1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
use std::{iter, mem};
use rustc_ast::token::{Delimiter, Token, TokenKind};
use rustc_ast::tokenstream::{
AttrTokenStream, AttrTokenTree, AttrsTarget, DelimSpacing, DelimSpan, LazyAttrTokenStream,
Spacing, ToAttrTokenStream,
};
use rustc_ast::{self as ast, AttrVec, Attribute, HasAttrs, HasTokens};
use rustc_errors::PResult;
use rustc_session::parse::ParseSess;
use rustc_span::{sym, Span, DUMMY_SP};
use super::{
Capturing, FlatToken, ForceCollect, NodeRange, NodeReplacement, Parser, ParserRange,
TokenCursor, Trailing,
};
// When collecting tokens, this fully captures the start point. Usually its
// just after outer attributes, but occasionally it's before.
#[derive(Clone, Debug)]
pub(super) struct CollectPos {
start_token: (Token, Spacing),
cursor_snapshot: TokenCursor,
start_pos: u32,
}
pub(super) enum UsePreAttrPos {
No,
Yes,
}
/// A wrapper type to ensure that the parser handles outer attributes correctly.
/// When we parse outer attributes, we need to ensure that we capture tokens
/// for the attribute target. This allows us to perform cfg-expansion on
/// a token stream before we invoke a derive proc-macro.
///
/// This wrapper prevents direct access to the underlying `ast::AttrVec`.
/// Parsing code can only get access to the underlying attributes
/// by passing an `AttrWrapper` to `collect_tokens`.
/// This makes it difficult to accidentally construct an AST node
/// (which stores an `ast::AttrVec`) without first collecting tokens.
///
/// This struct has its own module, to ensure that the parser code
/// cannot directly access the `attrs` field.
#[derive(Debug, Clone)]
pub(super) struct AttrWrapper {
attrs: AttrVec,
// The start of the outer attributes in the parser's token stream.
// This lets us create a `NodeReplacement` for the entire attribute
// target, including outer attributes. `None` if there are no outer
// attributes.
start_pos: Option<u32>,
}
impl AttrWrapper {
pub(super) fn new(attrs: AttrVec, start_pos: u32) -> AttrWrapper {
AttrWrapper { attrs, start_pos: Some(start_pos) }
}
pub(super) fn empty() -> AttrWrapper {
AttrWrapper { attrs: AttrVec::new(), start_pos: None }
}
pub(super) fn take_for_recovery(self, psess: &ParseSess) -> AttrVec {
psess.dcx().span_delayed_bug(
self.attrs.get(0).map(|attr| attr.span).unwrap_or(DUMMY_SP),
"AttrVec is taken for recovery but no error is produced",
);
self.attrs
}
/// Prepend `self.attrs` to `attrs`.
// FIXME: require passing an NT to prevent misuse of this method
pub(super) fn prepend_to_nt_inner(mut self, attrs: &mut AttrVec) {
mem::swap(attrs, &mut self.attrs);
attrs.extend(self.attrs);
}
pub(super) fn is_empty(&self) -> bool {
self.attrs.is_empty()
}
}
/// Returns `true` if `attrs` contains a `cfg` or `cfg_attr` attribute
fn has_cfg_or_cfg_attr(attrs: &[Attribute]) -> bool {
// NOTE: Builtin attributes like `cfg` and `cfg_attr` cannot be renamed via imports.
// Therefore, the absence of a literal `cfg` or `cfg_attr` guarantees that
// we don't need to do any eager expansion.
attrs.iter().any(|attr| {
attr.ident().is_some_and(|ident| ident.name == sym::cfg || ident.name == sym::cfg_attr)
})
}
// From a value of this type we can reconstruct the `TokenStream` seen by the
// `f` callback passed to a call to `Parser::collect_tokens`, by
// replaying the getting of the tokens. This saves us producing a `TokenStream`
// if it is never needed, e.g. a captured `macro_rules!` argument that is never
// passed to a proc macro. In practice, token stream creation happens rarely
// compared to calls to `collect_tokens` (see some statistics in #78736) so we
// are doing as little up-front work as possible.
