1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
//! Logic and data structures related to impl specialization, explained in
//! greater detail below.
//!
//! At the moment, this implementation support only the simple "chain" rule:
//! If any two impls overlap, one must be a strict subset of the other.
//!
//! See the [rustc dev guide] for a bit more detail on how specialization
//! fits together with the rest of the trait machinery.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
pub mod specialization_graph;
use rustc_data_structures::fx::FxIndexSet;
use rustc_errors::codes::*;
use rustc_errors::{Diag, EmissionGuarantee};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_middle::bug;
use rustc_middle::query::LocalCrate;
use rustc_middle::ty::print::PrintTraitRefExt as _;
use rustc_middle::ty::{self, GenericArgsRef, ImplSubject, Ty, TyCtxt, TypeVisitableExt};
use rustc_session::lint::builtin::{COHERENCE_LEAK_CHECK, ORDER_DEPENDENT_TRAIT_OBJECTS};
use rustc_span::{sym, ErrorGuaranteed, Span, DUMMY_SP};
use specialization_graph::GraphExt;
use tracing::{debug, instrument};
use super::{util, SelectionContext};
use crate::error_reporting::traits::to_pretty_impl_header;
use crate::errors::NegativePositiveConflict;
use crate::infer::{InferCtxt, InferOk, TyCtxtInferExt};
use crate::traits::select::IntercrateAmbiguityCause;
use crate::traits::{coherence, FutureCompatOverlapErrorKind, ObligationCause, ObligationCtxt};
/// Information pertinent to an overlapping impl error.
#[derive(Debug)]
pub struct OverlapError<'tcx> {
pub with_impl: DefId,
pub trait_ref: ty::TraitRef<'tcx>,
pub self_ty: Option<Ty<'tcx>>,
pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause<'tcx>>,
pub involves_placeholder: bool,
pub overflowing_predicates: Vec<ty::Predicate<'tcx>>,
}
/// Given the generic parameters for the requested impl, translate it to the generic parameters
/// appropriate for the actual item definition (whether it be in that impl,
/// a parent impl, or the trait).
///
/// When we have selected one impl, but are actually using item definitions from
/// a parent impl providing a default, we need a way to translate between the
/// type parameters of the two impls. Here the `source_impl` is the one we've
/// selected, and `source_args` is its generic parameters.
/// And `target_node` is the impl/trait we're actually going to get the
/// definition from. The resulting instantiation will map from `target_node`'s
/// generics to `source_impl`'s generics as instantiated by `source_args`.
///
/// For example, consider the following scenario:
///
/// ```ignore (illustrative)
/// trait Foo { ... }
/// impl<T, U> Foo for (T, U) { ... } // target impl
/// impl<V> Foo for (V, V) { ... } // source impl
/// ```
///
/// Suppose we have selected "source impl" with `V` instantiated with `u32`.
/// This function will produce an instantiation with `T` and `U` both mapping to `u32`.
///
/// where-clauses add some trickiness here, because they can be used to "define"
/// an argument indirectly:
///
/// ```ignore (illustrative)
/// impl<'a, I, T: 'a> Iterator for Cloned<I>
/// where I: Iterator<Item = &'a T>, T: Clone
/// ```
///
/// In a case like this, the instantiation for `T` is determined indirectly,
/// through associated type projection. We deal with such cases by using
/// *fulfillment* to relate the two impls, requiring that all projections are
/// resolved.
pub fn translate_args<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
source_impl: DefId,
source_args: GenericArgsRef<'tcx>,
target_node: specialization_graph::Node,
) -> GenericArgsRef<'tcx> {
translate_args_with_cause(infcx, param_env, source_impl, source_args, target_node, |_, _| {
ObligationCause::dummy()
})
}
/// Like [translate_args], but obligations from the parent implementation
/// are registered with the provided `ObligationCause`.
