1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet, IndexEntry};
use rustc_hir as hir;
use rustc_infer::infer::region_constraints::{Constraint, RegionConstraintData};
use rustc_middle::bug;
use rustc_middle::ty::{self, Region, Ty};
use rustc_span::def_id::DefId;
use rustc_span::symbol::{kw, Symbol};
use rustc_trait_selection::traits::auto_trait::{self, RegionTarget};
use thin_vec::ThinVec;
use tracing::{debug, instrument};

use crate::clean::{
    self, clean_generic_param_def, clean_middle_ty, clean_predicate,
    clean_trait_ref_with_constraints, clean_ty_generics, simplify, Lifetime,
};
use crate::core::DocContext;

#[instrument(level = "debug", skip(cx))]
pub(crate) fn synthesize_auto_trait_impls<'tcx>(
    cx: &mut DocContext<'tcx>,
    item_def_id: DefId,
) -> Vec<clean::Item> {
    let tcx = cx.tcx;
    let param_env = tcx.param_env(item_def_id);
    let ty = tcx.type_of(item_def_id).instantiate_identity();

    let finder = auto_trait::AutoTraitFinder::new(tcx);
    let mut auto_trait_impls: Vec<_> = cx
        .auto_traits
        .clone()
        .into_iter()
        .filter_map(|trait_def_id| {
            synthesize_auto_trait_impl(
                cx,
                ty,
                trait_def_id,
                param_env,
                item_def_id,
                &finder,
                DiscardPositiveImpls::No,
            )
        })
        .collect();
    // We are only interested in case the type *doesn't* implement the `Sized` trait.
    if !ty.is_sized(tcx, param_env)
        && let Some(sized_trait_def_id) = tcx.lang_items().sized_trait()
        && let Some(impl_item) = synthesize_auto_trait_impl(
            cx,
            ty,
            sized_trait_def_id,
            param_env,
            item_def_id,
            &finder,
            DiscardPositiveImpls::Yes,
        )
    {
        auto_trait_impls.push(impl_item);
    }
    auto_trait_impls
}

#[instrument(level = "debug", skip(cx, finder))]
fn synthesize_auto_trait_impl<'tcx>(
    cx: &mut DocContext<'tcx>,
    ty: Ty<'tcx>,
    trait_def_id: DefId,
    param_env: ty::ParamEnv<'tcx>,
    item_def_id: DefId,
    finder: &auto_trait::AutoTraitFinder<'tcx>,
    discard_positive_impls: DiscardPositiveImpls,
) -> Option<clean::Item> {
    let tcx = cx.tcx;
    let trait_ref = ty::Binder::dummy(ty::TraitRef::new(tcx, trait_def_id, [ty]));
    if !cx.generated_synthetics.insert((ty, trait_def_id)) {
        debug!("already generated, aborting");
        return None;
    }

    let result = finder.find_auto_trait_generics(ty, param_env, trait_def_id, |info| {
        clean_param_env(cx, item_def_id, info.full_user_env, info.region_data, info.vid_to_region)
    });

    let (generics, polarity) = match result {
        auto_trait::AutoTraitResult::PositiveImpl(generics) => {
            if let DiscardPositiveImpls::Yes = discard_positive_impls {
                return None;
            }

            (generics, ty::ImplPolarity::Positive)
        }
        auto_trait::AutoTraitResult::NegativeImpl => {
            // For negative impls, we use the generic params, but *not* the predicates,
            // from the original type. Otherwise, the displayed impl appears to be a
            // conditional negative impl, when it's really unconditional.
            //
            // For example, consider the struct Foo<T: Copy>(*mut T). Using
            // the original predicates in our impl would cause us to generate
            // `impl !Send for Foo<T: Copy>`, which makes it appear that Foo
            // implements Send where T is not copy.
            //
            // Instead, we generate `impl !Send for Foo<T>`, which better
            // expresses the fact that `Foo<T>` never implements `Send`,
            // regardless of the choice of `T`.
            let mut generics = clean_ty_generics(
                cx,
                tcx.generics_of(item_def_id),
                ty::GenericPredicates::default(),
            );
            generics.where_predicates.clear();

            (generics, ty::ImplPolarity::Negative)
        }
        auto_trait::AutoTraitResult::ExplicitImpl => return None,
    };

    Some(clean::Item {
        name: None,
        attrs: Default::default(),
        item_id: clean::ItemId::Auto { trait_: trait_def_id, for_: item_def_id },
        kind: Box::new(clean::ImplItem(Box::new(clean::Impl {
            safety: hir::Safety::Safe,
            generics,
            trait_: Some(clean_trait_ref_with_constraints(cx, trait_ref, ThinVec::new())),
            for_: clean_middle_ty(ty::Binder::dummy(ty), cx, None, None),
            items: Vec::new(),
            polarity,
            kind: clean::ImplKind::Auto,
        }))),
        cfg: None,
        inline_stmt_id: None,
    })
}