//
// This also makes `Parser` very cheap to clone, since
// there is no intermediate collection buffer to clone.
struct LazyAttrTokenStreamImpl {
start_token: (Token, Spacing),
cursor_snapshot: TokenCursor,
num_calls: u32,
break_last_token: bool,
node_replacements: Box<[NodeReplacement]>,
}
impl ToAttrTokenStream for LazyAttrTokenStreamImpl {
fn to_attr_token_stream(&self) -> AttrTokenStream {
// The token produced by the final call to `{,inlined_}next` was not
// actually consumed by the callback. The combination of chaining the
// initial token and using `take` produces the desired result - we
// produce an empty `TokenStream` if no calls were made, and omit the
// final token otherwise.
let mut cursor_snapshot = self.cursor_snapshot.clone();
let tokens = iter::once(FlatToken::Token(self.start_token.clone()))
.chain(iter::repeat_with(|| FlatToken::Token(cursor_snapshot.next())))
.take(self.num_calls as usize);
if self.node_replacements.is_empty() {
make_attr_token_stream(tokens, self.break_last_token)
} else {
let mut tokens: Vec<_> = tokens.collect();
let mut node_replacements = self.node_replacements.to_vec();
node_replacements.sort_by_key(|(range, _)| range.0.start);
#[cfg(debug_assertions)]
for [(node_range, tokens), (next_node_range, next_tokens)] in
node_replacements.array_windows()
{
assert!(
node_range.0.end <= next_node_range.0.start
|| node_range.0.end >= next_node_range.0.end,
"Node ranges should be disjoint or nested: ({:?}, {:?}) ({:?}, {:?})",
node_range,
tokens,
next_node_range,
next_tokens,
);
}
// Process the replace ranges, starting from the highest start
// position and working our way back. If have tokens like:
//
// `#[cfg(FALSE)] struct Foo { #[cfg(FALSE)] field: bool }`
//
// Then we will generate replace ranges for both
// the `#[cfg(FALSE)] field: bool` and the entire
// `#[cfg(FALSE)] struct Foo { #[cfg(FALSE)] field: bool }`
//
// By starting processing from the replace range with the greatest
// start position, we ensure that any (outer) replace range which
// encloses another (inner) replace range will fully overwrite the
// inner range's replacement.
for (node_range, target) in node_replacements.into_iter().rev() {
assert!(
!node_range.0.is_empty(),
"Cannot replace an empty node range: {:?}",
node_range.0
);
// Replace the tokens in range with zero or one `FlatToken::AttrsTarget`s, plus
// enough `FlatToken::Empty`s to fill up the rest of the range. This keeps the
// total length of `tokens` constant throughout the replacement process, allowing
// us to do all replacements without adjusting indices.
let target_len = target.is_some() as usize;
tokens.splice(
(node_range.0.start as usize)..(node_range.0.end as usize),
target.into_iter().map(|target| FlatToken::AttrsTarget(target)).chain(
iter::repeat(FlatToken::Empty).take(node_range.0.len() - target_len),
),
);
}
make_attr_token_stream(tokens.into_iter(), self.break_last_token)
}
}
}
impl<'a> Parser<'a> {
pub(super) fn collect_pos(&self) -> CollectPos {
CollectPos {
start_token: (self.token.clone(), self.token_spacing),
cursor_snapshot: self.token_cursor.clone(),
start_pos: self.num_bump_calls,
}
}
/// Parses code with `f`. If appropriate, it records the tokens (in
/// `LazyAttrTokenStream` form) that were parsed in the result, accessible
/// via the `HasTokens` trait. The `Trailing` part of the callback's
/// result indicates if an extra token should be captured, e.g. a comma or
/// semicolon. The `UsePreAttrPos` part of the callback's result indicates
/// if we should use `pre_attr_pos` as the collection start position (only
/// required in a few cases).
///
/// The `attrs` passed in are in `AttrWrapper` form, which is opaque. The
/// `AttrVec` within is passed to `f`. See the comment on `AttrWrapper` for
/// details.
///
/// `pre_attr_pos` is the position before the outer attributes (or the node
/// itself, if no outer attributes are present). It is only needed if `f`
/// can return `UsePreAttrPos::Yes`.
///
/// Note: If your callback consumes an opening delimiter (including the
/// case where `self.token` is an opening delimiter on entry to this
/// function), you must also consume the corresponding closing delimiter.
/// E.g. you can consume `something ([{ }])` or `([{}])`, but not `([{}]`.
/// This restriction isn't a problem in practice, because parsed AST items
/// always have matching delimiters.
///
/// The following example code will be used to explain things in comments
/// below. It has an outer attribute and an inner attribute. Parsing it
/// involves two calls to this method, one of which is indirectly
/// recursive.