///
/// This is for reporting *region* errors from those bounds. Type errors should
/// not happen because the specialization graph already checks for those, and
/// will result in an ICE.
pub fn translate_args_with_cause<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
source_impl: DefId,
source_args: GenericArgsRef<'tcx>,
target_node: specialization_graph::Node,
cause: impl Fn(usize, Span) -> ObligationCause<'tcx>,
) -> GenericArgsRef<'tcx> {
debug!(
"translate_args({:?}, {:?}, {:?}, {:?})",
param_env, source_impl, source_args, target_node
);
let source_trait_ref =
infcx.tcx.impl_trait_ref(source_impl).unwrap().instantiate(infcx.tcx, source_args);
// translate the Self and Param parts of the generic parameters, since those
// vary across impls
let target_args = match target_node {
specialization_graph::Node::Impl(target_impl) => {
// no need to translate if we're targeting the impl we started with
if source_impl == target_impl {
return source_args;
}
fulfill_implication(infcx, param_env, source_trait_ref, source_impl, target_impl, cause)
.unwrap_or_else(|()| {
bug!(
"When translating generic parameters from {source_impl:?} to \
{target_impl:?}, the expected specialization failed to hold"
)
})
}
specialization_graph::Node::Trait(..) => source_trait_ref.args,
};
// directly inherent the method generics, since those do not vary across impls
source_args.rebase_onto(infcx.tcx, source_impl, target_args)
}
pub(super) fn specialization_enabled_in(tcx: TyCtxt<'_>, _: LocalCrate) -> bool {
tcx.features().specialization || tcx.features().min_specialization
}
/// Is `impl1` a specialization of `impl2`?
///
/// Specialization is determined by the sets of types to which the impls apply;
/// `impl1` specializes `impl2` if it applies to a subset of the types `impl2` applies
/// to.
#[instrument(skip(tcx), level = "debug")]
pub(super) fn specializes(tcx: TyCtxt<'_>, (impl1_def_id, impl2_def_id): (DefId, DefId)) -> bool {
// We check that the specializing impl comes from a crate that has specialization enabled,
// or if the specializing impl is marked with `allow_internal_unstable`.
//
// We don't really care if the specialized impl (the parent) is in a crate that has
// specialization enabled, since it's not being specialized, and it's already been checked
// for coherence.
if !tcx.specialization_enabled_in(impl1_def_id.krate) {
let span = tcx.def_span(impl1_def_id);
if !span.allows_unstable(sym::specialization)
&& !span.allows_unstable(sym::min_specialization)
{
return false;
}
}
let impl1_trait_header = tcx.impl_trait_header(impl1_def_id).unwrap();
// We determine whether there's a subset relationship by:
//
// - replacing bound vars with placeholders in impl1,
// - assuming the where clauses for impl1,
// - instantiating impl2 with fresh inference variables,
// - unifying,
// - attempting to prove the where clauses for impl2
//
// The last three steps are encapsulated in `fulfill_implication`.
//
// See RFC 1210 for more details and justification.
// Currently we do not allow e.g., a negative impl to specialize a positive one
if impl1_trait_header.polarity != tcx.impl_polarity(impl2_def_id) {
return false;
}
// create a parameter environment corresponding to a (placeholder) instantiation of impl1
let penv = tcx.param_env(impl1_def_id);
// Create an infcx, taking the predicates of impl1 as assumptions:
let infcx = tcx.infer_ctxt().build();
// Attempt to prove that impl2 applies, given all of the above.
fulfill_implication(
&infcx,
penv,
impl1_trait_header.trait_ref.instantiate_identity(),
impl1_def_id,
impl2_def_id,
|_, _| ObligationCause::dummy(),
)
.is_ok()
}
/// Attempt to fulfill all obligations of `target_impl` after unification with
/// `source_trait_ref`. If successful, returns the generic parameters for *all* the
/// generics of `target_impl`, including both those needed to unify with
/// `source_trait_ref` and those whose identity is determined via a where
/// clause in the impl.
fn fulfill_implication<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
source_trait_ref: ty::TraitRef<'tcx>,
source_impl: DefId,
target_impl: DefId,
error_cause: impl Fn(usize, Span) -> ObligationCause<'tcx>,
) -> Result<GenericArgsRef<'tcx>, ()> {
debug!(
"fulfill_implication({:?}, trait_ref={:?} |- {:?} applies)",
param_env, source_trait_ref, target_impl
);
let ocx = ObligationCtxt::new(infcx);
let source_trait_ref = ocx.normalize(&ObligationCause::dummy(), param_env, source_trait_ref);
if !ocx.select_all_or_error().is_empty() {
infcx.dcx().span_delayed_bug(
infcx.tcx.def_span(source_impl),
format!("failed to fully normalize {source_trait_ref}"),
);
}
let source_trait_ref = infcx.resolve_vars_if_possible(source_trait_ref);
let source_trait = ImplSubject::Trait(source_trait_ref);
let selcx = SelectionContext::new(infcx);
let target_args = infcx.fresh_args_for_item(DUMMY_SP, target_impl);
let (target_trait, obligations) =
util::impl_subject_and_oblig(&selcx, param_env, target_impl, target_args, error_cause);
// do the impls unify? If not, no specialization.
