic parameter defaults are meaningless in impls.
.map(|param| clean_generic_param_def(param, clean::ParamDefaults::No, cx))
.collect();
// FIXME(#111101): Incorporate the explicit predicates of the item here...
let item_predicates: FxIndexSet<_> =
tcx.param_env(item_def_id).caller_bounds().iter().collect();
let where_predicates = param_env
.caller_bounds()
.iter()
// FIXME: ...which hopefully allows us to simplify this:
.filter(|pred| {
!item_predicates.contains(pred)
|| pred
.as_trait_clause()
.is_some_and(|pred| tcx.lang_items().sized_trait() == Some(pred.def_id()))
})
.map(|pred| {
tcx.fold_regions(pred, |r, _| match *r {
// FIXME: Don't `unwrap_or`, I think we should panic if we encounter an infer var that
// we can't map to a concrete region. However, `AutoTraitFinder` *does* leak those kinds
// of `ReVar`s for some reason at the time of writing. See `rustdoc-ui/` tests.
// This is in dire need of an investigation into `AutoTraitFinder`.
ty::ReVar(vid) => vid_to_region.get(&vid).copied().unwrap_or(r),
ty::ReEarlyParam(_) | ty::ReStatic | ty::ReBound(..) | ty::ReError(_) => r,
// FIXME(#120606): `AutoTraitFinder` can actually leak placeholder regions which feels
// incorrect. Needs investigation.
ty::ReLateParam(_) | ty::RePlaceholder(_) | ty::ReErased => {
bug!("unexpected region kind: {r:?}")
}
})
})
.flat_map(|pred| clean_predicate(pred, cx))
.chain(clean_region_outlives_constraints(®ion_data, generics))
.collect();
let mut generics = clean::Generics { params, where_predicates };
simplify::sized_bounds(cx, &mut generics);
generics.where_predicates = simplify::where_clauses(cx, generics.where_predicates);
generics
}
/// Clean region outlives constraints to where-predicates.
///
/// This is essentially a simplified version of `lexical_region_resolve`.
///
/// However, here we determine what *needs to be* true in order for an impl to hold.
/// `lexical_region_resolve`, along with much of the rest of the compiler, is concerned
/// with determining if a given set up constraints / predicates *are* met, given some
/// starting conditions like user-provided code.
///
/// For this reason, it's easier to perform the calculations we need on our own,
/// rather than trying to make existing inference/solver code do what we want.
fn clean_region_outlives_constraints<'tcx>(
regions: &RegionConstraintData<'tcx>,
generics: &'tcx ty::Generics,
) -> ThinVec<clean::WherePredicate> {
// Our goal is to "flatten" the list of constraints by eliminating all intermediate
// `RegionVids` (region inference variables). At the end, all constraints should be
// between `Region`s. This gives us the information we need to create the where-predicates.
// This flattening is done in two parts.
let mut outlives_predicates = FxIndexMap::<_, Vec<_>>::default();
let mut map = FxIndexMap::<RegionTarget<'_>, auto_trait::RegionDeps<'_>>::default();
// (1) We insert all of the constraints into a map.
// Each `RegionTarget` (a `RegionVid` or a `Region`) maps to its smaller and larger regions.
// Note that "larger" regions correspond to sub regions in the surface language.
// E.g., in `'a: 'b`, `'a` is the larger region.
for (constraint, _) in ®ions.constraints {
match *constraint {
Constraint::VarSubVar(vid1, vid2) => {
let deps1 = map.entry(RegionTarget::RegionVid(vid1)).or_default();
deps1.larger.insert(RegionTarget::RegionVid(vid2));
let deps2 = map.entry(RegionTarget::RegionVid(vid2)).or_default();
deps2.smaller.insert(RegionTarget::RegionVid(vid1));
}
Constraint::RegSubVar(region, vid) => {
let deps = map.entry(RegionTarget::RegionVid(vid)).or_default();
deps.smaller.insert(RegionTarget::Region(region));
}
Constraint::VarSubReg(vid, region) => {
let deps = map.entry(RegionTarget::RegionVid(vid)).or_default();
deps.larger.insert(RegionTarget::Region(region));
}
Constraint::RegSubReg(r1, r2) => {
// The constraint is already in the form that we want, so we're done with it
// The desired order is [larger, smaller], so flip them.
if early_bound_region_name(r1) != early_bound_region_name(r2) {
outlives_predicates
.entry(early_bound_region_name(r2).expect("no region_name found"))
.or_default()
.push(r1);
}
}
}
}
// (2) Here, we "flatten" the map one element at a time. All of the elements' sub and super
// regions are connected to each other. For example, if we have a graph that looks like this:
//
// (A, B) - C - (D, E)
//
// where (A, B) are sub regions, and (D,E) are super regions.
// Then, after deleting 'C', the graph will look like this:
//
// ... - A - (D, E, ...)
// ... - B - (D, E, ...)
// (A, B, ...) - D - ...
// (A, B, ...) - E - ...
//
// where '...' signifies the existing sub and super regions of an entry. When two adjacent
// `Region`s are encountered, we've computed a final constraint, and add it to our list.
// Since we make sure to never re-add deleted items, this process will always finish.
while !map.is_empty() {
let target = *map.keys().next().unwrap();
let deps = map.swap_remove(&target).unwrap();
for smaller in &deps.smaller {
for larger in &deps.larger {
match (smaller, larger) {
(&RegionTarget::Region(smaller), &RegionTarget::Region(larger)) => {
if early_bound_region_name(smaller) != early_bound_region_name(larger) {
outlives_predicates
.entry(
early_bound_region_name(larger).expect("no region name found"),
)
.or_default()
.push(smaller)
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::Region(_)) => {
if let IndexEntry::Occupied(v) = map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.swap_remove(&target);
}
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
if let IndexEntry::Occupied(v) = map.entry(*larger) {
let deps = v.into_mut();
deps.smaller.insert(*smaller);
deps.smaller.swap_remove(&target);
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let IndexEntry::Occupied(v) = map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.swap_remove(&target);
}
if let IndexEntry::Occupied(v) = map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.swap_remove(&target);
}
}
}
}
}
}
let region_params: FxIndexSet<_> = generics
.own_params
.iter()
.filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => Some(param.name),
_ => None,
})
.collect();
region_params
.iter()
.filter_map(|&name| {
let bounds: FxIndexSet<_> = outlives_predicates
.get(&name)?
.iter()
.map(|®ion| {
let lifetime = early_bound_region_name(region)
.inspect(|name| assert!(region_params.contains(name)))
.map(Lifetime)
.unwrap_or(Lifetime::statik());
clean::GenericBound::Outlives(lifetime)
})
.collect();
if bounds.is_empty() {
return None;
}
Some(clean::WherePredicate::RegionPredicate {
lifetime: Lifetime(name),
bounds: bounds.into_iter().collect(),
})
})
.collect()
}
fn early_bound_region_name(region: Region<'_>) -> Option<Symbol> {
match *region {
ty::ReEarlyParam(r) => Some(r.name),
_ => None,
}
}