/// ```ignore (fake attributes)
/// #[cfg_eval] // token pos
/// mod m { // 0.. 3
/// #[cfg_attr(cond1, attr1)] // 3..12
/// fn g() { // 12..17
/// #![cfg_attr(cond2, attr2)] // 17..27
/// let _x = 3; // 27..32
/// } // 32..33
/// } // 33..34
/// ```
pub(super) fn collect_tokens<R: HasAttrs + HasTokens>(
&mut self,
pre_attr_pos: Option<CollectPos>,
attrs: AttrWrapper,
force_collect: ForceCollect,
f: impl FnOnce(&mut Self, AttrVec) -> PResult<'a, (R, Trailing, UsePreAttrPos)>,
) -> PResult<'a, R> {
// We must collect if anything could observe the collected tokens, i.e.
// if any of the following conditions hold.
// - We are force collecting tokens (because force collection requires
// tokens by definition).
let needs_collection = matches!(force_collect, ForceCollect::Yes)
// - Any of our outer attributes require tokens.
|| needs_tokens(&attrs.attrs)
// - Our target supports custom inner attributes (custom
// inner attribute invocation might require token capturing).
|| R::SUPPORTS_CUSTOM_INNER_ATTRS
// - We are in `capture_cfg` mode (which requires tokens if
// the parsed node has `#[cfg]` or `#[cfg_attr]` attributes).
|| self.capture_cfg;
if !needs_collection {
return Ok(f(self, attrs.attrs)?.0);
}
let mut collect_pos = self.collect_pos();
let has_outer_attrs = !attrs.attrs.is_empty();
let parser_replacements_start = self.capture_state.parser_replacements.len();
// We set and restore `Capturing::Yes` on either side of the call to
// `f`, so we can distinguish the outermost call to `collect_tokens`
// (e.g. parsing `m` in the example above) from any inner (indirectly
// recursive) calls (e.g. parsing `g` in the example above). This
// distinction is used below and in `Parser::parse_inner_attributes`.
let (mut ret, capture_trailing, use_pre_attr_pos) = {
let prev_capturing = mem::replace(&mut self.capture_state.capturing, Capturing::Yes);
let res = f(self, attrs.attrs);
self.capture_state.capturing = prev_capturing;
res?
};
// When we're not in `capture_cfg` mode, then skip collecting and
// return early if either of the following conditions hold.
// - `None`: Our target doesn't support tokens at all (e.g. `NtIdent`).
// - `Some(Some(_))`: Our target already has tokens set (e.g. we've
// parsed something like `#[my_attr] $item`). The actual parsing code
// takes care of prepending any attributes to the nonterminal, so we
// don't need to modify the already captured tokens.
//
// Note that this check is independent of `force_collect`. There's no
// need to collect tokens when we don't support tokens or already have
// tokens.
if !self.capture_cfg && matches!(ret.tokens_mut(), None | Some(Some(_))) {
return Ok(ret);
}
// This is similar to the `needs_collection` check at the start of this
// function, but now that we've parsed an AST node we have complete
// information available. (If we return early here that means the
// setup, such as cloning the token cursor, was unnecessary. That's
// hard to avoid.)
//
// We must collect if anything could observe the collected tokens, i.e.
// if any of the following conditions hold.
// - We are force collecting tokens.
let needs_collection = matches!(force_collect, ForceCollect::Yes)
// - Any of our outer *or* inner attributes require tokens.
// (`attr.attrs` was just outer attributes, but `ret.attrs()` is
// outer and inner attributes. So this check is more precise than
// the earlier `needs_tokens` check, and we don't need to
// check `R::SUPPORTS_CUSTOM_INNER_ATTRS`.)
|| needs_tokens(ret.attrs())
// - We are in `capture_cfg` mode and there are `#[cfg]` or
// `#[cfg_attr]` attributes. (During normal non-`capture_cfg`
// parsing, we don't need any special capturing for those
// attributes, because they're builtin.)
|| (self.capture_cfg && has_cfg_or_cfg_attr(ret.attrs()));
if !needs_collection {
return Ok(ret);
}
// Replace the post-attribute collection start position with the
// pre-attribute position supplied, if `f` indicated it is necessary.