let Ok(InferOk { obligations: more_obligations, .. }) = infcx
.at(&ObligationCause::dummy(), param_env)
// Ok to use `Yes`, as all the generic params are already replaced by inference variables,
// which will match the opaque type no matter if it is defining or not.
// Any concrete type that would match the opaque would already be handled by coherence rules,
// and thus either be ok to match here and already have errored, or it won't match, in which
// case there is no issue anyway.
.eq(DefineOpaqueTypes::Yes, source_trait, target_trait)
else {
debug!("fulfill_implication: {:?} does not unify with {:?}", source_trait, target_trait);
return Err(());
};
// attempt to prove all of the predicates for impl2 given those for impl1
// (which are packed up in penv)
ocx.register_obligations(obligations.chain(more_obligations));
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
// no dice!
debug!(
"fulfill_implication: for impls on {:?} and {:?}, \
could not fulfill: {:?} given {:?}",
source_trait,
target_trait,
errors,
param_env.caller_bounds()
);
return Err(());
}
debug!("fulfill_implication: an impl for {:?} specializes {:?}", source_trait, target_trait);
// Now resolve the *generic parameters* we built for the target earlier, replacing
// the inference variables inside with whatever we got from fulfillment.
Ok(infcx.resolve_vars_if_possible(target_args))
}
/// Query provider for `specialization_graph_of`.
pub(super) fn specialization_graph_provider(
tcx: TyCtxt<'_>,
trait_id: DefId,
) -> Result<&'_ specialization_graph::Graph, ErrorGuaranteed> {
let mut sg = specialization_graph::Graph::new();
let overlap_mode = specialization_graph::OverlapMode::get(tcx, trait_id);
let mut trait_impls: Vec<_> = tcx.all_impls(trait_id).collect();
// The coherence checking implementation seems to rely on impls being
// iterated over (roughly) in definition order, so we are sorting by
// negated `CrateNum` (so remote definitions are visited first) and then
// by a flattened version of the `DefIndex`.
trait_impls
.sort_unstable_by_key(|def_id| (-(def_id.krate.as_u32() as i64), def_id.index.index()));
let mut errored = Ok(());
for impl_def_id in trait_impls {
if let Some(impl_def_id) = impl_def_id.as_local() {
// This is where impl overlap checking happens:
let insert_result = sg.insert(tcx, impl_def_id.to_def_id(), overlap_mode);
// Report error if there was one.
let (overlap, used_to_be_allowed) = match insert_result {
Err(overlap) => (Some(overlap), None),
Ok(Some(overlap)) => (Some(overlap.error), Some(overlap.kind)),
Ok(None) => (None, None),
};
if let Some(overlap) = overlap {
errored = errored.and(report_overlap_conflict(
tcx,
overlap,
impl_def_id,
used_to_be_allowed,
));
}
} else {
let parent = tcx.impl_parent(impl_def_id).unwrap_or(trait_id);
sg.record_impl_from_cstore(tcx, parent, impl_def_id)
}
}
errored?;
Ok(tcx.arena.alloc(sg))
}
// This function is only used when
// encountering errors and inlining
// it negatively impacts perf.