#[derive(Debug)]
enum DiscardPositiveImpls {
    Yes,
    No,
}

#[instrument(level = "debug", skip(cx, region_data, vid_to_region))]
fn clean_param_env<'tcx>(
    cx: &mut DocContext<'tcx>,
    item_def_id: DefId,
    param_env: ty::ParamEnv<'tcx>,
    region_data: RegionConstraintData<'tcx>,
    vid_to_region: FxIndexMap<ty::RegionVid, ty::Region<'tcx>>,
) -> clean::Generics {
    let tcx = cx.tcx;
    let generics = tcx.generics_of(item_def_id);

    let params: ThinVec<_> = generics
        .own_params
        .iter()
        .inspect(|param| {
            if cfg!(debug_assertions) {
                debug_assert!(!param.is_anonymous_lifetime() && !param.is_host_effect());
                if let ty::GenericParamDefKind::Type { synthetic, .. } = param.kind {
                    debug_assert!(!synthetic && param.name != kw::SelfUpper);
                }
            }
        })
        // We're basing the generics of the synthetic auto trait impl off of the generics of the
        // implementing type. Its generic parameters may have defaults, don't copy them over:
        // Generic parameter defaults are meaningless in impls.
        .map(|param| clean_generic_param_def(param, clean::ParamDefaults::No, cx))
        .collect();

    // FIXME(#111101): Incorporate the explicit predicates of the item here...
    let item_predicates: FxIndexSet<_> =
        tcx.param_env(item_def_id).caller_bounds().iter().collect();
    let where_predicates = param_env
        .caller_bounds()
        .iter()
        // FIXME: ...which hopefully allows us to simplify this:
        .filter(|pred| {
            !item_predicates.contains(pred)
                || pred
                    .as_trait_clause()
                    .is_some_and(|pred| tcx.lang_items().sized_trait() == Some(pred.def_id()))
        })
        .map(|pred| {
            tcx.fold_regions(pred, |r, _| match *r {
                // FIXME: Don't `unwrap_or`, I think we should panic if we encounter an infer var that
                // we can't map to a concrete region. However, `AutoTraitFinder` *does* leak those kinds
                // of `ReVar`s for some reason at the time of writing. See `rustdoc-ui/` tests.
                // This is in dire need of an investigation into `AutoTraitFinder`.
                ty::ReVar(vid) => vid_to_region.get(&vid).copied().unwrap_or(r),
                ty::ReEarlyParam(_) | ty::ReStatic | ty::ReBound(..) | ty::ReError(_) => r,
                // FIXME(#120606): `AutoTraitFinder` can actually leak placeholder regions which feels
                // incorrect. Needs investigation.
                ty::ReLateParam(_) | ty::RePlaceholder(_) | ty::ReErased => {
                    bug!("unexpected region kind: {r:?}")
                }
            })
        })
        .flat_map(|pred| clean_predicate(pred, cx))
        .chain(clean_region_outlives_constraints(&region_data, generics))
        .collect();

    let mut generics = clean::Generics { params, where_predicates };
    simplify::sized_bounds(cx, &mut generics);
    generics.where_predicates = simplify::where_clauses(cx, generics.where_predicates);
    generics
}

/// Clean region outlives constraints to where-predicates.
///
/// This is essentially a simplified version of `lexical_region_resolve`.
///
/// However, here we determine what *needs to be* true in order for an impl to hold.
/// `lexical_region_resolve`, along with much of the rest of the compiler, is concerned
/// with determining if a given set up constraints / predicates *are* met, given some
/// starting conditions like user-provided code.
///
/// For this reason, it's easier to perform the calculations we need on our own,
/// rather than trying to make existing inference/solver code do what we want.
fn clean_region_outlives_constraints<'tcx>(
    regions: &RegionConstraintData<'tcx>,
    generics: &'tcx ty::Generics,
) -> ThinVec<clean::WherePredicate> {
    // Our goal is to "flatten" the list of constraints by eliminating all intermediate
    // `RegionVids` (region inference variables). At the end, all constraints should be
    // between `Region`s. This gives us the information we need to create the where-predicates.
    // This flattening is done in two parts.

    let mut outlives_predicates = FxIndexMap::<_, Vec<_>>::default();
    let mut map = FxIndexMap::<RegionTarget<'_>, auto_trait::RegionDeps<'_>>::default();