// (The caller is responsible for providing a non-`None` `pre_attr_pos`
// if this is a possibility.)
if matches!(use_pre_attr_pos, UsePreAttrPos::Yes) {
collect_pos = pre_attr_pos.unwrap();
}
let parser_replacements_end = self.capture_state.parser_replacements.len();
assert!(
!(self.break_last_token && matches!(capture_trailing, Trailing::Yes)),
"Cannot set break_last_token and have trailing token"
);
let end_pos = self.num_bump_calls
+ capture_trailing as u32
// If we 'broke' the last token (e.g. breaking a '>>' token to two '>' tokens), then
// extend the range of captured tokens to include it, since the parser was not actually
// bumped past it. When the `LazyAttrTokenStream` gets converted into an
// `AttrTokenStream`, we will create the proper token.
+ self.break_last_token as u32;
let num_calls = end_pos - collect_pos.start_pos;
// Take the captured `ParserRange`s for any inner attributes that we parsed in
// `Parser::parse_inner_attributes`, and pair them in a `ParserReplacement` with `None`,
// which means the relevant tokens will be removed. (More details below.)
let mut inner_attr_parser_replacements = Vec::new();
for attr in ret.attrs() {
if attr.style == ast::AttrStyle::Inner {
if let Some(inner_attr_parser_range) =
self.capture_state.inner_attr_parser_ranges.remove(&attr.id)
{
inner_attr_parser_replacements.push((inner_attr_parser_range, None));
} else {
self.dcx().span_delayed_bug(attr.span, "Missing token range for attribute");
}
}
}
// This is hot enough for `deep-vector` that checking the conditions for an empty iterator
// is measurably faster than actually executing the iterator.
let node_replacements: Box<[_]> = if parser_replacements_start == parser_replacements_end
&& inner_attr_parser_replacements.is_empty()
{
Box::new([])
} else {
// Grab any replace ranges that occur *inside* the current AST node. Convert them
// from `ParserRange` form to `NodeRange` form. We will perform the actual
// replacement only when we convert the `LazyAttrTokenStream` to an
// `AttrTokenStream`.
self.capture_state.parser_replacements
[parser_replacements_start..parser_replacements_end]
.iter()
.cloned()
.chain(inner_attr_parser_replacements.iter().cloned())
.map(|(parser_range, data)| {
(NodeRange::new(parser_range, collect_pos.start_pos), data)
})
.collect()
};
// What is the status here when parsing the example code at the top of this method?
//
// When parsing `g`:
// - `start_pos..end_pos` is `12..33` (`fn g { ... }`, excluding the outer attr).
// - `inner_attr_parser_replacements` has one entry (`ParserRange(17..27)`), to
// delete the inner attr's tokens.
// - This entry is converted to `NodeRange(5..15)` (relative to the `fn`) and put into
// the lazy tokens for `g`, i.e. deleting the inner attr from those tokens (if they get
// evaluated).
// - Those lazy tokens are also put into an `AttrsTarget` that is appended to `self`'s
// replace ranges at the bottom of this function, for processing when parsing `m`.
// - `parser_replacements_start..parser_replacements_end` is empty.
//
// When parsing `m`:
// - `start_pos..end_pos` is `0..34` (`mod m`, excluding the `#[cfg_eval]` attribute).
// - `inner_attr_parser_replacements` is empty.
// - `parser_replacements_start..parser_replacements_end` has one entry.
// - One `AttrsTarget` (added below when parsing `g`) to replace all of `g` (`3..33`,
// including its outer attribute), with:
// - `attrs`: includes the outer and the inner attr.
// - `tokens`: lazy tokens for `g` (with its inner attr deleted).
let tokens = LazyAttrTokenStream::new(LazyAttrTokenStreamImpl {
start_token: collect_pos.start_token,
cursor_snapshot: collect_pos.cursor_snapshot,
num_calls,
break_last_token: self.break_last_token,
node_replacements,
});
// If we support tokens and don't already have them, store the newly captured tokens.
if let Some(target_tokens @ None) = ret.tokens_mut() {
*target_tokens = Some(tokens.clone());
}
// If `capture_cfg` is set and we're inside a recursive call to
// `collect_tokens`, then we need to register a replace range if we
// have `#[cfg]` or `#[cfg_attr]`. This allows us to run eager
// cfg-expansion on the captured token stream.
if self.capture_cfg
&& matches!(self.capture_state.capturing, Capturing::Yes)
&& has_cfg_or_cfg_attr(ret.attrs())
{
assert!(!self.break_last_token, "Should not have unglued last token with cfg attr");
// What is the status here when parsing the example code at the top of this method?
//
// When parsing `g`, we add one entry:
// - The pushed entry (`ParserRange(3..33)`) has a new `AttrsTarget` with:
// - `attrs`: includes the outer and the inner attr.