#[cold]
#[inline(never)]
fn report_overlap_conflict<'tcx>(
tcx: TyCtxt<'tcx>,
overlap: OverlapError<'tcx>,
impl_def_id: LocalDefId,
used_to_be_allowed: Option<FutureCompatOverlapErrorKind>,
) -> Result<(), ErrorGuaranteed> {
let impl_polarity = tcx.impl_polarity(impl_def_id.to_def_id());
let other_polarity = tcx.impl_polarity(overlap.with_impl);
match (impl_polarity, other_polarity) {
(ty::ImplPolarity::Negative, ty::ImplPolarity::Positive) => {
Err(report_negative_positive_conflict(
tcx,
&overlap,
impl_def_id,
impl_def_id.to_def_id(),
overlap.with_impl,
))
}
(ty::ImplPolarity::Positive, ty::ImplPolarity::Negative) => {
Err(report_negative_positive_conflict(
tcx,
&overlap,
impl_def_id,
overlap.with_impl,
impl_def_id.to_def_id(),
))
}
_ => report_conflicting_impls(tcx, overlap, impl_def_id, used_to_be_allowed),
}
}
fn report_negative_positive_conflict<'tcx>(
tcx: TyCtxt<'tcx>,
overlap: &OverlapError<'tcx>,
local_impl_def_id: LocalDefId,
negative_impl_def_id: DefId,
positive_impl_def_id: DefId,
) -> ErrorGuaranteed {
tcx.dcx()
.create_err(NegativePositiveConflict {
impl_span: tcx.def_span(local_impl_def_id),
trait_desc: overlap.trait_ref,
self_ty: overlap.self_ty,
negative_impl_span: tcx.span_of_impl(negative_impl_def_id),
positive_impl_span: tcx.span_of_impl(positive_impl_def_id),
})
.emit()
}
fn report_conflicting_impls<'tcx>(
tcx: TyCtxt<'tcx>,
overlap: OverlapError<'tcx>,
impl_def_id: LocalDefId,
used_to_be_allowed: Option<FutureCompatOverlapErrorKind>,
) -> Result<(), ErrorGuaranteed> {
let impl_span = tcx.def_span(impl_def_id);
// Work to be done after we've built the Diag. We have to define it now
// because the lint emit methods don't return back the Diag that's passed
// in.
fn decorate<'tcx, G: EmissionGuarantee>(
tcx: TyCtxt<'tcx>,
overlap: &OverlapError<'tcx>,
impl_span: Span,
err: &mut Diag<'_, G>,
) {
match tcx.span_of_impl(overlap.with_impl) {
Ok(span) => {
err.span_label(span, "first implementation here");
err.span_label(
impl_span,
format!(
"conflicting implementation{}",
overlap.self_ty.map_or_else(String::new, |ty| format!(" for `{ty}`"))
),
);
}
Err(cname) => {
let msg = match to_pretty_impl_header(tcx, overlap.with_impl) {
Some(s) => {
format!("conflicting implementation in crate `{cname}`:\n- {s}")
}
None => format!("conflicting implementation in crate `{cname}`"),
};
err.note(msg);
}
}
for cause in &overlap.intercrate_ambiguity_causes {
cause.add_intercrate_ambiguity_hint(err);
}
if overlap.involves_placeholder {
coherence::add_placeholder_note(err);
}
if !overlap.overflowing_predicates.is_empty() {
coherence::suggest_increasing_recursion_limit(
tcx,
err,
&overlap.overflowing_predicates,
);
}
}
let msg = || {
format!(
"conflicting implementations of trait `{}`{}{}",
overlap.trait_ref.print_trait_sugared(),
overlap.self_ty.map_or_else(String::new, |ty| format!(" for type `{ty}`")),
match used_to_be_allowed {
Some(FutureCompatOverlapErrorKind::OrderDepTraitObjects) => ": (E0119)",
_ => "",
}
)
};
// Don't report overlap errors if the header references error
if let Err(err) = (overlap.trait_ref, overlap.self_ty).error_reported() {
return Err(err);
}
match used_to_be_allowed {
None => {
let reported = if overlap.with_impl.is_local()
|| tcx.ensure().orphan_check_impl(impl_def_id).is_ok()
{
let mut err = tcx.dcx().struct_span_err(impl_span, msg());
err.code(E0119);
decorate(tcx, &overlap, impl_span, &mut err);
err.emit()
} else {
tcx.dcx().span_delayed_bug(impl_span, "impl should have failed the orphan check")
};
Err(reported)
}
Some(kind) => {
let lint = match kind {
FutureCompatOverlapErrorKind::OrderDepTraitObjects => ORDER_DEPENDENT_TRAIT_OBJECTS,
FutureCompatOverlapErrorKind::LeakCheck => COHERENCE_LEAK_CHECK,
};
tcx.node_span_lint(lint, tcx.local_def_id_to_hir_id(impl_def_id), impl_span, |err| {
err.primary_message(msg());
decorate(tcx, &overlap, impl_span, err);
});
Ok(())
}
}
}