    // (1)  We insert all of the constraints into a map.
    // Each `RegionTarget` (a `RegionVid` or a `Region`) maps to its smaller and larger regions.
    // Note that "larger" regions correspond to sub regions in the surface language.
    // E.g., in `'a: 'b`, `'a` is the larger region.
    for (constraint, _) in &regions.constraints {
        match *constraint {
            Constraint::VarSubVar(vid1, vid2) => {
                let deps1 = map.entry(RegionTarget::RegionVid(vid1)).or_default();
                deps1.larger.insert(RegionTarget::RegionVid(vid2));

                let deps2 = map.entry(RegionTarget::RegionVid(vid2)).or_default();
                deps2.smaller.insert(RegionTarget::RegionVid(vid1));
            }
            Constraint::RegSubVar(region, vid) => {
                let deps = map.entry(RegionTarget::RegionVid(vid)).or_default();
                deps.smaller.insert(RegionTarget::Region(region));
            }
            Constraint::VarSubReg(vid, region) => {
                let deps = map.entry(RegionTarget::RegionVid(vid)).or_default();
                deps.larger.insert(RegionTarget::Region(region));
            }
            Constraint::RegSubReg(r1, r2) => {
                // The constraint is already in the form that we want, so we're done with it
                // The desired order is [larger, smaller], so flip them.
                if early_bound_region_name(r1) != early_bound_region_name(r2) {
                    outlives_predicates
                        .entry(early_bound_region_name(r2).expect("no region_name found"))
                        .or_default()
                        .push(r1);
                }
            }
        }
    }

    // (2)  Here, we "flatten" the map one element at a time. All of the elements' sub and super
    // regions are connected to each other. For example, if we have a graph that looks like this:
    //
    //     (A, B) - C - (D, E)
    //
    // where (A, B) are sub regions, and (D,E) are super regions.
    // Then, after deleting 'C', the graph will look like this:
    //
    //             ... - A - (D, E, ...)
    //             ... - B - (D, E, ...)
    //     (A, B, ...) - D - ...
    //     (A, B, ...) - E - ...
    //
    // where '...' signifies the existing sub and super regions of an entry. When two adjacent
    // `Region`s are encountered, we've computed a final constraint, and add it to our list.
    // Since we make sure to never re-add deleted items, this process will always finish.
    while !map.is_empty() {
        let target = *map.keys().next().unwrap();
        let deps = map.swap_remove(&target).unwrap();

        for smaller in &deps.smaller {
            for larger in &deps.larger {
                match (smaller, larger) {
                    (&RegionTarget::Region(smaller), &RegionTarget::Region(larger)) => {
                        if early_bound_region_name(smaller) != early_bound_region_name(larger) {
                            outlives_predicates
                                .entry(
                                    early_bound_region_name(larger).expect("no region name found"),
                                )
                                .or_default()
                                .push(smaller)
                        }
                    }
                    (&RegionTarget::RegionVid(_), &RegionTarget::Region(_)) => {
                        if let IndexEntry::Occupied(v) = map.entry(*smaller) {
                            let smaller_deps = v.into_mut();
                            smaller_deps.larger.insert(*larger);
                            smaller_deps.larger.swap_remove(&target);
                        }
                    }
                    (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
                        if let IndexEntry::Occupied(v) = map.entry(*larger) {
                            let deps = v.into_mut();
                            deps.smaller.insert(*smaller);
                            deps.smaller.swap_remove(&target);
                        }
                    }
                    (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
                        if let IndexEntry::Occupied(v) = map.entry(*smaller) {
                            let smaller_deps = v.into_mut();
                            smaller_deps.larger.insert(*larger);
                            smaller_deps.larger.swap_remove(&target);
                        }
                        if let IndexEntry::Occupied(v) = map.entry(*larger) {
                            let larger_deps = v.into_mut();
                            larger_deps.smaller.insert(*smaller);
                            larger_deps.smaller.swap_remove(&target);
                        }
                    }
                }
            }
        }
    }

    let region_params: FxIndexSet<_> = generics
        .own_params
        .iter()
        .filter_map(|param| match param.kind {
            ty::GenericParamDefKind::Lifetime => Some(param.name),
            _ => None,
        })
        .collect();

    region_params
        .iter()
        .filter_map(|&name| {
            let bounds: FxIndexSet<_> = outlives_predicates
                .get(&name)?
                .iter()
                .map(|&region| {
                    let lifetime = early_bound_region_name(region)
                        .inspect(|name| assert!(region_params.contains(name)))
                        .map(Lifetime)
                        .unwrap_or(Lifetime::statik());
                    clean::GenericBound::Outlives(lifetime)
                })
                .collect();
            if bounds.is_empty() {
                return None;
            }
            Some(clean::WherePredicate::RegionPredicate {
                lifetime: Lifetime(name),
                bounds: bounds.into_iter().collect(),
            })
        })
        .collect()
}

fn early_bound_region_name(region: Region<'_>) -> Option<Symbol> {
    match *region {
        ty::ReEarlyParam(r) => Some(r.name),
        _ => None,
    }
}