// - `tokens`: lazy tokens for `g` (with its inner attr deleted).
//
// When parsing `m`, we do nothing here.
// Set things up so that the entire AST node that we just parsed, including attributes,
// will be replaced with `target` in the lazy token stream. This will allow us to
// cfg-expand this AST node.
let start_pos =
if has_outer_attrs { attrs.start_pos.unwrap() } else { collect_pos.start_pos };
let target = AttrsTarget { attrs: ret.attrs().iter().cloned().collect(), tokens };
self.capture_state
.parser_replacements
.push((ParserRange(start_pos..end_pos), Some(target)));
} else if matches!(self.capture_state.capturing, Capturing::No) {
// Only clear the ranges once we've finished capturing entirely, i.e. we've finished
// the outermost call to this method.
self.capture_state.parser_replacements.clear();
self.capture_state.inner_attr_parser_ranges.clear();
}
Ok(ret)
}
}
/// Converts a flattened iterator of tokens (including open and close delimiter tokens) into an
/// `AttrTokenStream`, creating an `AttrTokenTree::Delimited` for each matching pair of open and
/// close delims.
fn make_attr_token_stream(
iter: impl Iterator<Item = FlatToken>,
break_last_token: bool,
) -> AttrTokenStream {
#[derive(Debug)]
struct FrameData {
// This is `None` for the first frame, `Some` for all others.
open_delim_sp: Option<(Delimiter, Span, Spacing)>,
inner: Vec<AttrTokenTree>,
}
// The stack always has at least one element. Storing it separately makes for shorter code.
let mut stack_top = FrameData { open_delim_sp: None, inner: vec![] };
let mut stack_rest = vec![];
for flat_token in iter {
match flat_token {
FlatToken::Token((Token { kind: TokenKind::OpenDelim(delim), span }, spacing)) => {
stack_rest.push(mem::replace(
&mut stack_top,
FrameData { open_delim_sp: Some((delim, span, spacing)), inner: vec![] },
));
}
FlatToken::Token((Token { kind: TokenKind::CloseDelim(delim), span }, spacing)) => {
let frame_data = mem::replace(&mut stack_top, stack_rest.pop().unwrap());
let (open_delim, open_sp, open_spacing) = frame_data.open_delim_sp.unwrap();
assert_eq!(
open_delim, delim,
"Mismatched open/close delims: open={open_delim:?} close={span:?}"
);
let dspan = DelimSpan::from_pair(open_sp, span);
let dspacing = DelimSpacing::new(open_spacing, spacing);
let stream = AttrTokenStream::new(frame_data.inner);
let delimited = AttrTokenTree::Delimited(dspan, dspacing, delim, stream);
stack_top.inner.push(delimited);
}
FlatToken::Token((token, spacing)) => {
stack_top.inner.push(AttrTokenTree::Token(token, spacing))
}
FlatToken::AttrsTarget(target) => {
stack_top.inner.push(AttrTokenTree::AttrsTarget(target))
}
FlatToken::Empty => {}
}
}
if break_last_token {
let last_token = stack_top.inner.pop().unwrap();
if let AttrTokenTree::Token(last_token, spacing) = last_token {
let unglued_first = last_token.kind.break_two_token_op().unwrap().0;
// An 'unglued' token is always two ASCII characters
let mut first_span = last_token.span.shrink_to_lo();
first_span = first_span.with_hi(first_span.lo() + rustc_span::BytePos(1));
stack_top
.inner
.push(AttrTokenTree::Token(Token::new(unglued_first, first_span), spacing));
} else {
panic!("Unexpected last token {last_token:?}")
}
}
AttrTokenStream::new(stack_top.inner)
}
/// Tokens are needed if:
/// - any non-single-segment attributes (other than doc comments) are present; or
/// - any `cfg_attr` attributes are present;
/// - any single-segment, non-builtin attributes are present.
fn needs_tokens(attrs: &[ast::Attribute]) -> bool {
attrs.iter().any(|attr| match attr.ident() {
None => !attr.is_doc_comment(),
Some(ident) => {
ident.name == sym::cfg_attr || !rustc_feature::is_builtin_attr_name(ident.name)
}
})
}
// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
use rustc_data_structures::static_assert_size;
use super::*;
// tidy-alphabetical-start
static_assert_size!(LazyAttrTokenStreamImpl, 96);
// tidy-alphabetical-end
}